CN108987073A - 电压互感器消谐装置及使用方法 - Google Patents

电压互感器消谐装置及使用方法 Download PDF

Info

Publication number
CN108987073A
CN108987073A CN201810925110.7A CN201810925110A CN108987073A CN 108987073 A CN108987073 A CN 108987073A CN 201810925110 A CN201810925110 A CN 201810925110A CN 108987073 A CN108987073 A CN 108987073A
Authority
CN
China
Prior art keywords
voltage
harmonic elimination
voltage transformer
open delta
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810925110.7A
Other languages
English (en)
Inventor
何龙
张瑞明
赵红军
杨振
杜龙基
巴特
朱咏明
马彪
乐静怡
张陵
何长根
张颖
赵普志
王建军
耿万梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changji Power Supply Co Of Xinjiang Power Co Ltd
State Grid Corp of China SGCC
Original Assignee
Changji Power Supply Co Of Xinjiang Power Co Ltd
State Grid Corp of China SGCC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changji Power Supply Co Of Xinjiang Power Co Ltd, State Grid Corp of China SGCC filed Critical Changji Power Supply Co Of Xinjiang Power Co Ltd
Priority to CN201810925110.7A priority Critical patent/CN108987073A/zh
Publication of CN108987073A publication Critical patent/CN108987073A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields

Abstract

本发明涉及电压互感器消谐技术领域,是一种电压互感器消谐装置及使用方法,其包括消谐电阻和控制电路,所述消谐电阻跨接在电压互感器的开口三角处,控制电路根据电压互感器开口三角电压U调整消谐电阻的阻值Rx;设电压互感器开口三角电压U在(0,100V)范围内有N个区段,设置U△i+为第i区段的最大电压值,对应第i区段的电压U△i的消谐电阻为Ri等。本发明根除了电压互感器谐振,确保系统安全运行;消谐电阻根据电压互感器开口三角电压调整,消谐电阻全时段运行,吸收泄放引起电压互感器谐振的能量,不再是谐振发生后被动地去判断治理;系统故障时能够抑制电压的暂态过程,有利于保护数据处理。

