CN109001148B - 一种近红外光谱典型相关分析融合的茶籽油多元掺伪检测方法 - Google Patents

一种近红外光谱典型相关分析融合的茶籽油多元掺伪检测方法 Download PDF

Info

Publication number
CN109001148B
CN109001148B CN201810979570.8A CN201810979570A CN109001148B CN 109001148 B CN109001148 B CN 109001148B CN 201810979570 A CN201810979570 A CN 201810979570A CN 109001148 B CN109001148 B CN 109001148B
Authority
CN
China
Prior art keywords
adulteration
oil
infrared spectrogram
oil sample
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810979570.8A
Other languages
English (en)
Other versions
CN109001148A (zh
Inventor
郑晓
王杰
俞雅茹
徐强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Polytechnic University
Original Assignee
Wuhan Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Polytechnic University filed Critical Wuhan Polytechnic University
Priority to CN201810979570.8A priority Critical patent/CN109001148B/zh
Publication of CN109001148A publication Critical patent/CN109001148A/zh
Application granted granted Critical
Publication of CN109001148B publication Critical patent/CN109001148B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Abstract

本发明公开了一种近红外光谱典型相关分析融合的茶籽油多元掺伪检测方法,包括:向茶籽油样品中掺入一定量的大豆油和菜籽油,得到多元掺伪油样;采集多元掺伪油样在1350~1450nm范围的近红外光谱图,得到一次近红外光谱图;采集多元掺伪油样在1700~1800nm范围的近红外光谱图,得到二次近红外光谱图;将一次近红外光谱图和二次近红外光谱图进行典型相关分析融合,得到融合近红外光谱图;采用稀疏字典学习对融合近红外光谱图进行特征变量提取,得到融合特征变量;根据融合特征变量,采用掺伪优化定量模型预测所述多元掺伪油样的掺伪量。该近红外光谱典型相关分析融合的茶籽油多元掺伪检测方法,安全快速、检测便捷,预测准确率高。

Description

一种近红外光谱典型相关分析融合的茶籽油多元掺伪检测 方法
技术领域
本发明涉及茶籽油快速检测技术领域,尤其涉及一种近红外光谱典型相关分析融合的茶籽油多元掺伪检测方法。
背景技术
食用油是人们日常生活中的重要调味品,是人们膳食结构中必不可少的重要组成部分。茶籽油作为一款日常生活中常用油,其不含对人体有害的成分,且茶籽油是食用品质好,营养价值高的优良食用油。但是,近几年各种形式和各地监督检查情况发现:在茶籽油中掺入其他植物油或从废弃油渣中提取残油以及部分店家都是用食用香精勾兑其他食用油以次充好来谋取高润利益,严重影响消费者权益。因此,寻求一种快速、有效的茶籽油掺伪其它低廉食用油脂的检测方法具有重要意义。
发明内容
针对上述技术中存在的不足之处,本发明提供了一种安全可靠、便捷高效的近红外光谱典型相关分析融合的茶籽油多元掺伪检测方法。
本发明解决其技术问题所采用的技术方案是:一种近红外光谱典型相关分析融合的茶籽油多元掺伪检测方法,包括:步骤一、多元掺伪油样配制:向茶籽油样品中掺入一定量的大豆油和菜籽油,得到多元掺伪油样;步骤二、一次光谱采集:采集多元掺伪油样在1350~1450nm范围的近红外光谱图,得到一次近红外光谱图;步骤三、二次光谱采集:采集多元掺伪油样在1700~1800nm范围的近红外光谱图,得到二次近红外光谱图;步骤四、典型相关分析融合:将多元掺伪油样的一次近红外光谱图和二次近红外光谱图进行典型相关分析融合,得到融合近红外光谱图;步骤五、特征变量提取:采用稀疏字典学习对多元掺伪油样的融合近红外光谱图进行特征变量提取,得到融合特征变量;步骤六、掺伪量预测:根据多元掺伪油样的融合特征变量,采用掺伪优化定量模型预测所述多元掺伪油样的掺伪量。
优选的,所述步骤一中大豆油和菜籽油向茶籽油样品中的掺入质量比范围均为0~50%。
优选的,所述步骤二中一次光谱采集的条件如下:将多元掺伪油样置于流通池中,设置多元掺伪油样的温度为30±5℃,湿度为40±5%RH,多元掺伪油样的流速为1~1.2cm/s;设置近红外光谱仪的分辨率为4cm,扫描次数为32次,光纤探头的光程为5mm,且光纤探头的入射方向与多元掺伪油样的流向构成一38.38°的入射角;每个多元掺伪油样取三次测量的平均值作为最终采集的一次近红外光谱图。
优选的,所述步骤三中二次光谱采集的条件如下:将多元掺伪油样置于流通池中,设置多元掺伪油样的温度为30±5℃,湿度为40±5%RH,多元掺伪油样的流速为0.4~0.6cm/s;设置近红外光谱仪的分辨率为8cm,扫描次数为64次,光纤探头的光程为10mm,且光纤探头的入射方向与多元掺伪油样的流向构成一38.38°的入射角;每个多元掺伪油样取三次测量的平均值作为最终采集的二次近红外光谱图。
优选的,所述步骤四中典型相关分析融合的方法如下:抽取一次近红外光谱图和二次近红外光谱图的两组不同特征矢量,构成样本空间A和B;计算样本空间A和B的总体协方差矩阵Saa、Sbb,及A和B之间的互协方差矩阵Sab;计算鉴别准则矩阵的非零本征值并排序,同时得到典型投影矢量;利用典型投影矢量组成变换矩阵抽取特征,即得到融合近红外光谱图。
优选的,所述步骤五中采用稀疏字典学习对多元掺伪油样的融合近红外光谱图进行特征变量提取,设置平衡误差参数ε=1.122,设置权重参数λ=30/σ,稀疏字典原子的稀疏度L=25,依次采用正交匹配追踪法和K-奇异值分解方法进行迭代优化,设置迭代次数为2~20次,当均方根误差值取最小时,得到融合特征变量。
优选的,所述步骤六中掺伪优化定量模型的建立方法如下:在若干份等质量的茶籽油样中依次按不同质量比掺入大豆油和菜籽油,得到若干份掺伪油样;采集所述若干份掺伪油样的一次近红外光谱图和二次近红外光谱图,一次近红外光谱图采集条件如步骤二中所述,二次近红外光谱图采集条件如步骤三中所述;将所述若干份掺伪油样的一次近红外光谱图和二次近红外光谱图进行典型相关分析融合,得到融合近红外光谱图,融合方法如步骤四中所述;采用稀疏字典学习对所述若干份掺伪油样的融合近红外光谱图进行特征变量提取,得到融合特征变量,特征变量提取方法如步骤五中所述;通过多核学习支持向量机回归方法建立所述若干份掺伪油样的融合特征变量与掺伪量之间的掺伪定量模型,并采用粒子群优化算法对掺伪定量模型中的参数进行优化,得到掺伪优化定量模型。
优选的,通过多核学习支持向量机回归方法建立所述若干份掺伪油样的融合特征变量与掺伪量之间的掺伪定量模型,将融合特征变量的数据按特征维数分为10组,这10组均利用高斯核建立单核支持向量机掺伪定量模型;并采用粒子群优化算法对掺伪定量模型中的惩罚因子矩阵[C]和核函数参数矩阵[g]进行优化,[C]和[g]均是10x8的矩阵,优化时设置种群粒子数为30,每个粒子维数为2,迭代进化次数为120,学习因子初始值设定为C1=1.5,C2=1.2,得到10组参数([C],[g]),并对这10组参数([C],[g])进行加权投票,从而得到掺伪优化定量模型。
优选的,经优化,
当[C]等于
Figure BDA0001777003130000041
[g]等于
Figure BDA0001777003130000042
且权重为[0.052,0.0863,0.1124,0.1476,0.0745,0.1281,0.1309,0.0937,0.0458,0.1412]时,得到掺伪优化定量模型,其均方根误差≤5%,相关系数≥98%。
本发明与现有技术相比,其有益效果是:本发明提供的近红外光谱典型相关分析融合的茶籽油多元掺伪检测方法,通过采用不同波段范围的一次光谱采集和二次光谱采集,并设置两次光谱采集时多元掺伪油样的相同温度、湿度和不同流速,及设置两次光谱采集时近红外光谱仪的不同分辨率、扫描次数、光纤探头光程和相同的入射角,可有效消除外部条件对近红外光谱图的影响;通过典型相关分析融合一次近红外光谱图和二次近红外光谱图,可有效压缩近红外光谱图中的无用变量及干扰信息;通过采用多核学习支持向量机回归方法建立掺伪优化定量模型,可实现对多元掺伪油样中的掺伪量进行快速预测。
附图说明
图1是近红外光谱典型相关分析融合的茶籽油多元掺伪检测方法的流程示意图。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
如图1所示,本发明提供了一种近红外光谱典型相关分析融合的茶籽油多元掺伪检测方法,包括:
步骤一、向茶籽油样品中掺入一定量的大豆油和菜籽油,得到多元掺伪油样,所述大豆油和菜籽油向茶籽油样品中的掺入质量比范围均为0~50%;
步骤二、将多元掺伪油样置于流通池中,设置多元掺伪油样的温度为30±5℃,湿度为40±5%RH,多元掺伪油样的流速为1~1.2cm/s;设置近红外光谱仪的分辨率为4cm-1,扫描次数为32次,光纤探头的光程为5mm,且光纤探头的入射方向与多元掺伪油样的流向构成一38.38°的入射角;采集多元掺伪油样在1350~1450nm范围的近红外光谱图,每个多元掺伪油样取三次测量的平均值作为最终采集的一次近红外光谱图;
步骤三、将多元掺伪油样置于流通池中,设置多元掺伪油样的温度为30±5℃,湿度为40±5%RH,多元掺伪油样的流速为0.4~0.6cm/s;设置近红外光谱仪的分辨率为8cm-1,扫描次数为64次,光纤探头的光程为10mm,且光纤探头的入射方向与多元掺伪油样的流向构成一38.38°的入射角;采集多元掺伪油样在1700~1800nm范围的近红外光谱图,每个多元掺伪油样取三次测量的平均值作为最终采集的二次近红外光谱图;
步骤四、将多元掺伪油样的一次近红外光谱图和二次近红外光谱图进行典型相关分析融合,抽取一次近红外光谱图和二次近红外光谱图的两组不同特征矢量,构成样本空间A和B;计算样本空间A和B的总体协方差矩阵Saa、Sbb,及A和B之间的互协方差矩阵Sab;计算鉴别准则矩阵的非零本征值并排序,同时得到典型投影矢量;利用典型投影矢量组成变换矩阵抽取特征,即得到融合近红外光谱图;
步骤五、采用稀疏字典学习对多元掺伪油样的融合近红外光谱图进行特征变量提取,设置平衡误差参数ε=1.122,设置权重参数λ=30/σ,稀疏字典原子的稀疏度L=25,依次采用正交匹配追踪法和K-奇异值分解方法进行迭代优化,设置迭代次数为2~20次,当均方根误差值取最小时,得到融合特征变量;
步骤六、根据多元掺伪油样的融合特征变量,采用掺伪优化定量模型预测所述多元掺伪油样的掺伪量;
其中,所述掺伪优化定量模型的建立方法如下:
在若干份等质量的茶籽油样中依次按不同质量比掺入大豆油和菜籽油,得到若干份掺伪油样;
采集所述若干份掺伪油样的一次近红外光谱图和二次近红外光谱图,一次近红外光谱图采集条件如步骤二中所述,二次近红外光谱图采集条件如步骤三中所述;
将所述若干份掺伪油样的一次近红外光谱图和二次近红外光谱图进行典型相关分析融合,得到融合近红外光谱图,融合方法如步骤四中所述;
采用稀疏字典学习对所述若干份掺伪油样的融合近红外光谱图进行特征变量提取,得到融合特征变量,特征变量提取方法如步骤五中所述;
通过多核学习支持向量机回归方法建立所述若干份掺伪油样的融合特征变量与掺伪量之间的掺伪定量模型,将融合特征变量的数据按特征维数分为10组,这10组均利用高斯核建立单核支持向量机掺伪定量模型;并采用粒子群优化算法对掺伪定量模型中的惩罚因子矩阵[C]和核函数参数矩阵[g]进行优化,[C]和[g]均是10x8的矩阵,优化时设置种群粒子数为30,每个粒子维数为2,迭代进化次数为120,学习因子初始值设定为C1=1.5,C2=1.2,得到10组参数([C],[g]),并对这10组参数([C],[g])进行加权投票,经优化,
当[C]等于
Figure BDA0001777003130000071
[g]等于
Figure BDA0001777003130000072
且权重为[0.052,0.0863,0.1124,0.1476,0.0745,0.1281,0.1309,0.0937,0.0458,0.1412]时,得到掺伪优化定量模型,其均方根误差≤5%,相关系数≥98%。
实施例
1、掺伪油样配制
在921份等质量的茶籽油样中依次按不同质量比掺入大豆油和菜籽油,所述大豆油和菜籽油向茶籽油样品中的掺入质量比范围均为0~50%,采用SPXY算法按2∶1的比例选取校正集掺伪油样614份和预测集掺伪油样307份。
2、光谱采集
将掺伪油样置于流通池中,设置掺伪油样的温度为30℃,湿度为40%RH,掺伪油样的流速为1cm/s;设置近红外光谱仪的分辨率为4cm,扫描次数为32次,光纤探头的光程为5mm,且光纤探头的入射方向与掺伪油样的流向构成一38.38°的入射角;采集921份掺伪油样在1350~1450nm范围的近红外光谱图,每个掺伪油样取三次测量的平均值作为最终采集的一次近红外光谱图;
将掺伪油样置于流通池中,设置掺伪油样的温度为30℃,湿度为40%RH,掺伪油样的流速为0.5cm/s;设置近红外光谱仪的分辨率为8cm-1,扫描次数为64次,光纤探头的光程为10mm,且光纤探头的入射方向与掺伪油样的流向构成一38.38°的入射角;采集921份掺伪油样在1700~1800nm范围的近红外光谱图,每个掺伪油样取三次测量的平均值作为最终采集的二次近红外光谱图。
3、典型相关分析融合
将校正集中的614份掺伪油样的一次近红外光谱图和二次近红外光谱图进行典型相关分析融合,抽取一次近红外光谱图和二次近红外光谱图的两组不同特征矢量,构成样本空间A和B;计算样本空间A和B的总体协方差矩阵Saa、Sbb,及A和B之间的互协方差矩阵Sab;计算鉴别准则矩阵的非零本征值并排序,大于0.001的本征值分别为0.9996,0.8756,0.7529,0.6214,0.4327,0.2948,0.1521,0.1036,0.0842,0.0609,0.562,0.0382,0.0225,0.0197,0.0123,0.0082,0.0063,0.0049,0.0046,0.0032,0.0026,0.0019,0.0015,0.0014,0.0013,0.0012,0.0011,0.0010,同时得到典型投影矢量;利用典型投影矢量组成变换矩阵抽取特征,即得到融合近红外光谱图。
4、光谱特征提取
采用稀疏字典学习对校正集中的614份掺伪油样的融合近红外光谱图进行特征变量提取,设置平衡误差参数ε=1.122,设置权重参数λ=30/σ,稀疏字典原子的稀疏度L=25,依次采用正交匹配追踪法和K-奇异值分解方法进行迭代优化,设置迭代次数为2~20次,当取σ=28且迭代次数为16次时,得到均方根误差值最小为0.1325,提取得到融合特征变量72个。
5、优化掺伪定量模型的建立
通过多核学习支持向量机回归方法建立校正集中的614份掺伪油样的融合特征变量与掺伪量之间的掺伪定量模型,将融合特征变量的数据按特征维数分为10组,这10组均利用高斯核建立单核支持向量机掺伪定量模型;并采用粒子群优化算法对掺伪定量模型中的惩罚因子矩阵[C]和核函数参数矩阵[g]进行优化,[C]和[g]均是10x8的矩阵,优化时设置种群粒子数为30,每个粒子维数为2,迭代进化次数为120,学习因子初始值设定为C1=1.5,C2=1.2,得到10组参数([C],[g]),并对这10组参数([C],[g])进行加权投票,经优化,
当[C]等于
Figure BDA0001777003130000091
[g]等于
Figure BDA0001777003130000092
Figure BDA0001777003130000101
且权重为[0.052,0.0863,0.1124,0.1476,0.0745,0.1281,0.1309,0.0937,0.0458,0.1412]时,得到掺伪优化定量模型,校正集的相关系数为0.9985,均方根误差为0.0133。
6、预测集掺伪油样验证
通过经优化得到的惩罚因子矩阵[C]和核函数参数矩阵[g],且权重为[0.052,0.0863,0.1124,0.1476,0.0745,0.1281,0.1309,0.0937,0.0458,0.1412]时的掺伪优化定量模型对预测集中的307份掺伪油样进行预测验证,计算得到预测集的相关系数为0.9869,均方根误差为0.0126。
尽管本发明的实施方案已公开如上,但其并不仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (5)

1.一种近红外光谱典型相关分析融合的茶籽油多元掺伪检测方法,其特征在于,包括:
步骤一、多元掺伪油样配制:向茶籽油样品中掺入一定量的大豆油和菜籽油,得到多元掺伪油样;
步骤二、一次光谱采集:采集多元掺伪油样在1350~1450nm范围的近红外光谱图,得到一次近红外光谱图;
一次光谱采集的条件如下:
将多元掺伪油样置于流通池中,设置多元掺伪油样的温度为30±5℃,湿度为40±5%RH,多元掺伪油样的流速为1~1.2cm/s;
设置近红外光谱仪的分辨率为4cm-1,扫描次数为32次,光纤探头的光程为5mm,且光纤探头的入射方向与多元掺伪油样的流向构成一38.38°的入射角;
每个多元掺伪油样取三次测量的平均值作为最终采集的一次近红外光谱图;
步骤三、二次光谱采集:采集多元掺伪油样在1700~1800nm范围的近红外光谱图,得到二次近红外光谱图;
二次光谱采集的条件如下:
将多元掺伪油样置于流通池中,设置多元掺伪油样的温度为30±5℃,湿度为40±5%RH,多元掺伪油样的流速为0.4~0.6cm/s;
设置近红外光谱仪的分辨率为8cm-1,扫描次数为64次,光纤探头的光程为10mm,且光纤探头的入射方向与多元掺伪油样的流向构成一38.38°的入射角;
每个多元掺伪油样取三次测量的平均值作为最终采集的二次近红外光谱图;
步骤四、典型相关分析融合:将多元掺伪油样的一次近红外光谱图和二次近红外光谱图进行典型相关分析融合,得到融合近红外光谱图;
典型相关分析融合的方法如下:
抽取一次近红外光谱图和二次近红外光谱图的两组不同特征矢量,构成样本空间A和B;
计算样本空间A和B的总体协方差矩阵Saa、Sbb,及A和B之间的互协方差矩阵Sab
计算鉴别准则矩阵的非零本征值并排序,同时得到典型投影矢量;
利用典型投影矢量组成变换矩阵抽取特征,即得到融合近红外光谱图;
步骤五、特征变量提取:采用稀疏字典学习对多元掺伪油样的融合近红外光谱图进行特征变量提取,设置平衡误差参数ε=1.122,设置权重参数λ=30/σ,稀疏字典原子的稀疏度L=25,依次采用正交匹配追踪法和K-奇异值分解方法进行迭代优化,设置迭代次数为2~20次,当均方根误差值取最小时,得到融合特征变量;
步骤六、掺伪量预测:根据多元掺伪油样的融合特征变量,采用掺伪优化定量模型预测所述多元掺伪油样的掺伪量。
2.如权利要求1所述的近红外光谱典型相关分析融合的茶籽油多元掺伪检测方法,其特征在于,所述步骤一中大豆油和菜籽油向茶籽油样品中的掺入质量比范围均为0~50%。
3.如权利要求1所述的近红外光谱典型相关分析融合的茶籽油多元掺伪检测方法,其特征在于,所述步骤六中掺伪优化定量模型的建立方法如下:
在若干份等质量的茶籽油样中依次按不同质量比掺入大豆油和菜籽油,得到若干份掺伪油样;
采集所述若干份掺伪油样的一次近红外光谱图和二次近红外光谱图,一次近红外光谱图采集条件如步骤二中所述,二次近红外光谱图采集条件如步骤三中所述;
将所述若干份掺伪油样的一次近红外光谱图和二次近红外光谱图进行典型相关分析融合,得到融合近红外光谱图,融合方法如步骤四中所述;
采用稀疏字典学习对所述若干份掺伪油样的融合近红外光谱图进行特征变量提取,得到融合特征变量,特征变量提取方法如步骤五中所述;
通过多核学习支持向量机回归方法建立所述若干份掺伪油样的融合特征变量与掺伪量之间的掺伪定量模型,并采用粒子群优化算法对掺伪定量模型中的参数进行优化,得到掺伪优化定量模型。
4.如权利要求3所述的近红外光谱典型相关分析融合的茶籽油多元掺伪检测方法,其特征在于,通过多核学习支持向量机回归方法建立所述若干份掺伪油样的融合特征变量与掺伪量之间的掺伪定量模型,将融合特征变量的数据按特征维数分为10组,这10组均利用高斯核建立单核支持向量机掺伪定量模型;并采用粒子群优化算法对掺伪定量模型中的惩罚因子矩阵[C]和核函数参数矩阵[g]进行优化,[C]和[g]均是10x8的矩阵,优化时设置种群粒子数为30,每个粒子维数为2,迭代进化次数为120,学习因子初始值设定为C1=1.5,C2=1.2,得到10组参数([C],[g]),并对这10组参数([C],[g])进行加权投票,从而得到掺伪优化定量模型。
5.如权利要求4所述的近红外光谱典型相关分析融合的茶籽油多元掺伪检测方法,其特征在于,经优化,
当[C]等于
438 843 951 636 141 87 251 724
265 702 168 205 175 11 647 425
361 992 924 85 897 130 434 972
465 834 401 437 684 784 207 479
981 932 498 342 520 637 447 480
797 322 957 64 353 596 293 129
579 267 507 320 913 733 843 352
199 648 203 394 873 706 540 814
14 955 659 636 152 367 488 423
760 877 120 977 695 522 596 56
[g]等于
59 586 261 168 112 72 41 134
204 268 15 7 995 753 34 6
396 123 93 664 120 200 402 30
280 10 994 18 495 20 54 32
645 17 140 66 57 76 610 648
277 84 453 64 64 39 16 467
19 43 183 25 19 11 40 55
111 559 727 307 54 42 730 279
173 25 174 108 30 33 4 2
378 573 854 810 984 12 761 423
且权重为[0.052,0.0863,0.1124,0.1476,0.0745,0.1281,0.1309,0.0937,0.0458,0.1412]时,得到掺伪优化定量模型,其均方根误差≤5%,相关系数≥98%。
CN201810979570.8A 2018-08-24 2018-08-24 一种近红外光谱典型相关分析融合的茶籽油多元掺伪检测方法 Active CN109001148B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810979570.8A CN109001148B (zh) 2018-08-24 2018-08-24 一种近红外光谱典型相关分析融合的茶籽油多元掺伪检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810979570.8A CN109001148B (zh) 2018-08-24 2018-08-24 一种近红外光谱典型相关分析融合的茶籽油多元掺伪检测方法

Publications (2)

Publication Number Publication Date
CN109001148A CN109001148A (zh) 2018-12-14
CN109001148B true CN109001148B (zh) 2020-10-09

Family

ID=64593443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810979570.8A Active CN109001148B (zh) 2018-08-24 2018-08-24 一种近红外光谱典型相关分析融合的茶籽油多元掺伪检测方法

Country Status (1)

Country Link
CN (1) CN109001148B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111272696A (zh) * 2020-03-24 2020-06-12 山东大学 一种快速检测普洱茶中掺杂香精的方法
CN112819062B (zh) * 2021-01-26 2022-05-17 淮阴工学院 基于混合粒子群和连续投影的荧光光谱二次特征选择方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102937575A (zh) * 2012-11-21 2013-02-20 浙江大学 一种基于二次光谱重组的西瓜糖度快速建模方法
JP5169190B2 (ja) * 2007-12-13 2013-03-27 東亜ディーケーケー株式会社 軽油識別方法及び軽油モニタ
CN105372203A (zh) * 2015-11-04 2016-03-02 江南大学 基于多传感器融合的新鲜苹果损伤敏感度无损检测方法
CN108198228A (zh) * 2017-12-29 2018-06-22 华中科技大学 一种天基红外高光谱图像智能压缩方法
CN108267424A (zh) * 2018-02-07 2018-07-10 武汉轻工大学 基于多种特征成分快速鉴别食用油种类的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105738316A (zh) * 2014-12-10 2016-07-06 中国石油天然气股份有限公司 一种采用近红外光谱检测劣质重油受热结焦趋势的方法
WO2016141451A1 (en) * 2015-03-11 2016-09-15 Hormoz Azizian Method and technique for verification of olive oil composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5169190B2 (ja) * 2007-12-13 2013-03-27 東亜ディーケーケー株式会社 軽油識別方法及び軽油モニタ
CN102937575A (zh) * 2012-11-21 2013-02-20 浙江大学 一种基于二次光谱重组的西瓜糖度快速建模方法
CN105372203A (zh) * 2015-11-04 2016-03-02 江南大学 基于多传感器融合的新鲜苹果损伤敏感度无损检测方法
CN108198228A (zh) * 2017-12-29 2018-06-22 华中科技大学 一种天基红外高光谱图像智能压缩方法
CN108267424A (zh) * 2018-02-07 2018-07-10 武汉轻工大学 基于多种特征成分快速鉴别食用油种类的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
典型相关分析的理论及其在特征融合中的应用;孙权森 等;《计算机学报》;20050930;第28卷(第9期);第1524页摘要、第1527页右栏 *
基于近红外光谱和子窗口重排分析的山茶油掺假检测;孙通 等;《光学学报》;20150630;第35卷(第6期);第2-4页 2.2 实验方法 *
脐橙表皮两种混合农药残留的表面增强拉曼光谱定量检测;刘燕德 等;《光谱学与光谱分析》;20180131;第38卷(第1期);第125页左栏 *

Also Published As

Publication number Publication date
CN109001148A (zh) 2018-12-14

Similar Documents

Publication Publication Date Title
CN104316491B (zh) 基于同步‑异步二维近红外相关谱检测牛奶掺尿素的方法
Huang et al. Improved generalization of spectral models associated with Vis-NIR spectroscopy for determining the moisture content of different tea leaves
CN103792198A (zh) 牛奶中掺三聚氰胺的中红外-近红外相关谱判别方法
CN109001148B (zh) 一种近红外光谱典型相关分析融合的茶籽油多元掺伪检测方法
CN103543123A (zh) 一种掺假牛奶的红外光谱识别方法
CN107515203A (zh) 近红外技术定量分析水稻单籽粒直链淀粉含量的研究
CN109001181B (zh) 一种拉曼光谱典型相关分析融合的食用油种类快速鉴别方法
CN105138834A (zh) 基于近红外光谱波数k均值聚类的烟草化学值定量方法
WO2020248961A1 (zh) 一种无参考值的光谱波数选择方法
CN108051394B (zh) 基于近红外光谱的芝麻油掺伪检测方法
CN108613943A (zh) 一种基于光谱形态转移的近红外单籽粒作物成分检测方法
CN108303406B (zh) 基于拉曼光谱的油茶籽油掺伪检测方法
CN108613965B (zh) 一种基于数据驱动拉曼光谱的乳品中乳清蛋白测量方法
CN112485216B (zh) 一种多源信息融合的泰国茉莉香米掺伪鉴别方法
CN110231302A (zh) 一种快速测定奇亚籽粗脂肪含量的方法
CN113655027A (zh) 一种近红外快速检测植物中单宁含量的方法
CN105806803A (zh) 一种多指标协同分析波长组合及其选择方法
CN105866043A (zh) 一种利用高光谱技术检测苹果酸味的方法
CN102809635B (zh) 一种适宜溶解型蛋白质加工的花生品质测定及其评价方法
Yang Development of an integrated variety and appearance quality measurement system for milled rice
CN108645841B (zh) 一种拉曼光谱小波融合的芝麻油多元掺伪检测方法
Kong et al. An integrated field and hyperspectral remote sensing method for the estimation of pigments content of Stipa Purpurea in Shenzha, Tibet
Li et al. SVM-based apple classification of soluble solids content by near-infrared spectroscopy
CN106124417A (zh) 一种利用高光谱技术检测苹果涩味的回味的方法
CN111220561A (zh) 一种川西獐牙菜产地的红外光谱鉴定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant