CN108993522A - 一种镍基多金属复合型催化剂及其制备方法和应用 - Google Patents

一种镍基多金属复合型催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN108993522A
CN108993522A CN201811013704.7A CN201811013704A CN108993522A CN 108993522 A CN108993522 A CN 108993522A CN 201811013704 A CN201811013704 A CN 201811013704A CN 108993522 A CN108993522 A CN 108993522A
Authority
CN
China
Prior art keywords
nickel
preparation
nitrate
composite catalyst
nanometer rods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811013704.7A
Other languages
English (en)
Inventor
程群鹏
秦振华
李建芬
张凯迪
王梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Polytechnic University
Original Assignee
Wuhan Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Polytechnic University filed Critical Wuhan Polytechnic University
Priority to CN201811013704.7A priority Critical patent/CN108993522A/zh
Publication of CN108993522A publication Critical patent/CN108993522A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种镍基多金属复合型催化剂及其制备方法和应用。该制备方法包括:将埃络石纳米棒、硝酸镍、硝酸铁、硝酸铈、尿素和去离子水混合加热搅拌,再经陈化、抽滤、烘干、碾碎、煅烧后,得到所述镍基多金属复合型催化剂。经实验验证,本发明的催化剂催化裂解焦油的转换率可达到95%以上,显著净化了生物质燃气,提升了燃气品质,而且抗积碳能力强,抗失活能力佳,使用寿命长。本发明制备方法简单、流程易操作。用于秸秆生物质催化热解除焦具有极高的催化活性,寿命时间长,分离回收简单。

Description

一种镍基多金属复合型催化剂及其制备方法和应用
技术领域
本发明属于催化剂制备领域,更具体地,涉及一种镍基多金属复合型催化剂及其制备方法和应用。
背景技术
随着经济的快速发展,能源资源的消耗速度也迅速增长,而煤、石油、天然气等传统化石能源资源日益枯竭,人类迫切需要开发替代能源和可再生能源去满足能源需求,以补充和替代现有的化石能源。生物质被视为继煤炭、石油和天然气之后的第四大能源,生物质转化成为燃料的整个链条中最有效的手段就是热转化,生物质热转化技术是以生物质为原料,在高温条件下通过热化学反应将生物质转化为可燃性气体的过程。生物质热转化可将生物质原料转化为以CO和H2为主的气体燃料,可直接转换实现燃气、热能和电能的供给。我国农业秸秆生物质储量丰富,一方面可将可再生的农业生物质转化为燃料或工业原料,供工农业使用;另一方面可避免大量的生物质资源被废弃或随意焚烧而造成环境污染,变废为宝。
近年来对生物质能的研究和应用愈来愈引起人们的关注,开发新能源和可再生能源特别是把它们转化为高品位能源,因地制宜,多种能源互补,以逐步减少和替代化石能源的使用,是保护生态环境,走经济社会可持续发展之路的重大措施。
在生物质热转化的过程中,所产生的燃气含有大量的焦油,焦油的形成不仅导致设备腐蚀堵塞,造成设备损坏,而且降低燃气热值和品质。因此除去和减少燃气中的焦油含量势在必行。传统的除焦的方法有物理喷淋、织网过滤、超高温裂解等,虽然有一定的效果,但也存在使用周期短、造价成本高等问题逐渐被取代。目前,催化热解重整是被认为除去生产过程种的焦油含量、净化燃气、提升燃气品质最有潜力的方法。而物质燃气的催化重整技术关键在于高效催化剂的制备。因此开发出一种制备方法简单、具有高气体产率及焦油转化率的催化剂势在必行。
发明内容
本发明的目的在于解决上述问题,提供一种制备方法简单、具有高气体产率及焦油转化率的催化剂。
为了实现上述目的,本发明的第一方面提供一种镍基多金属复合型催化剂的制备方法,该制备方法包括:
将埃络石纳米棒、硝酸镍、硝酸铁、硝酸铈、尿素和去离子水混合加热搅拌,再经陈化、抽滤、烘干、碾碎、煅烧后,得到所述镍基多金属复合型催化剂。
作为本发明优选的实施方式,以埃络石纳米棒的重量为基准,硝酸镍的用量为埃络石纳米棒的20~25wt%,硝酸铁的用量为埃络石纳米棒的10~15wt%,硝酸铈的用量为埃络石纳米棒的10~15wt%,尿素的用量为埃络石纳米棒的400~500wt%。
作为本发明优选的实施方式,搅拌的转速为10~30r/s,在该转速下,制备得到的镍基多金属复合型催化剂可获得目标的均匀度;更优选为18~22r/s,在该转速下,制备得到的镍基多金属复合型催化剂的均匀度更加优异。
作为本发明优选的实施方式,煅烧的温度为600~800℃,煅烧的时间为2~2.5h。
作为本发明优选的实施方式,煅烧的温度为650~750℃。在此温度下制备得到的镍基多金属复合型催化剂具有更优异的催化性能。
作为本发明优选的实施方式,加热的温度为110~120℃,加热的时间为2~3h;陈化的时间为10~14h;烘干的温度为115~130℃。
本发明的第二方面提供由上述的制备方法制得的镍基多金属复合型催化剂。
作为本发明优选的实施方式,所述镍基多金属复合型催化剂的孔径为12.85~76.01nm,比表面积为12.65~84.00m2/g。
本发明的第三方面提供上述的镍基多金属复合型催化剂在生物质热解除焦中的应用。
作为本发明优选的实施方式,所述催化剂在生物质热解除焦中的应用时的温度为700~900℃。
根据本发明,优选地,所述硝酸镍的纯度≥98%,所述硝酸铁的纯度≥98%,所述硝酸铈的纯度≥99%。
本发明的优点和积极效果:
与传统的催化剂相比,本发明以价廉易得、表面积大、活性中心多、负载效果好的埃络石纳米棒为载体,以硝酸镍为主活性组分,硝酸铁、硝酸铈为助活性组分,通过均匀沉淀法,得到的多金属复合型催化剂呈中空棒状,不仅具备了大比表面积的特性,且所制备的催化剂达到了纳米级的粒度,可与焦油分子更好地接触,进行催化,而且利用硝酸镍、硝酸铁、硝酸铈按一定比例进行负载,可使得催化剂的稳定性更好,负载能力更强。负载多金属活性组分,可使得各金属活性组分之间生成金属合金,产生更好的催化效果。经实验验证,本发明的催化剂催化裂解焦油的转换率可达到95%以上,显著净化了生物质燃气,提升了燃气品质,而且抗积碳能力强,抗失活能力佳,使用寿命长。
本发明制备方法简单、流程易操作。用于秸秆生物质催化热解除焦具有极高的催化活性,寿命时间长,分离回收简单。
本发明的其它特征和优点将在随后具体实施方式部分予以详细说明。
附图说明
图1示出了本发明一个实施例的镍基多金属复合型催化剂的制备方法的简易流程图。
具体实施方式
下面将更详细地描述本发明的优选实施方式。虽然以下描述了本发明的优选实施方式,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了使本发明更加透彻和完整,并且能够将本发明的范围完整地传达给本领域的技术人员。
本发明实施例中,硝酸镍的纯度≥98%,硝酸铁的纯度≥98%,硝酸铈的纯度≥99%。
实施例1:
本实施例提供一种镍基多金属复合型催化剂。该镍基多金属复合型催化剂的制备方法为:将埃络石纳米棒、硝酸镍、硝酸铁、硝酸铈、尿素和去离子水置于油浴锅内混合加热搅拌,加热的温度为115℃,加热的时间为2.5h,搅拌的转速为20r/s,再经12h陈化、抽滤、恒温干燥箱120℃烘干后,碾碎,在700℃下煅烧2h,得到孔径为21.66nm~31.12nm,比表面积为33.95m2/g~42.80m2/g的镍基多金属复合型催化剂。其中,以埃络石纳米棒的重量为基准,硝酸镍的用量为埃络石纳米棒的23wt%,硝酸铁的用量为埃络石纳米棒的12wt%,硝酸铈的用量为埃络石纳米棒的12wt%,尿素的用量为埃络石纳米棒的400~500wt%。
实施例2:
与实施例1的不用之处在于,煅烧的温度为750℃。
实施例3:
与实施例1的不用之处在于,煅烧的温度为800℃。
对比例1:
与实施例1的不用之处在于,仅采用硝酸镍,不采用硝酸铁、硝酸铈,以埃络石纳米棒的重量为基准,硝酸镍的用量为埃络石纳米棒的23wt%。
对比例2:
与实施例1的不用之处在于,仅采用硝酸铁,不采用硝酸镍、硝酸铈,以埃络石纳米棒的重量为基准,硝酸铁的用量为埃络石纳米棒的12wt%。
对比例3:
与实施例1的不用之处在于,仅采用硝酸铈,不采用硝酸镍、硝酸铁,以埃络石纳米棒的重量为基准,硝酸铈的用量为埃络石纳米棒的12wt%。
对实施例1-3及对比例1-3制备得到的催化剂的气体产率及焦油转化率进行测试,结果如表1所示,其中,所述催化剂在使用时的温度为700~900℃。
表1
图1示出了本发明一个实施例的镍基多金属复合型催化剂的制备方法的简易流程图。先称取一定量埃络石(即埃络石纳米棒)、尿素以及硝酸镍、硝酸铁、硝酸铈,加入一定量去离子水,于三井烧瓶中油浴加热搅拌,加热的温度为115℃,加热的时间为2.5h,然后抽滤、烘干碾碎,再经马弗炉煅烧得到成品。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。

Claims (9)

1.一种镍基多金属复合型催化剂的制备方法,其特征在于,该制备方法包括:
将埃络石纳米棒、硝酸镍、硝酸铁、硝酸铈、尿素和去离子水混合加热搅拌,再经陈化、抽滤、烘干、碾碎、煅烧后,得到所述镍基多金属复合型催化剂。
2.根据权利要求1所述的制备方法,其中,以埃络石纳米棒的重量为基准,硝酸镍的用量为埃络石纳米棒的20~25wt%,硝酸铁的用量为埃络石纳米棒的10~15wt%,硝酸铈的用量为埃络石纳米棒的10~15wt%,尿素的用量为埃络石纳米棒的400~500wt%。
3.根据权利要求1所述的制备方法,其中,搅拌的转速为10~30r/s。
4.根据权利要求1所述的制备方法,其中,煅烧的温度为600~800℃,煅烧的时间为2~2.5h。
5.根据权利要求4所述的制备方法,其中,煅烧的温度为650~750℃。
6.根据权利要求1所述的制备方法,其中,加热的温度为110~120℃,加热的时间为2~3h;陈化的时间为10~14h;烘干的温度为115~130℃。
7.由权利要求1-6中任意一项所述的制备方法制得的镍基多金属复合型催化剂。
8.根据权利要求7所述的镍基多金属复合型催化剂,其中,所述镍基多金属复合型催化剂的孔径为12.85~76.01nm,比表面积为12.65~84.00m2/g。
9.权利要求7所述的镍基多金属复合型催化剂在生物质热解除焦中的应用。
CN201811013704.7A 2018-08-31 2018-08-31 一种镍基多金属复合型催化剂及其制备方法和应用 Pending CN108993522A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811013704.7A CN108993522A (zh) 2018-08-31 2018-08-31 一种镍基多金属复合型催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811013704.7A CN108993522A (zh) 2018-08-31 2018-08-31 一种镍基多金属复合型催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN108993522A true CN108993522A (zh) 2018-12-14

Family

ID=64590773

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811013704.7A Pending CN108993522A (zh) 2018-08-31 2018-08-31 一种镍基多金属复合型催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108993522A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110129086A (zh) * 2019-03-13 2019-08-16 盐城工业职业技术学院 一种催化裂解植物沥青制备生物航煤的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102151569A (zh) * 2011-01-30 2011-08-17 武汉工业学院 用于生物质焦油裂解的负载型掺杂镍基催化剂及制备方法
WO2013123296A1 (en) * 2012-02-17 2013-08-22 Kior, Inc. Catalyst compositions comprising in situ grown zeolites on clay matrixes exhibiting hierarchical pore structures
CN103305271A (zh) * 2013-06-25 2013-09-18 中石化南京工程有限公司 一种渣油/中低温煤焦油轻质化的组合工艺方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102151569A (zh) * 2011-01-30 2011-08-17 武汉工业学院 用于生物质焦油裂解的负载型掺杂镍基催化剂及制备方法
WO2013123296A1 (en) * 2012-02-17 2013-08-22 Kior, Inc. Catalyst compositions comprising in situ grown zeolites on clay matrixes exhibiting hierarchical pore structures
CN103305271A (zh) * 2013-06-25 2013-09-18 中石化南京工程有限公司 一种渣油/中低温煤焦油轻质化的组合工艺方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
乔梅英等: "以埃洛石纳米管为载体合成 NiO纳米微粒的研究", 《人工晶体学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110129086A (zh) * 2019-03-13 2019-08-16 盐城工业职业技术学院 一种催化裂解植物沥青制备生物航煤的方法

Similar Documents

Publication Publication Date Title
Akia et al. A review on conversion of biomass to biofuel by nanocatalysts
CN103935978B (zh) 一种热解麦秸秆制备的纳米碳材料及其制备方法
CN102963866B (zh) 一种生物质裂解制备富氢合成气的方法
Venkatachalam et al. A critical review of the production, activation, and morphological characteristic study on functionalized biochar
CN104591087A (zh) 一种生物质化学链重整制氢及抑制焦油产生的协同工艺
CN100999677B (zh) 生物质微波催化裂解制备富含糠醛生物油的方法
Kim et al. CO2-cofed catalytic pyrolysis of tea waste over Ni/SiO2 for the enhanced formation of syngas
Gao et al. Co-pyrolysis of municipal solid waste (MSW) and biomass with Co/sludge fly ash catalyst
CN106582663A (zh) 一种原位催化脱除生物质热解过程中焦油的方法
Tang et al. Waste plastic to energy storage materials: a state-of-the-art review
Miao et al. Hydrogen-rich syngas production by chemical looping reforming on crude wood vinegar using Ni-modified HY zeolite oxygen carrier
CN107008483B (zh) 一种用于生物质焦油蒸汽重整催化剂及其制备方法
CN106732502B (zh) 一种加氢催化剂
Shen et al. Pyrolysis of cellulose with cathode materials recovered from spent binary and ternary lithium-ion batteries
Khaligh et al. Solar energy and TiO2 nanotubes: biodiesel production from waste cooking olive oil
Yang et al. Photo-thermal catalytic pyrolysis of waste plastics: Investigation into light-induced metal-support interaction
Shen et al. Catalytic pyrolysis of cellulose with biochar modified by Ni–Co–Mn cathode material recovered from spent lithium-ion battery
CN108587669B (zh) 一种页岩气油基钻屑资源化利用方法
Zhang et al. Microwave-carbon fiber cloth co-ignited catalytic degradation of waste plastic into high-yield hydrogen and carbon nanotubes
CN108993522A (zh) 一种镍基多金属复合型催化剂及其制备方法和应用
CN106732704B (zh) 一种可降低生物油中生物质焦油含量的催化剂系统
CN102335606B (zh) 一种生物质焦油裂解催化剂
CN106492873B (zh) 一种用于生物油提质的催化剂
CN106268826A (zh) 用于生物油在线提质的铁基复合催化剂及制备和应用方法
CN113318745A (zh) 一种用于生物质热解制富氢催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181214