Description

电压互感器消谐装置及使用方法
技术领域
本发明涉及电压互感器消谐技术领域,是一种电压互感器消谐装置及使用方法。
背景技术
目前微机消谐器是消除电压互感器谐振的主要产品,开口三角的三相绕组串联连接的结构形式,使得开口三角的输出功率与开口三角的电压关系十分复杂,使得在开口三角投入电阻的大小众说纷纭,为防止开口三角绕组过载,当检测到电压互感器谐振时,在开口三角投入一个小阻值电阻或短接开口三角。
在电压互感器开口三角投入电阻能够消除电压互感器谐振是一个公知的道理,消谐电阻越小消谐能力越好,但越易引起电压互感器绕组过载,过载使铁芯饱和引发新的谐振直至损坏电压互感器,所以现有技术采用短时间投入小阻值消谐电阻甚至短接开口三角的办法来消谐,以此防止长时间过载烧坏电压互感器。一方面,现有技术的消谐器是谐振后才采取措施,也就是被动式保护方式;另一方面,实际运行中,是单相接地还是电压互感器谐振在有些情况下难以判断,而当无法准确判断是谐振还是单相接地故障时,为了防止烧坏电压互感器消谐电阻就不投入,也就是不短接开口三角。在单相接地时,投入消谐电阻使开口三角中的绕组过载引起铁芯饱和产生新的电压互感器谐振,造成很多误区死区不能消谐,如单相接地引发的电压互感器谐振由于微机消谐器不投入消谐电阻,现有技术的微机消谐器就无能为力。
电压互感器谐振分类为工频谐振、高频谐振和分频谐振,其中,高频谐振、分频谐振的频率和工频完全不一样,微机技术很容易对此进行区分,若是开口三角只要有高频、分频量的存在就可以判断出其是高频谐振还是分频谐振,就是说微机技术可以100%发现高频、分频谐振并采取措施消除谐振,微机消谐器能够完全治理高频、分频谐振。
目前,难以解决的就是工频谐振,系统发生单相接地故障,开口三角都有工频电压,且很多工频谐振与单相接地的特征一模一样,也就是说开口三角有工频电压却无法判断是电压互感器谐振还是系统发生故障,特别是开口三角电压小于100V时,一方面单相接地时投入消谐电阻使开口三角中的绕组过载引起铁芯饱和产生新的电压互感器谐振,另一方面单相接地时投入消谐电阻会使电压互感器绕组过载烧坏电压互感器,尤其是将开口三角短接的消谐方式。高频、分频谐振完全能消谐,对于工频谐振因与单相接地故障不能准确区分,单相接地如投入的消谐电阻过小造成开口三角绕组过载引发新的谐振和电压互感器组烧坏,与单相接地特征一样的工频谐振及单相接地引发的谐振,现有微机消谐器不投入电阻而不能消谐。
发明内容
本发明提供了一种电压互感器消谐装置,克服了上述现有技术之不足,用于吸收引起电压互感器谐振的能量,实现的源头上治理电压互感器谐振。
本发明的技术方案之一是通过以下措施来实现的:一种电压互感器消谐装置,包括消谐电阻和控制电路,所述消谐电阻跨接在电压互感器的开口三角处,控制电路根据电压互感器开口三角电压U调整消谐电阻的阻值Rx;
设电压互感器开口三角电压U在(0,100V)范围内有N个区段,设U△i+为第i区段的最大电压值,对应第i区段的电压U△i的消谐电阻为Ri,计算公式为:
其中,N为自然数;i=1,2,……,N;K为电压互感器电压励磁倍数;S为电压互感器额定功率;
电压互感器开口三角变化范围为(U△i-1,U△i),控制电路调整消谐电阻阻值为Ri,吸收引起电压互感器谐振的能量。
下面是对上述发明技术方案的进一步优化或/和改进:
上述监测电压互感器开口三角电压U,当U=0时,设置消谐电阻阻值Rx大于0。
上述当电压互感器开口三角电压U从几伏突变到几十伏时,调整消谐电阻至少2次,且监测突变后的电压互感器的电压值小于电压互感器开口三角电压U过载下的电压值。
本发明的技术方案之二是通过以下措施来实现的:一种电压互感器消谐装置的使用方法,包括以下步骤:
(1)估算开口三角三个绕组中出现最大电压绕组的电压,
电压互感器开口三角电压是中性点对地电压U0的3倍,即U=3U0,中性点漂移到P点时的电压矢量为矢量和为的矢量和为
设中性点漂移到P点的电压为U0,以0点为中心U0为半径画圆,Ua为最大相,只有P点在Q点位置时,Ua最大,且:
Ua=33.33+U0=(100+UΔ)/3 (2)
当中性点发生漂移时,用式(1)估算的最大相电压值不小于最大相实际电压值,无论是负荷不平衡还是单相接地、两相短路等故障造成中性点漂移时,三相中最大相电压值通过式(2)估算,故:
UM=(100+UΔ)/3 (3);
(2)求开口三角跨接的消谐电阻,
开口三角的电流I为:I=UΔ/RX,为了开口三角绕组运行中不过载,开口三角绕组是串联连接,流经所有绕组的电流是一样的,因而只要最大相电压的绕组不过载其它两个绕组就不会过载,最大相电压绕组的运行功率小于等于其极限功率即可,UMI≥KS,则:
(100+UΔ)UΔ/3RX≥KS (4)
所以消谐电阻RX的自动跟踪公式为:
RX≤(100+UΔ)UΔ/3KS (5)
其中,K为电压互感器励磁特性额定电压因数;S为电压互感器开口三角每相绕组的额定视在功率;
(3)简化条件求消谐电阻,
当U=100时,这个电压值也是三个绕组电压的最大值,对应一个电流最大值
将UM=57.7V带入式(5)或者从RX=U/IM推导,我们可以得出同样的结果:
对于式(5)为绕组最大电压恒定方式调整消谐电阻,
将式(5)变形为开口三角每个绕组额定电压33.33V下的极限电流为KS/33.33=3KS/100,因而式(6)是绕组最大极限电流恒定方式调整消谐电阻;
(4)将消谐电阻分段控制,
对于K值和S值确定的电压互感器,开口三角电压U按照0~100V分为N个区段,对于第i区段,消谐电阻RX为Ri,最大电压为U△i+,最小电压为U△i-,则消谐电阻为:
Ri≤(100+UΔi+)UΔi+/3KS (7)
其中,N>1,i=1,2,……,N;
当消谐电阻RX运行在第i区段时,监测开口三角电压UΔ,当UΔ>UΔi+或UΔ>UΔi-时,调整消谐电阻RX至新监测开口三角电压UΔ对应的区段。
本发明根除了电压互感器谐振,确保系统安全运行;消谐电阻根据电压互感器开口三角电压调整,消谐电阻全时段运行,吸收泄放引起电压互感器谐振的能量,不再是谐振发生后被动地去判断治理;系统故障时能够抑制电压的暂态过程,有利于保护数据处理。
附图说明
附图1为本发明电压互感器开口三角跨接自动跟踪消谐电阻接线示意图。
附图2为本发明实施例2的UΔ=3U0电压矢量解析图。
附图3为本发明实施例2的UM=(100+UΔ)/3值最大的电压矢量分析图。
具体实施方式
本发明不受下述实施例的限制,可根据本发明的技术方案与实际情况来确定具体的实施方式。
下面结合实施例及附图对本发明作进一步描述:
实施例1:如附图1所示,该电压互感器消谐装置,包括消谐电阻和控制电路,所述消谐电阻跨接在电压互感器的开口三角处,控制电路根据电压互感器开口三角电压U调整消谐电阻的阻值Rx;
设电压互感器开口三角电压U在(0,100V)范围内有N个区段,设U△i+为第i区段的最大电压值,对应第i区段的电压U△i的消谐电阻为Ri,计算公式为:
其中,N为自然数;i=1,2,……,N;K为电压互感器电压励磁倍数;S为电压互感器额定功率;
电压互感器开口三角变化范围为(U△i-1,U△i),控制电路调整消谐电阻阻值为Ri,吸收引起电压互感器谐振的能量。
可根据实际需要,对上述电压互感器消谐装置作进一步优化或/和改进:
如附图1所示,监测电压互感器开口三角电压U,当U=0时,设置消谐电阻阻值Rx大于0。
如附图1所示,当电压互感器开口三角电压U从几伏突变到几十伏时,调整消谐电阻至少2次,且监测突变后的电压互感器的电压值小于电压互感器开口三角电压U过载下的电压值。
实施例2:如附图1、2、3所示,一种电压互感器消谐装置的使用方法,包括以下步骤:
(1)估算开口三角三个绕组中出现最大电压绕组的电压,
电压互感器开口三角电压是中性点对地电压U0的3倍,即U=3U0,中性点漂移到P点时的电压矢量为矢量和为的矢量和为
设中性点漂移到P点的电压为U0,以0点为中心U0为半径画圆,Ua为最大相,只有P点在Q点位置时,Ua最大,且:
Ua=33.33+U0=(100+UΔ)/3 (2)
当中性点发生漂移时,用式(1)估算的最大相电压值不小于最大相实际电压值,无论是负荷不平衡还是单相接地、两相短路等故障造成中性点漂移时,三相中最大相电压值通过式(2)估算,故:
UM=(100+UΔ)/3 (3);
(2)求开口三角跨接的消谐电阻,
开口三角的电流I为:I=UΔ/RX,为了开口三角绕组运行中不过载,开口三角绕组是串联连接,流经所有绕组的电流是一样的,因而只要最大相电压的绕组不过载其它两个绕组就不会过载,最大相电压绕组的运行功率小于等于其极限功率即可,UMI≥KS,则:
(100+UΔ)UΔ/3RX≥KS (4)
所以消谐电阻RX的自动跟踪公式为:
RX≤(100+UΔ)UΔ/3KS (5)
其中,K为电压互感器励磁特性额定电压因数;S为电压互感器开口三角每相绕组的额定视在功率;
(3)简化条件求消谐电阻,
当U=100时,这个电压值也是三个绕组电压的最大值,对应一个电流最大值
将UM=57.7V带入式(5)或者从RX=U/IM推导,我们可以得出同样的结果:
对于式(5)为绕组最大电压恒定方式调整消谐电阻,
将式(5)变形为开口三角每个绕组额定电压33.33V下的极限电流为KS/33.33=3KS/100,因而式(6)是绕组最大极限电流恒定方式调整消谐电阻;
(4)将消谐电阻分段控制,
对于K值和S值确定的电压互感器,开口三角电压U按照0~100V分为N个区段,对于第i区段,消谐电阻RX为Ri,最大电压为U△i+,最小电压为U△i-,则消谐电阻为:
Ri≤(100+UΔi+)UΔi+/3KS (7)
其中,N>1,i=1,2,……,N;
当消谐电阻RX运行在第i区段时,监测开口三角电压UΔ,当UΔ>UΔi+或UΔ>UΔi-时,调整消谐电阻RX至新监测开口三角电压UΔ对应的区段。
上述步骤(4)当然也可以监测开口三角电流间接获得开口三角电压UΔ。也可以同时监测开口三角电压、电流增加可靠性。
实施例3:已知电压互感器励磁特性额定电压因数K=1.9,开口三角绕组每相功率S=50VA,系统运行最大电压为额定电压的1.1倍以下,长期运行在开口三角电压U=5V,在T1时间U突变为U=70V,在T2时间U又恢复到U=100V,在T3时间U又恢复到U=5V,自动跟踪开口三角电压调整消谐电阻。
由于系统运行最大电压为额定电压的1.1倍以下,根据式(8),在U=5V时的消谐电阻RX=2.02欧姆,取R5=2.5欧姆;U=80V时的消谐电阻RX=55.57欧姆欧姆,取R80=56欧姆;U=100V时的消谐电阻RX=77.19欧姆,取R100=78欧姆。
首先在系统长期运行在U=5V时,在开口三角跨接的电阻为RX=R5=2.5欧姆;在T1时间测量到U突变到80V,将消谐电阻调整到RX=R80=56欧姆;在T2时间测量到U突变到100V,将消谐电阻调整到RX=R100=78欧姆;在T3时间开口三角电压又恢复到U=5V,将消谐电阻调整到RX=R5=2.5欧姆。
实施例4:已知电压互感器励磁特性额定电压因数K=2.5,开口三角绕组每相功率S=50VA,由于是末端变电所,又是长线路供电负荷不稳定的边远泵站变电所,系统电容效应非常严重,在没有负荷时电压很高,故系统运行最大电压为额定电压的1.2倍以下,长期运行在开口三角电压U=0V,在T1时间U突变为U=70V,在T2时间U又恢复到U=100V,在T3时间U又恢复到U=0V,自动跟踪开口三角电压调整消谐电阻。
根据式(8),在U=0V时的消谐电阻RX=0欧姆,短接开口三角无法再监测开口三角时,取R0=1欧姆;U=70V时的消谐电阻RX=38.79欧姆欧姆,取R70=40欧姆;U=100V时的消谐电阻RX=55.42欧姆,取R100=60欧姆。
首先在系统长期运行在U=0V时,在开口三角跨接的电阻为RX=R0=1欧姆;在T1时间测量到U突变到70V,将消谐电阻调整到RX=R70=40欧姆;在T2时间测量到U突变到100V,将消谐电阻调整到RX=R100=60欧姆;在T3时间开口三角电压又恢复到U=0V,将消谐电阻调整到RX=R0=1欧姆。
以上技术特征构成了本发明的最佳实施例,其具有较强的适应性和最佳实施效果,可根据实际需要增减非必要的技术特征,来满足不同情况的需求。

Claims (4)

1.一种电压互感器消谐装置,其特征在于包括消谐电阻和控制电路,所述消谐电阻跨接在电压互感器的开口三角处,控制电路根据电压互感器开口三角电压U调整消谐电阻的阻值Rx;
设电压互感器开口三角电压U在(0,100V)范围内有N个区段,设U△i+为第i区段的最大电压值,对应第i区段的电压U△i的消谐电阻为Ri,计算公式为:
其中,N为自然数;i=1,2,……,N;K为电压互感器电压励磁倍数;S为电压互感器额定功率;
电压互感器开口三角变化范围为(U△i-1,U△i),控制电路调整消谐电阻阻值为Ri,吸收引起电压互感器谐振的能量。
2.根据权利要求1所述的电压互感器消谐装置,其特征在于监测电压互感器开口三角电压U,当
U=0时,设置消谐电阻阻值Rx大于0。
3.根据权利要求1所述的电压互感器消谐装置,其特征在于当电压互感器开口三角电压U从几伏突变到几十伏时,调整消谐电阻至少2次,且监测突变后的电压互感器的电压值小于电压互感器开口三角电压U过载下的电压值。
4.一种使用权利要求1至3任一项所述的电压互感器消谐装置的消谐方法,其特征在于,包括以下步骤:
(1)估算开口三角三个绕组中出现最大电压绕组的电压,
电压互感器开口三角电压是中性点对地电压U0的3倍,即U=3U0,中性点漂移到P点时的电压矢量为矢量和为的矢量和为
设中性点漂移到P点的电压为U0,以0点为中心U0为半径画圆,Ua为最大相,只有P点在Q点位置时,Ua最大,且:
Ua=33.33+U0=(100+UΔ)/3 (2)
当中性点发生漂移时,用式(1)估算的最大相电压值不小于最大相实际电压值,无论是负荷不平衡还是单相接地、两相短路等故障造成中性点漂移时,三相中最大相电压值通过式(2)估算,故:
UM=(100+UΔ)/3 (3);
(2)求开口三角跨接的消谐电阻,
开口三角的电流I为:I=UΔ/RX,为了开口三角绕组运行中不过载,开口三角绕组是串联连接,流经所有绕组的电流是一样的,因而只要最大相电压的绕组不过载其它两个绕组就不会过载,最大相电压绕组的运行功率小于等于其极限功率即可,UMI≥KS,则:
(100+UΔ)UΔ/3RX≥KS (4)
所以消谐电阻RX的自动跟踪公式为:
RX≤(100+UΔ)UΔ/3KS (5)
其中,K为电压互感器励磁特性额定电压因数;S为电压互感器开口三角每相绕组的额定视在功率;
(3)简化条件求消谐电阻,
当U=100时,这个电压值也是三个绕组电压的最大值,对应一个电流最大值
将UM=57.7V带入式(5)或者从RX=U/IM推导,我们可以得出同样的结果:
对于式(5)为绕组最大电压恒定方式调整消谐电阻,
将式(5)变形为开口三角每个绕组额定电压33.33V下的极限电流为KS/33.33=3KS/100,因而式(6)是绕组最大极限电流恒定方式调整消谐电阻;
(4)将消谐电阻分段控制,
对于K值和S值确定的电压互感器,开口三角电压U按照0~100V分为N个区段,对于第i区段,消谐电阻RX为Ri,最大电压为U△i+,最小电压为U△i-,则消谐电阻为:
Ri≤(100+UΔi+)UΔi+/3KS (7)
其中,N>1,i=1,2,……,N;
当消谐电阻RX运行在第i区段时,监测开口三角电压UΔ,当UΔ>UΔi+或UΔ>UΔi-时,调整消谐电阻RX至新监测开口三角电压UΔ对应的区段。
CN201810925110.7A 2018-08-14 2018-08-14 电压互感器消谐装置及使用方法 Pending CN108987073A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810925110.7A CN108987073A (zh) 2018-08-14 2018-08-14 电压互感器消谐装置及使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810925110.7A CN108987073A (zh) 2018-08-14 2018-08-14 电压互感器消谐装置及使用方法

Publications (1)

Publication Number Publication Date
CN108987073A true CN108987073A (zh) 2018-12-11

Family

ID=64553129

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810925110.7A Pending CN108987073A (zh) 2018-08-14 2018-08-14 电压互感器消谐装置及使用方法

Country Status (1)

Country Link
CN (1) CN108987073A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109510168A (zh) * 2018-12-19 2019-03-22 国网北京市电力公司 电压互感器的接线方法、装置及系统
CN110007261A (zh) * 2019-03-14 2019-07-12 国网新疆电力有限公司昌吉供电公司 电压互感器一次侧高压熔断器熔断判断装置及其判断方法
CN110031662A (zh) * 2019-06-04 2019-07-19 国网新疆电力有限公司公司哈密供电公司 一种免谐式电压互感器
CN110198036A (zh) * 2019-06-14 2019-09-03 国网新疆电力有限公司喀什供电公司 一种综合消谐装置及其消谐方法
CN115296263A (zh) * 2022-08-19 2022-11-04 云南电网有限责任公司曲靖供电局 Pid调节的主动匹配电阻的电压互感器铁磁谐振消谐方法
CN115411698A (zh) * 2022-09-01 2022-11-29 云南电网有限责任公司曲靖供电局 一种通过电子负载主动投入电阻的pt铁磁谐振消谐方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104269256A (zh) * 2014-10-20 2015-01-07 张安斌 电压互感器消谐电阻自动跟踪调整的方法
CN106024339A (zh) * 2016-07-21 2016-10-12 张安斌 一种消谐电阻自动跟踪调整方法
CN208655394U (zh) * 2018-08-14 2019-03-26 国网新疆电力有限公司昌吉供电公司 电压互感器消谐装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104269256A (zh) * 2014-10-20 2015-01-07 张安斌 电压互感器消谐电阻自动跟踪调整的方法
CN106024339A (zh) * 2016-07-21 2016-10-12 张安斌 一种消谐电阻自动跟踪调整方法
CN208655394U (zh) * 2018-08-14 2019-03-26 国网新疆电力有限公司昌吉供电公司 电压互感器消谐装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109510168A (zh) * 2018-12-19 2019-03-22 国网北京市电力公司 电压互感器的接线方法、装置及系统
CN110007261A (zh) * 2019-03-14 2019-07-12 国网新疆电力有限公司昌吉供电公司 电压互感器一次侧高压熔断器熔断判断装置及其判断方法
CN110007261B (zh) * 2019-03-14 2024-03-19 国网新疆电力有限公司昌吉供电公司 电压互感器一次侧高压熔断器熔断判断装置及其判断方法
CN110031662A (zh) * 2019-06-04 2019-07-19 国网新疆电力有限公司公司哈密供电公司 一种免谐式电压互感器
CN110031662B (zh) * 2019-06-04 2021-03-02 国网新疆电力有限公司公司哈密供电公司 一种免谐式电压互感器
CN110198036A (zh) * 2019-06-14 2019-09-03 国网新疆电力有限公司喀什供电公司 一种综合消谐装置及其消谐方法
CN115296263A (zh) * 2022-08-19 2022-11-04 云南电网有限责任公司曲靖供电局 Pid调节的主动匹配电阻的电压互感器铁磁谐振消谐方法
CN115411698A (zh) * 2022-09-01 2022-11-29 云南电网有限责任公司曲靖供电局 一种通过电子负载主动投入电阻的pt铁磁谐振消谐方法
US11824348B1 (en) 2022-09-01 2023-11-21 Qujing Power Supply Bureau of Yunnan Power Grid Co., Ltd PT ferromagnetic resonance elimination method implemented by actively inputting resistance through electronic load

Similar Documents

Publication Publication Date Title
CN108987073A (zh) 电压互感器消谐装置及使用方法
EP2401805B1 (en) A hybrid distribution transformer with an integrated voltage source converter
CN104777397A (zh) 基于线电压向量判据的配电线路单相断线判断及定位方法
CN102967742B (zh) 宽电流检测范围的电子互感器
CN107332227A (zh) 中性点不接地系统的单相接地故障电压消弧方法及系统
CN204575726U (zh) 一种led驱动电源检测系统及设备
CN105203911A (zh) 三相电源断相故障检测方法、装置及一种自动转换开关
CN110007261B (zh) 电压互感器一次侧高压熔断器熔断判断装置及其判断方法
CN107942197A (zh) 一种输电线路单端故障测距方法
CN103558536A (zh) 测试串联电容器耐受过负荷能力的电路及其工作方法
CN108051691A (zh) 多副边移相变压器短路检测系统及方法
CN108845223A (zh) 一种消弧线圈磁控扰动选线方法
CN105137285A (zh) 配电网接地故障选线方法和系统
CN201331555Y (zh) 高压变频器功率单元输入缺相检测器
Chaitanya et al. Communication assisted fuzzy based adaptive protective relaying scheme for microgrid
JP3933974B2 (ja) 電圧変動補償装置
CN107769247A (zh) 一种用于防孤岛检测的rlc负载模拟系统及其控制方法
CN111044828A (zh) 基于正、负序方程组的三相变压器绕组参数在线监测方法
CN208655394U (zh) 电压互感器消谐装置
CN107345978A (zh) 发电厂或智能变电站用的可移动式控制电源及控制方法
CN103616581A (zh) 不拆引线测试无功补偿装置的方法
CN113281615B (zh) 有源配电网线路故障特性分析方法及存储介质
CN104808093A (zh) 基于定阻抗负荷模拟的防孤岛保护测试电路及方法
CN104749453A (zh) 降低外网单相接地故障对用户电压暂降影响的方法
CN108599116A (zh) 一种适用于交直流混合配电网的直流线路保护方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination