CN108993562A - 一种反钙钛矿材料、核壳复合材料、制备方法及其用途 - Google Patents

一种反钙钛矿材料、核壳复合材料、制备方法及其用途 Download PDF

Info

Publication number
CN108993562A
CN108993562A CN201810562714.XA CN201810562714A CN108993562A CN 108993562 A CN108993562 A CN 108993562A CN 201810562714 A CN201810562714 A CN 201810562714A CN 108993562 A CN108993562 A CN 108993562A
Authority
CN
China
Prior art keywords
perovskite
cunni
core
composite material
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810562714.XA
Other languages
English (en)
Other versions
CN108993562B (zh
Inventor
周嵬
朱艳萍
杨广明
邵宗平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201810562714.XA priority Critical patent/CN108993562B/zh
Publication of CN108993562A publication Critical patent/CN108993562A/zh
Application granted granted Critical
Publication of CN108993562B publication Critical patent/CN108993562B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0602Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with two or more other elements chosen from metals, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)

Abstract

本发明属于电化学催化剂领域,具体涉及一种反钙钛矿材料及在其基础上制备的复合材料,本方法首先合成了具有反钙钛矿结构的CuNNi3,然后利用CuNNi3和Fe3+的原位界面反应,开发了一种多孔的具有核壳结构的Cu1‑xNNi3‑y/FeNiCu(oxy)hydroxide复合材料。本发明的析氧反应催化剂在碱性介质中具有优异的氧析出(OER)催化性能和长期稳定性,活性和稳定性都优于贵金属催化剂RuO2。本发明成本低廉,操作简单,适合工业上大规模生成,能得到较高纯度的产物,具有较高的实用价值。

Description

一种反钙钛矿材料、核壳复合材料、制备方法及其用途
技术领域
本发明属于电化学催化剂领域,具体涉及一种反钙钛矿材料及在其基础上制备的复合材料,以及它们在析氧反应电催化剂中的用途,具有高氧析出(OER)活性,可用于电解水、金属-空气电池以及其他涉及到氧析出反应的能源存储与转换技术的电催化剂。
背景技术
由于能源与环境问题的日益严峻,人们有必要寻找一种有效的环境友好型能源载体来取代日益枯竭的化石资源,以满足人类社会在未来持续发展的需求。氢气既是一种高效且清洁的能源载体,也是一种重要的化工原料,因而受到了人们广泛的关注。电解水制氢(H2O (l)→H2 (g) + 1/2 O2 (g)),包括阴极的氢析出(HER:2 H+ (aq)+ 2 e-→H2 (g)和阳极的氧析出 (OER:H2O (l)→2 e- + 2 H+ (aq)+1/2 O2 (g))两个半反应,阳极的析氧反应要比阴极的析氢反应困难得多。理想的OER催化剂如Ru或Ir及其氧化物,催化活性很高,但是昂贵的价格和匮乏的元素储量限制了其大规模应用。钙钛矿型氧化物价格低廉,结构多变,在电催化中有着广泛的应用。
发明内容
反钙钛矿结构化合物的结构通式为XYM3,其中X为主族元素或La系元素等;Y为N或C元素,M为过渡金属。与钙钛矿相比,反钙钛矿结构中的非金属元素与过渡金属元素交换位置。反钙钛矿的独特优势在于导电性好,同时也具备了钙钛矿结构多变、储量丰富等优点。
本发明的第一个方面:
一种反钙钛矿材料,其通式是:CuNNi3
本发明的第二个方面:
上述的反钙钛矿材料的制备方法,包括如下步骤:按照化学计量比,取铜粉和镍粉,混合均匀后,在模具中压制,再在氨气气氛中进行烧结,得到反钙钛矿材料。
在一个实施方式中,烧结制度是:300~400 ℃下的氨气氛围中煅烧,降温后将产物研磨,压片,继续在氨气氛围下400~500 ℃煅烧一次,再在500~600 ℃煅烧一次。
本发明的第三个方面:
一种析氧反应催化材料,是由上述的CuNNi3反钙钛矿材料与过量的Cu复合而成。
本发明的第四个方面:
一种反钙钛矿核壳复合材料,其内核为上述的反钙钛矿材料,外壳为FeNiCu的氢氧化物((oxy)hydroxide)。
在一个实施方式中,内核为多孔结构。
在一个实施方式中,内核材料为Cu1-xNNi3-y;0<x≤0.5;0<y≤0.5。
本发明的第五个方面:
上述的反钙钛矿核壳复合材料的制备方法,包括如下步骤:将CuNNi3反钙钛矿材料与过量的Cu构成的复合材料浸渍于Fe3+溶液中反应,将产物滤出、洗涤、干燥后,得到核壳材料。
在一个实施方式中,CuNNi3反钙钛矿材料与过量的Cu构成的混合材料的制备方法是:取铜粉和镍粉,混合均匀后,在模具中压制,再在氨气气氛中进行烧结,得到混合材料;铜粉的加入量按照CuNNi3的化学计量比相对于镍为过量。
在一个实施方式中,Cu1±xNNi3反钙钛矿材料与Fe3+溶液的质量体积比是0.1~0.5g:50~500mL。
在一个实施方式中, Fe3+溶液中Fe3+浓度0.01~0.05 M。
在一个实施方式中,反应5~120 min。
本发明的第六个方面:
上述的反钙钛矿核壳复合材料在电催化析氧反应中的用途。
上述的反钙钛矿材料在电催化析氧反应中的用途。
上述的析氧反应催化材料在电催化析氧反应中的用途。
有益效果
反钙钛矿结构的核具有很强的导电性,能促进催化过程中的电子传导。
在p-Cu1-xNNi3-y/FeNiCu (oxy)hydroxide复合材料催化剂中,原位生成的外层金属氢氧化物具有较高的催化活性。这种特殊的核壳结构有益于OER过程的进行。同时,复合材料中Ni,Fe,Cu的协同效应大大提高了催化活性。最后,复合材料的多孔性质暴露了更多活性位点,使得催化剂与电解液的接触面积更大,进一步提高催化剂的催化活性。
本发明合成方法简单,原料价格低廉,最终产物产率高,反应条件窗口宽,适合在工业中进行大规模生产。
附图说明
图1是CuNNi3+Cu和p-Cu1-xNNi3-y/FeNiCu的室温XRD图谱。
图2是Fe3+处理前后样品的Raman谱图。
图3是Fe3+处理前后样品的FTIR谱图。
图4是Fe3+处理前后样品中Fe 2p的XPS拟合结果。
图5 a是CuNNi3+Cu和p-Cu1-xNNi3-y/FeNiCu的吸脱附等温曲线。
图5 b是CuNNi3和Cu1-xNNi3-y/FeNiCu的吸脱附等温曲线。
图6是p-Cu1-xNNi3-y/FeNiCu的TEM图。
图7a是CuNNi3+Cu,p-Cu1-xNNi3-y/FeNiCu,CuNNi3和Cu1-xNNi3-y/FeNiCu在1 M KOH的电解液中的极化曲线。
图7b是各材料的质量活性和本征活性对比。
图8是p-Cu1-xNNi3-y/FeNiCu在固定电流密度为10 mA cm-2下的计时电位曲线。
具体实施方式
反钙钛矿结构化合物的结构通式为XYM3,其中X为主族元素或La系元素等;Y为N或C元素,M为过渡金属。与钙钛矿相比,反钙钛矿结构中的非金属元素与过渡金属元素交换位置。反钙钛矿的独特优势在于导电性好,同时也具备了钙钛矿结构多变、储量丰富等优点。
本发明提出了一种应用于OER过程的反钙钛矿材料,其通式是:CuNNi3
反钙钛矿材料的制备方法,是以纳米铜粉和纳米镍粉为原料,首先在氨气气氛下用固相法合成反钙钛矿,包括如下步骤:按照化学计量比,取铜粉和镍粉,混合均匀后,在模具中压制,再在氨气气氛中进行烧结,得到反钙钛矿材料。在一个实施方式中,烧结制度是:300~400 ℃下的氨气氛围中煅烧,降温后将产物研磨,压片,继续在氨气氛围下400~500℃煅烧一次,再在500~600 ℃煅烧一次。
在一个实施方式中,可以合成Cu过量的CuNNi3:称取7 mM~10 mM纳米铜粉(Cu,99.9%),与15 mM纳米镍粉(Ni, 99.9%)在研钵中混合均匀,压片并置于管式炉中。在300~400 ℃下的氨气氛围中煅烧,降温后将产物研磨,压片,继续在氨气氛围下400~500 ℃煅烧一次,500~600 ℃煅烧一次。最终得到Cu过量的CuNNi3+Cu。
本发明在上述的基础上,还提出了一种基于反钙钛矿材料的核壳复合材料,是采用Fe3+对CuNNi3反钙钛矿材料处理之后,得到表面由FeNiCu的氢氧化物修饰的反钙钛矿复合材料。在处理过程中,原料中过量的Cu会与Fe3+反应(公式1),同时反钙钛矿结构中金属态的Ni和Cu也会被Fe3+氧化(公式2),从而得到具有多孔性质的核。另外,Fe3+,Ni2+和Cu2+水解生成的FeNiCu氢氧化物附着在反钙钛矿表面。由于处理过程中反钙钛矿会在酸性环境下溶解,因此H+的不断消耗会更加促进水解过程的发生,最终得到多孔的具有核壳结构的Cu1- xNNi3-y/FeNiCu (oxy)hydroxide复合材料。将此产物用于1 M KOH中催化HER具有优异的催化活性和稳定性。
Cu + 2Fe3+ → Cu2+ + 2Fe2+ (1)
Ni + 2Fe3+ → Ni2+ + 2Fe2+ (2)
Fe3+ + Ni2+ + Cu2+ +OH- → FeNiCu (oxy)hydroxide + H+ (3)
实施例1 CuNNi3 /Cu1-xNNi3-y/FeNiCu的制备
按照CuNNi3的化学计量比,5mM纳米铜粉(Cu, 99.9%),与15 mM纳米镍粉(Ni, 99.9%在研钵中混合均匀,压片并置于管式炉中。在400 ℃下的氨气氛围中煅烧3h,降温后将产物研磨,压片,继续在氨气氛围下500 ℃煅烧6 h,560 ℃煅烧6 h。最终得到CuNNi3。称取0.3 g上述得到的CuNNi3+Cu加入100 mL 0.05 M Fe3+溶液中搅拌30 min,最后经过抽滤,洗涤,干燥等过程得到Cu1-xNNi3-y/FeNiCu (oxy)hydroxide复合材料。
实施例2 Cu1-xNNi3-y/FeNiCu (oxy)hydroxide核壳复合材料的制备
按照Cu相对于CuNNi3的化学计量比的过量,7.5mM纳米铜粉(Cu, 99.9%),与15 mM纳米镍粉(Ni, 99.9%在研钵中混合均匀,压片并置于管式炉中。在400 ℃下的氨气氛围中煅烧3h,降温后将产物研磨,压片,继续在氨气氛围下500 ℃煅烧6 h,560 ℃煅烧6 h。最终得到Cu过量的CuNNi3+Cu。称取0.3 g上述得到的CuNNi3+Cu加入100 mL 0.05 M Fe3+溶液中搅拌30 min,最后经过抽滤,洗涤,干燥等过程得到p-Cu1-xNNi3-y/FeNiCu (oxy)hydroxide复合材料。
表征试验:采用实施例1中制备得到的CuNNi3 /Cu1-xNNi3-y/FeNiCu和实施例2得到的Cu1-xNNi3-y/FeNiCu (oxy)hydroxide核壳复合材料进行表征试验。
材料的表征
材料晶体结构由室温X射线衍射(XRD)在20~90°范围内以间隔0.02°进行测试。官能团由拉曼(Raman)光谱和红外(FTIR)光谱获得。样品比表面积通过BELSORP || 装置在液氮的沸腾温度下,基于N2吸附-解吸(BET)曲线来获得。X射线光电子能谱(XPS)用来分析表面元素价态,通过XPSPEAK41软件进行分峰拟合。材料的微观形貌扫描电镜图在200 KV下通过G2T20电子显微镜测试获得。
XRD表征:图1是CuNNi3+Cu和p-Cu1-xNNi3-y/FeNiCu的室温XRD图谱。可以看出Fe3+处理后,原料中过量的Cu完全溶解,产物的XRD衍射峰与代表了反钙钛矿的标准卡片一一对应。
Raman测试:图2是Fe3+处理前后样品的Raman谱图。可以看出,Fe3+处理后,Raman谱图在波长为213 cm-1,278 cm-1和556 cm-1处出现了三个额外的峰,这些峰与文献中的金属-氢氧化物的Raman特征谱相对应,说明p-Cu1-xNNi3-y/FeNiCu中有无定形的金属氢氧化物存在。
FTIR分析:图3是Fe3+处理前后样品的FTIR谱图。可以看出,Fe3+处理后,样品的FTIR谱图多出了三个象征了金属-氧键的峰,分别出现在1630 cm-1,1469 cm-1和1066 cm-1
XPS分析:图4是Fe3+处理前后样品中Fe 2p的XPS拟合结果。从图中可以看出,处理后的Fe 2p谱图中,724.6和711.6 eV处的峰以及两个卫星峰代表了+3价的Fe。
BET测试:图5 a是CuNNi3+Cu和p-Cu1-xNNi3-y/FeNiCu的吸脱附等温曲线。CuNNi3+Cu体现的是没有滞回环的第三类等温曲线,说明材料是无孔的,比表面积仅为5.2 m2 g-1。而Fe3+处理后p-Cu1-xNNi3-y/FeNiCu体现的是第四类等温曲线,有代表了介孔性质的滞回环,比表面积高达76.7 m2 g-1。为了探究原料中多余的Cu对产物比表面积的影响,我们制备了按照对化学计量比的反钙钛矿CuNNi3以及Fe3+处理后得到的Cu1-xNNi3-y/FeNiCu,如图5 b是这两个材料的吸脱附等温曲线。Cu1-xNNi3-y/FeNiCu的表面积为36.9 m2 g-1,仅为p-Cu1- xNNi3-y/FeNiCu的一半。说明原料中过量Cu的掺入能有效促进产物多孔性质的生成。
TEM表征:图6展示了p-Cu1-xNNi3-y/FeNiCu的TEM图。从a部分可以看出,较薄的纳米片覆盖在颗粒表面,是一种典型的核壳结构。c部分和d部分是壳区域的高倍TEM和FFT图像,说明壳结构是无定形的。e部分和f部分是核区域的高倍TEM和FFT图像,说明核依然保留了反钙钛矿结构。
电化学性能测试
以实施例1和实施例2所示的样品作为OER催化剂在强碱性环境中进行OER催化测试,同时采用商业RuO2催化材料进行对照。分别称取样品10 mg,加入1 mL含0.1% Nafion的乙醇溶液,超声30 min,得到分散均匀的催化剂墨水。将直径为5 mm的玻碳电极依次在1000 nm、500nm和50 nm粒径的Al2O3抛光粉上打磨并清洗干净后,自然凉燥,用微量进样器分次吸取10 μL催化剂墨水滴涂到玻碳电极上,自然晾干。以催化剂修饰的玻碳电极为工作电极,以铂丝为对电极,以Ag/AgCl为参比电极,以1 M氢氧化钾为电解液,进行碱性条件下OER性能测试。
图7a是CuNNi3+Cu,p-Cu1-xNNi3-y/FeNiCu,CuNNi3和Cu1-xNNi3-y/FeNiCu在1 M KOH的电解液中的极化曲线。电压范围是0-0.8 V vs RHE,扫速是5 mV s-1。通过对比可以看出,p-Cu1-xNNi3-y/FeNiCu的OER性能最优,电流密度为10 mA cm-2处对应的过电势仅为280 mV,过电势大于330 mV后p-Cu1-xNNi3-y/FeNiCu的OER性能优于商业RuO2。图7b是各材料的质量活性和本征活性对比。可以看出p-Cu1-xNNi3-y/FeNiCu具有最高的质量活性和本征活性。
Mo2C/G催化剂的稳定性测试:图8是p-Cu1-xNNi3-y/FeNiCu在固定电流密度为10 mAcm-2下的计时电位曲线。可以看出材料在该电流密度下能稳定24小时没有明显衰减。
通过以上分析,可以看出p-Cu1-xNNi3-y/FeNiCu是一种活性高、稳定性好的OER催化剂。通过一系列表征测试发现,p-Cu1-xNNi3-y/FeNiCu是由反钙钛矿结构的核和无定形氢氧化物的壳组成的,原料中过量Cu的加入对增大产物的比表面积有很大帮助,多孔的性质增大了材料与电解液的接触面积。这种简易的固相煅烧-Fe3+后处理法在电化学领域有广泛的应用。

Claims (10)

1.一种反钙钛矿材料,其特征在于,其通式是CuNNi3
2.权利要求1所述的反钙钛矿材料的制备方法,其特征在于,包括如下步骤:按照化学计量比,取铜粉和镍粉,混合均匀后,在模具中压制,再在氨气气氛中进行烧结,得到反钙钛矿材料。
3.根据权利要求2所述的反钙钛矿材料的制备方法,其特征在于,烧结制度是:300~400 ℃下的氨气氛围中煅烧,降温后将产物研磨,压片,继续在氨气氛围下400~500 ℃煅烧一次,再在500~600 ℃煅烧一次。
4.一种析氧反应催化材料,其特征在于,是由权利要求1所述的CuNNi3反钙钛矿材料与过量的Cu复合而成。
5.一种反钙钛矿核壳复合材料,其特征在于,其内核为上述的反钙钛矿材料,外壳为FeNiCu的氢氧化物。
6.根据权利要求5所述的反钙钛矿核壳复合材料,其特征在于,内核为多孔结构;内核材料为Cu1-xNNi3-y;0<x≤0.5;0<y≤0.5。
7.权利要求5所述的反钙钛矿核壳复合材料的制备方法,其特征在于,包括如下步骤:将权利要求1所述的CuNNi3反钙钛矿材料与过量的Cu构成的复合材料浸渍于Fe3+溶液中反应,将产物滤出、洗涤、干燥后,得到核壳材料。
8.根据权利要求7所述的反钙钛矿核壳复合材料的制备方法,其特征在于,CuNNi3反钙钛矿材料与过量的Cu构成的混合材料的制备方法是:取铜粉和镍粉,混合均匀后,在模具中压制,再在氨气气氛中进行烧结,得到混合材料;铜粉的加入量按照CuNNi3的化学计量比相对于镍为过量;Cu1±xNNi3反钙钛矿材料与Fe3+溶液的质量体积比是0.1~0.5 g:50~500mL。
9.根据权利要求7所述的反钙钛矿核壳复合材料的制备方法,其特征在于,Fe3+溶液中Fe3+浓度0.01~0.05 M;反应5~120 min。
10.权利要求1所述的反钙钛矿材料、权利要求4所述的析氧反应催化材料或者权利要求5所述的反钙钛矿核壳复合材料在电催化析氧反应中的用途。
CN201810562714.XA 2018-06-04 2018-06-04 一种反钙钛矿材料、核壳复合材料、制备方法及其用途 Active CN108993562B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810562714.XA CN108993562B (zh) 2018-06-04 2018-06-04 一种反钙钛矿材料、核壳复合材料、制备方法及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810562714.XA CN108993562B (zh) 2018-06-04 2018-06-04 一种反钙钛矿材料、核壳复合材料、制备方法及其用途

Publications (2)

Publication Number Publication Date
CN108993562A true CN108993562A (zh) 2018-12-14
CN108993562B CN108993562B (zh) 2021-03-19

Family

ID=64573372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810562714.XA Active CN108993562B (zh) 2018-06-04 2018-06-04 一种反钙钛矿材料、核壳复合材料、制备方法及其用途

Country Status (1)

Country Link
CN (1) CN108993562B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638305A (zh) * 2019-01-04 2019-04-16 华南理工大学 一种具有反钙钛矿结构的CuNCo3型电催化析氧催化剂及其制备方法
CN109786770A (zh) * 2019-01-04 2019-05-21 华南理工大学 一种具有反钙钛矿结构的CuNNi3型电催化析氧材料及其制备方法
CN112264067A (zh) * 2020-10-14 2021-01-26 厦门大学 一种非贵金属过渡金属基二氧化碳电还原催化剂及其制备方法
CN114622240A (zh) * 2022-01-27 2022-06-14 华南理工大学 一种反钙钛矿氮化物的通用预活化方法及其产物与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2632746A1 (en) * 2005-12-09 2007-06-14 Nippon Steel Materials Co., Ltd. Exhaust gas purification catalyst and exhaust gas purification catalyst member
CN101734863A (zh) * 2009-12-14 2010-06-16 北京航空航天大学 一种“反钙钛矿”结构的三元锰氮化物Mn3CuN薄膜
CN105562122A (zh) * 2015-12-15 2016-05-11 中国科学院上海高等研究院 一种钙钛矿型核壳结构的金属氧化物及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2632746A1 (en) * 2005-12-09 2007-06-14 Nippon Steel Materials Co., Ltd. Exhaust gas purification catalyst and exhaust gas purification catalyst member
CN101734863A (zh) * 2009-12-14 2010-06-16 北京航空航天大学 一种“反钙钛矿”结构的三元锰氮化物Mn3CuN薄膜
CN105562122A (zh) * 2015-12-15 2016-05-11 中国科学院上海高等研究院 一种钙钛矿型核壳结构的金属氧化物及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BING HE: "CuNNi3: a new nitride superconductor with antiperovskite structure", 《SUPERCONDUCTOR SCIENCE AND TECHNOLOGY》 *
朱艳萍等: "《第三届全国新能源与化工新材料学术会议暨全国能量转换与存储材料学术研讨会摘要集》", 15 April 2018 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638305A (zh) * 2019-01-04 2019-04-16 华南理工大学 一种具有反钙钛矿结构的CuNCo3型电催化析氧催化剂及其制备方法
CN109786770A (zh) * 2019-01-04 2019-05-21 华南理工大学 一种具有反钙钛矿结构的CuNNi3型电催化析氧材料及其制备方法
CN112264067A (zh) * 2020-10-14 2021-01-26 厦门大学 一种非贵金属过渡金属基二氧化碳电还原催化剂及其制备方法
CN114622240A (zh) * 2022-01-27 2022-06-14 华南理工大学 一种反钙钛矿氮化物的通用预活化方法及其产物与应用
CN114622240B (zh) * 2022-01-27 2023-11-28 华南理工大学 一种反钙钛矿氮化物的通用预活化方法及其产物与应用

Also Published As

Publication number Publication date
CN108993562B (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
Shen et al. Bimetallic iron-iridium alloy nanoparticles supported on nickel foam as highly efficient and stable catalyst for overall water splitting at large current density
Guo et al. Amorphous cobalt–iron hydroxides as high-efficiency oxygen-evolution catalysts based on a facile electrospinning process
Yan et al. Probing the active sites of Co 3 O 4 for the acidic oxygen evolution reaction by modulating the Co 2+/Co 3+ ratio
Srirapu et al. Nanosized CoWO4 and NiWO4 as efficient oxygen-evolving electrocatalysts
CN108993562A (zh) 一种反钙钛矿材料、核壳复合材料、制备方法及其用途
CN109524678A (zh) 一种析氧铁钴合金-铁酸钴/氮掺杂纳米碳管复合催化剂及其制备方法和应用
CN109999822A (zh) 一种碳纳米管负载钼掺杂的四氧化三钴催化剂的制备
CN107739023A (zh) 一种多面体双金属氧化物及其制备方法和用途
CN109088078A (zh) 一种燃料电池用PdCu催化剂制备方法,去合金化及其应用
Martínez-Lázaro et al. Microfluidic water splitting cell using 3D NiFe2O4 hollow spheres
Zhu et al. Modification of stainless steel fiber felt via in situ self-growth by electrochemical induction as a robust catalysis electrode for oxygen evolution reaction
Ge et al. Nickel borate with a 3D hierarchical structure as a robust and efficient electrocatalyst for urea oxidation
CN108126703A (zh) 绣球状CuZnOX纳米材料的制备方法及其在电催化中的应用
CN110451489A (zh) 一种氮化钴嵌入多孔氮掺杂石墨烯材料及制备方法与应用
CN104955565B (zh) 正极催化剂及装置
Das et al. Design of diverse nanostructures by hydrothermal and microemulsion routes for electrochemical water splitting
Chen et al. Oxygen vacancy engineering of calcium cobaltate: A nitrogen fixation electrocatalyst at ambient condition in neutral electrolyte
CN108059194B (zh) 球状CoWO4纳米材料的制备方法及其在电催化中的应用
Wang et al. Sr x Ti 0.6 Fe 0.4 O 3− δ (x= 1.0, 0.9) catalysts for ammonia synthesis via proton-conducting solid oxide electrolysis cells (PCECs)
Yang et al. Interfaces modulation strategy to synthesize bifunctional electrocatalyst for highly efficient overall water splitting
Linghu et al. Enhanced methanol oxidation activity of porous layered Ni/CeO2@ CN nanocomposites in alkaline medium
CN113355682B (zh) 铁掺杂三氟合钴酸盐析氧电催化材料、其制备方法及应用
Xie et al. A brush-like Cu 2 O–CoO core–shell nanoarray: an efficient bifunctional electrocatalyst for overall seawater splitting
Milikić et al. Template-based synthesis of Co3O4 and Co3O4/SnO2 bifunctional catalysts with enhanced electrocatalytic properties for reversible oxygen evolution and reduction reaction
Zhang et al. Efficiently catalyzed sea urchin-like mixed phase SmMn2O5/MnO2 for oxygen reduction reaction in zinc-air battery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant