CN108983204B - 一种无钥匙进入和无钥匙启动系统定位方法 - Google Patents
一种无钥匙进入和无钥匙启动系统定位方法 Download PDFInfo
- Publication number
- CN108983204B CN108983204B CN201810959915.3A CN201810959915A CN108983204B CN 108983204 B CN108983204 B CN 108983204B CN 201810959915 A CN201810959915 A CN 201810959915A CN 108983204 B CN108983204 B CN 108983204B
- Authority
- CN
- China
- Prior art keywords
- vehicle
- rss
- distance
- data
- access point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S11/00—Systems for determining distance or velocity not using reflection or reradiation
- G01S11/02—Systems for determining distance or velocity not using reflection or reradiation using radio waves
- G01S11/06—Systems for determining distance or velocity not using reflection or reradiation using radio waves using intensity measurements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/40—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/80—Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Lock And Its Accessories (AREA)
Abstract
本发明公开了一种无钥匙进入与无钥匙系统定位方法,涉及无线通信与定位技术领域,所述方法包括以下主要步骤:步骤1:扩展卡尔曼算法距离估计,通过扩展卡尔曼算法根据RSS信号实现智能钥匙的跟踪定位;步骤2:RSS信号距离模型参数自适应更新,基于步骤1对智能钥匙的测距值,实时修正RSS信号距离模型参数;步骤3:基于改进Logistic回归的位置指纹算法。本发明以基于扩展卡尔曼滤波算法和基于改进Logistic回归的车内外辨识算法为核心来解决无钥匙进入和无钥匙启动系统智能钥匙定位的关键问题,能够有效提高基于低功耗蓝牙RSS信号的智能钥匙定位精度和定位范围,提高了无钥匙进入与无钥匙启动系统的鲁棒性。
Description
技术领域
本发明涉及无线通信与定位技术领域,尤其涉及一种无钥匙进入和无钥匙启动系统定位方法。
背景技术
基于智能手机的无钥匙进入与启动系统(Passive Entry&Passive Start,PEPS)是下一代汽车PEPS的重要发展方向。这种技术是一种依托智能手机、低功耗蓝牙的定位技术,旨在取代现有高低频PEPS系统的技术方案。蓝牙PEPS技术能够使用用户的智能手机实现无钥匙进入与启动,从而省去汽车的专用钥匙。基于低功耗蓝牙的无钥匙进入与启动目前仍然有很多需要研究的问题,如汽车内外部的精准辨别,汽车与智能钥匙距离估计等等。
由于RSS信息获取成本较低,而且RSS信息与距离有关,所以可以利用接收信号强度(RSS)来完实现对智能钥匙的定位。由于RSS信息具有较强的时空波动特性,因此直接建立RSS信息与距离的非线性模型定位误差往往较大。
现有技术没有充分考虑到RSS信号基于时间空间的变化特点,当信号发生波动时,对测距结果影响较大。不仅如此,衰减模型对各种不同环境需要重新确定拟合系数,其提高测距模型拟合精度是以提高运算耗时为代价的。
因此,本领域的技术人员致力于开发一种基于低功耗蓝牙RSS信息来定位智能手机(作为车钥匙)的方法,不仅具有运算量低,还需要有较高的定位精度以及相对远的定位范围,作为实现无钥匙进入和无钥匙启动系统的关键支撑技术,能够准确地辨识智能钥匙在车内和车外的状态的同时,还提供一定距离范围内的智能钥匙定位服务。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供基于车载蓝牙信标能够有效辨别作为钥匙的智能手机车辆内外部定位的方法,服务于基于低功耗蓝牙RSS的无钥匙进入与无钥匙启动系统。
为实现上述目的,本发明提供了一种无钥匙进入与无钥匙启动系统定位方法,所述方法包括以下步骤:
步骤1、离线RSS距离模型数据采集;
步骤2、利用离线数据集训练Logistic回归模型;
步骤3、RSS距离模型参数初始化;
步骤4、在线信号采集与数据预处理;
步骤5、基于扩展卡尔曼算法对滤波处理后的RSS信号进行定位;
步骤6、测距信息的融合;
步骤7、基于改进Logistic回归的车辆内外部精确辨识。
进一步地,所述步骤1还包括:
步骤1.1、车辆内部RSS数据采集:通过智能手机APP采集车辆内部位置的RSS数据,接收来自接入点的RSS信息并持续0.5-1.5分钟,优选地为1分钟,并将RSS与位置信息做好对应标记并存储;
步骤1.2、车辆外部1-2米距离内RSS数据采集:在1-2米范围内,优选地为1.5米,按50厘米为间隔环绕车辆接收来自不同接入点的RSS信息并持续0.5-1.5分钟,优选地为1分钟,将采集到的RSS数据与采集位置相对车辆的距离对应并且存储。
进一步地,所述步骤1还包括:
步骤1.3、车辆外部5米-10米距离内RSS数据采集,在距离车辆5米-10米范围内,优选地为10米,以1米为间隔接收来自不同接入点的RSS信息并持续0.5-1.5分钟,优选地为1分钟,将采集到的RSS数据与采集位置相对车辆的距离对应并且存储。
进一步地,所述接入点为4-7个,预先安装在车辆上,所述接入点为低功耗蓝牙信号发送模块,采用芯片TI CC2541或者DA14650。
进一步地,所述步骤1.1中所述车辆内部位置包括车辆的主驾驶座位、副驾驶座位、后排两个座位。
进一步地,所述步骤2还包括:
步骤2.4、重复步骤2.1至步骤2.3,可以训练出多组Logistic模型。
进一步地,所述步长η为0.5。
进一步地,所述原有数据集随机抽取比例为80%。
进一步地,所述部分维特征为4维。
进一步地,所述多组Logistic模型为3-5个。
进一步地,所述步骤3包括:利用极大似然估计算得到对传统RSS测量模型:RSS(d)=L0+10α1lg(d)+σ1 2的模型参数α1和σ1 2的估计:
其中,L0为相距为1米处的RSS采样值。K为接收到的RSS数据总量。dn为第n组RSS数据对应的真实距离参考值。
进一步地,所述步骤4包括:
步骤4.1、利用安装在智能手机上的APP采集接入点的RSS信号,每个采集点的采集时间0.5-1.5分钟;
步骤4.2、对采集的RSS信号进行移动平均滤波,剔除RSS信号波动较大的异常值,抑制RSS信号中的噪声。
进一步地,所述移动平均滤波的窗宽为20个数据点。
进一步地,所述步骤5还包括:
进一步地,所述步骤6包括:
步骤6.2、预测误差协方差:
步骤6.3、协方差矩阵更新:
步骤6.4、计算卡尔曼增益:
步骤6.6、协方差更新:
步骤6.7、信息融合:
进一步地,过程噪声方差值优选为1m/s2。
进一步地,所述步骤7包括:
步骤7.1、在线采集的信号向量m=[RSS1,RSS2,……,RSSn],将进行移动平均滤波后的信号向量作为输入传递到步骤2中的多个已经训练完毕的Logistic模型中,每一个Logistic模型独立地输出这组信号对应的车辆内外部状态辨识结果;
步骤7.2、对每一个模型的辨识结果通过设计输出滤波器对车辆内外状态进行滤波处理,减少由于RSS信号波动导致的状态误检,最后,通过少数服从多数的投票机制得到最终的辨识结果。
进一步地,所述步骤7建立在所述步骤6的基础上,对移动端相对车辆的距离进行阈值设定,当移动端距离车辆的距离小于设定阈值后,才会启用步骤7。
在本发明的较佳实施方式中,提供一种无钥匙进入与无钥匙启动系统定位方法,采用基于扩展卡尔曼滤波的环境系数自适应测距算法与基于改进Logistic算法的内外辨识算法的混合方案解决无钥匙进入和无钥匙启动系统智能钥匙定位的关键问题。这种方法能够同时实现远距离的车辆测距服务和近距离的用户相对车辆的内外部相对位置识别。混合方案能够提高基于低功耗蓝牙RSS信号的智能钥匙跟踪定位范围以及近距离范围的智能钥匙定位精度,增强无钥匙进入与无钥匙启动系统的鲁棒性。
在本发明的另一较佳实施方式中,提供一种无钥匙进入与无钥匙启动系统定位方法,提供完整的基于车载环境下的移动端定位方案,不仅包括完整的信号处理流程,还包括具体的离线RSS数据采集策略和标定算法,同时考虑到车辆内部和外部RSS差异较大的特点,采用不同方案混合工作的方式提高了系统的定位精度以及定位范围。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是本发明的一个较佳实施例的一种无钥匙进入与无钥匙启动系统定位方法的整体实施示意原理简图;
图2是本发明的一个较佳实施例的一种无钥匙进入与无钥匙启动系统定位方法的基于改进的Logistic回归的位置指纹算法的离线阶段与在线阶段示意图;
图3是本发明的一个较佳实施例的一种无钥匙进入与无钥匙启动系统定位方法的车内外位置采集区域示意图;
图4是本发明的一个较佳实施例的一种无钥匙进入与无钥匙启动系统定位方法的基于扩展卡尔曼滤波的环境系数自适应智能钥匙测距算法效果示意图;
图5是本发明的一个较佳实施例的一种无钥匙进入与无钥匙启动系统定位方法的基于改进Logistic回归的位置指纹算法车内外辨识效果示意图。
具体实施方式
以下参考说明书附图介绍本发明的多个优选实施例,使其技术内容更加清楚和便于理解。本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。
在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。附图所示的每一组件的尺寸和厚度是任意示出的,本发明并没有限定每个组件的尺寸和厚度。为了使图示更清晰,附图中有些地方适当夸大了部件的厚度。
如图1所示,本实施例提供了一种基于低功耗蓝牙RSS的无钥匙进入与无钥匙启动系统定位方法。这种定位方法首先对于每一个接入点的扩展卡尔曼滤波自适应距离估计,通过极大似然估计对RSS经典模型的参数进行在线自适应估计,修正智能钥匙到单个AP的距离估计。之后再通过扩展卡尔曼滤波进行多个接入点测距信息的融合。当测距信息的范围小于一定的阈值的时候,会进行基于改进Logistic回归的车辆内外辨识算法,否则定位系统系统将仅提供测距信息。其中,基于改进Logistic回归的车内外辨识算法包括I和II两个阶段,其中,I阶段为离线阶段,II阶段为在线阶段。具体工作原理是:首先进行离线阶段的RSS数据采集,包括车内外数据采集,通过对数据集以及特征的裁剪可以用于训练多个Logistic回归模型;其次是在线阶段的实时定位,通过多个Logistic回归模型进行投票的方式进行智能钥匙的定位。
具体地,如图2所示,离线数据采集阶段进行车辆内部RSS数据采集时,操作人员通过智能手机APP采集包括车辆的主驾驶座位、副驾驶座位、后排两个座位等位置在内的RSS数据,接收来自多个接入点的RSS信息1分钟,智能手机APP基于时间顺序记录并存储各个位置的RSS数据。
这些接入点的典型安设位置主要包括车辆门把手、控制台上等,鉴于成本因素,选择7枚以下为宜。接入点使用蓝牙发射模组,在本实施例优选采用TI CC2541或者DA14650,设计并制作外围供电电路以达到便于安设放置的目的。
具体地,车辆外部RSS数据采集时,操作人员仍采用智能手机APP采集。在车辆周边一定范围内,操作人员在固定位置上接收来自不同接入点的RSS信息。优选所述采集区域范围为2米。具体固定点采集区域示意图如图3所示。
具体地,车辆外部远距离RSS数据采集时,操作人员仍采用智能手机进行。在距离车辆10米范围内,以1米为间隔采集固定位置数据。将采集到的RSS数据与采集位置相对车辆的距离对应并且存储,这些远距离RSS数据用于确定初始RSS模型参数。
具体地,离线模型的训练包括先将采集到的RSS数据与内外部状态做好对应并且存储为离线无线电图3(离线数据集),用于训练Logistic模型。将原有离线数据集中随机抽取80%构成新数据集再对数据集进行特征随机筛选,仅保留4维特征,构成数据集最后使用经过筛选的数据集来训练Logistic回归模型。利用迭代优化的方式更新Logistic模型权重wt:
其中,η为步长,Labeli为车辆内外部状态的表示,1代表车内,-1代表车外状态。RSSi表示第i组RSS向量(i=1,2,……,N)。本实施例中优选步长为0.5,优选迭代次数400次。重复数据随机抽取,特征随机抽取以及模型迭代优化的过程3-5次,训练出3-5个不同的Logistic模型高精度车辆内外辨识。
具体地,在线数据定位阶段主要包括在线信号采集与预处理、基于扩展卡尔曼滤波的距离估计,基于改进Logistic回归的内外辨识以及定位结果优化滤波这三部分。在实施在线定位之前,首先需要将在线收集到的信号做实时滤波处理,尽可能抑制RSS原始信息中的噪声,本实施例中优选采用移动平均滤波方案进行信号噪声预处理,优选移动平均滤波的窗宽为20个数据点。之后采用基于扩展卡尔曼算法对滤波处理后的RSS信号进行定位,具体包含以下步骤:
针对采用了多个接入点进行同时距离估计的情形,增加基于扩展卡尔曼滤波的测距信息融合。具体包括如下:
步骤2:预测误差协方差:
步骤3:协方差矩阵更新;
为了进一步的提高定位精度,在智能钥匙与车辆的距离小于一定阈值范围的时候,系统需启用基于改进Logistic回归的位置指纹算法进行车辆内外部精确识别。本实施例中的阈值设置为智能钥匙与车辆距离1.5米。根据各个接入点1在某一位置在线采集的数据,在本实施例中采用7个接入点用于车辆内外部辨识,第i帧采集的数据2包含7维RSS向量m。
在线阶段的Logistic模型通过进行确定,其中w为离线训练阶段计算出的权值向量。利用数据集合特征的裁剪,本实施例中的离线阶段得到5个独立的权值不同的Logistic回归模型,对于每一帧在线RSS数据向量,会得到5个内外辨识的结果。针对RSS信号可能在实时过程中出现的随机波动,设置了输出滤波器对多个车辆内外部状态辨识结果进行滤波,增强判别可靠性。之后再采用少数服从多数的投票机制来得到最终的内外辨识结果。
与现有技术相比,本发明提出基于扩展卡尔曼滤波定位和基于改进Logistic回归的车辆内外辨识混合方案来实现智能钥匙的定位。在车辆内部基于多个蓝牙接入点,通过基于计算在线信号相对各个接入点的距离来进行定位。建立RSS信号与距离的关联模型,并通过扩展卡尔曼滤波算法实现距离信息的估计融合。充分考虑RSS信号的波动性对定位的影响,模型的参数依据场景自适应调整,鲁棒性得以提升。之后又通过基于扩展卡尔曼算法进行多个AP的融合,提高智能钥匙的测距可靠性。在近距离范围,采用了Logistic回归内外辨识方案。在用户距离汽车较近的时候,采用定位精度更高的基于Logistic回归的车辆内外部定位方案,通过多个不同的Logistic模型进行辨识,再以投票的方式决定最终的辨识结果。改进的Logistic模型具有参数较少,计算便捷,泛化能力强的特点。整个混合方案能够有效提高车内外辨识精度的同时增加定位服务范围。同时本发明提供完整基于车载环境下的智能钥匙定位方案,不仅包含完整的信号处理流程,还包括离线数据的采集策略和模型训练。
如图4所示,为本发明根据在线获取的RSS数据实时进行智能钥匙距离测量运行效果图。实线代表基于扩展卡尔曼滤波的环境自适应融合估计的测距结果,其余表示各个AP的测距结果。
如图5所示,为本发明根据在线获取的RSS数据实时进行智能钥匙车内外定位的运行效果图,其中纵坐标中的1代表车内,-1代表车外。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。
Claims (7)
1.一种无钥匙进入与无钥匙启动系统定位方法,其特征在于,所述方法包括以下步骤:
步骤1、车辆周围以及内部RSS数据采集;
步骤2、利用步骤1中采集的RSS数据集训练改进的Logistic回归模型;
步骤3、利用步骤1采集的RSS数据初始化RSS距离模型参数;
步骤4、多个车载蓝牙接入点的实时RSS信号采集与数据预处理;
步骤5、基于扩展卡尔曼算法对处理后的RSS信号进行距离预测;
步骤6、基于扩展卡尔曼算法对处理后的多个RSS信号的测距信息进行融合;
步骤7、基于改进Logistic回归模型对处理后的RSS信号进行车辆内外部精确辨识;
所述步骤1具体包括:
步骤1.1、车辆内部RSS数据采集:通过用户终端采集车辆内部位置的RSS数据,接收来自所述车载蓝牙接入点的RSS信息并持续0.5-1.5分钟,并将RSS与位置信息做好对应标记并存储为车辆内部RSS数据集1;
步骤1.2、车辆外部1-2米距离内RSS数据采集:在1-2米范围内,按50厘米为间隔环绕车辆通过用户终端接收来自所述车载蓝牙接入点的RSS信息并持续0.5-1.5分钟,将采集到的RSS数据与采集位置相对车辆的距离对应并且存储为车辆外部RSS数据集2;
所述车载蓝牙接入点为4-7个,预先安装在车辆上;所述车载蓝牙接入点为低功耗蓝牙信号发送模块,采用芯片TICC2541或者DA14650;
所述步骤2具体包括:
其中,η为步长,
Labeli为车辆内外部状态,Label值为1或-1,1代表车内状态,-1代表车外状态;RSSi表示第i组RSS向量,对应第i个Label值;
步骤2.4、重复步骤2.1至步骤2.3,可以训练出改进的Logistic回归模型;
所述步骤3具体包括:
利用极大似然估计,得到传统RSS测量模型RSS(d)=L0+10α1lg(d)+σ1 2中模型参数α1和σ1 2的估计值:
其中,L0为相距为1米处的RSS采样值;K为接收到的RSS数据总量;dn为第n组RSS数据对应的真实距离参考值;
所述步骤4具体包括:
步骤4.1、利用用户终端采集所述车载蓝牙接入点的RSS信号,每个所述车载蓝牙接入点的采集时间0.5-1.5分钟;
步骤4.2、对采集的RSS信号进行移动平均滤波,剔除RSS信号波动较大的异常值,抑制RSS信号中的噪声;
所述步骤5具体包括:
所述步骤6具体包括:
步骤6.2、预测误差协方差:
步骤6.3、协方差矩阵更新:
步骤6.4、计算卡尔曼增益:
步骤6.6、协方差更新:
步骤6.7、信息融合:
所述步骤7建立在所述步骤6的基础上,对所述用户终端相对车辆的距离进行阈值设定,当所述用户终端距离车辆的距离小于设定阈值时,启用步骤7,具体包括:
步骤7.1、所述用户终端采集所述车载蓝牙接入点的RSS信号向量为m=[RSS1,RSS2,……,RSSn],将进行移动平均滤波后的信号向量作为输入传递到所述步骤2中的改进的Logistic回归模型中的每一个Logistic回归模型,每一个Logistic回归模型独立地输出这组信号对应的车辆内外部状态辨识结果;
步骤7.2、对每一个模型的辨识结果通过设计输出滤波器对车辆内外状态进行滤波处理,减少由于RSS信号波动导致的状态误检,最后,通过少数服从多数的投票机制得到最终的辨识结果。
2.如权利要求1所述的无钥匙进入与无钥匙启动系统定位方法,其特征在于,所述步骤1还包括:
步骤1.3、车辆外部5米-10米距离内RSS数据采集,在距离车辆5米-10米范围内,以1米为间隔通过用户终端接收来自多个所述车载蓝牙接入点的RSS信息并持续0.5-1.5分钟,将采集到的RSS数据与采集位置相对车辆的距离对应并且存储为车辆外部RSS数据集3。
3.如权利要求1所述的无钥匙进入与无钥匙启动系统定位方法,其特征在于,所述步骤1.1中所述车辆内部位置包括车辆的主驾驶座位、副驾驶座位、后排两个座位。
4.如权利要求1所述的无钥匙进入与无钥匙启动系统定位方法,其特征在于,所述步长η为0.5。
5.如权利要求1所述的无钥匙进入与无钥匙启动系统定位方法,其特征在于,所述部分维特征为4维。
6.如权利要求1所述的无钥匙进入与无钥匙启动系统定位方法,其特征在于,所述改进的Logistic回归模型中包含的Logistic回归模型为3-5个。
7.如权利要求1所述的无钥匙进入与无钥匙启动系统定位方法,其特征在于,所述移动平均滤波的窗宽为20个数据点。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810959915.3A CN108983204B (zh) | 2018-08-22 | 2018-08-22 | 一种无钥匙进入和无钥匙启动系统定位方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810959915.3A CN108983204B (zh) | 2018-08-22 | 2018-08-22 | 一种无钥匙进入和无钥匙启动系统定位方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108983204A CN108983204A (zh) | 2018-12-11 |
CN108983204B true CN108983204B (zh) | 2022-07-05 |
Family
ID=64547269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810959915.3A Active CN108983204B (zh) | 2018-08-22 | 2018-08-22 | 一种无钥匙进入和无钥匙启动系统定位方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108983204B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110062326B (zh) * | 2019-04-08 | 2021-02-09 | 上海交通大学 | 一种车用蓝牙智能钥匙的定位与内外部辨识方法 |
CN112243020B (zh) * | 2019-07-19 | 2023-12-05 | 广州汽车集团股份有限公司 | 智能钥匙标定数据同步方法、装置、车载通信模块及系统 |
JP7346980B2 (ja) * | 2019-07-30 | 2023-09-20 | マツダ株式会社 | 車両制御システム |
CN110572773B (zh) * | 2019-09-12 | 2021-04-30 | 科世达(上海)机电有限公司 | 一种车辆的智能钥匙定位方法、系统及相关装置 |
CN112986697B (zh) * | 2019-12-02 | 2024-04-26 | 联合汽车电子有限公司 | 智能钥匙的标定方法、标定系统及可读存储介质 |
CN111836346B (zh) * | 2020-06-08 | 2022-08-02 | 浙江联控技术有限公司 | 一种蓝牙钥匙的定位方法、装置及设备 |
CN113873422B (zh) * | 2020-06-12 | 2024-01-26 | 上海汽车集团股份有限公司 | 一种peps系统钥匙的定位方法及装置 |
CN112061077A (zh) * | 2020-08-10 | 2020-12-11 | 浙江零跑科技有限公司 | 一种支持手机蓝牙钥匙功能的控制系统及方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106646339A (zh) * | 2017-01-06 | 2017-05-10 | 重庆邮电大学 | 一种无线位置指纹室内定位中在线匹配定位方法 |
CN107064913A (zh) * | 2017-03-10 | 2017-08-18 | 上海斐讯数据通信技术有限公司 | 一种基于深度学习的无线定位方法及系统 |
CN107182036A (zh) * | 2017-06-19 | 2017-09-19 | 重庆邮电大学 | 基于多维特征融合的自适应位置指纹定位方法 |
CN107360552A (zh) * | 2017-08-01 | 2017-11-17 | 电子科技大学 | 一种多分类器全局动态融合的室内定位方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102351718B1 (ko) * | 2014-12-31 | 2022-01-17 | 현대모비스 주식회사 | 스마트키 시스템의 동작방법 |
-
2018
- 2018-08-22 CN CN201810959915.3A patent/CN108983204B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106646339A (zh) * | 2017-01-06 | 2017-05-10 | 重庆邮电大学 | 一种无线位置指纹室内定位中在线匹配定位方法 |
CN107064913A (zh) * | 2017-03-10 | 2017-08-18 | 上海斐讯数据通信技术有限公司 | 一种基于深度学习的无线定位方法及系统 |
CN107182036A (zh) * | 2017-06-19 | 2017-09-19 | 重庆邮电大学 | 基于多维特征融合的自适应位置指纹定位方法 |
CN107360552A (zh) * | 2017-08-01 | 2017-11-17 | 电子科技大学 | 一种多分类器全局动态融合的室内定位方法 |
Non-Patent Citations (3)
Title |
---|
Received signal strength–based indoor localization using a robust interacting multiple model–extended Kalman filter algorithm;Juan Manuel Castro-Arvizu等;《INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS》;20170831;第13卷(第8期);第1-16页 * |
基于机器学习算法的指纹匹配定位技术研究;卞智;《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》;20180315(第03期);正文第22-27页 * |
室内区域性WiFi定位EKNN算法设计;傅予力 等;《华南理工大学学报(自然科学版)》;20171031;第45卷(第10期);第87-92页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108983204A (zh) | 2018-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108983204B (zh) | 一种无钥匙进入和无钥匙启动系统定位方法 | |
US9503855B2 (en) | Terminal apparatus, position estimating method, position estimating system, and computer-readable storage medium | |
CN112533149B (zh) | 一种基于uwb移动节点的移动目标定位算法 | |
CN111768528A (zh) | 基于标定和校准信号分享分发的蓝牙数字钥匙定位系统 | |
CN112040400B (zh) | 一种基于mimo-csi的单站点室内指纹定位方法、存储介质及设备 | |
CN110062326B (zh) | 一种车用蓝牙智能钥匙的定位与内外部辨识方法 | |
CN102725648B (zh) | 用于确定某位置与基准位置的一致性的设备和方法 | |
Won et al. | HybridBaro: Mining driving routes using barometer sensor of smartphone | |
CN111784876A (zh) | 获取包含方位角的参考点数据的蓝牙数字钥匙定位系统 | |
CN113449348A (zh) | 车辆内部的密钥卡定位 | |
CN115438708A (zh) | 一种基于卷积神经网络和多模态融合的分类识别方法 | |
CN106792554A (zh) | 一种基于双重匹配指纹定位技术的定位方法 | |
CN108600943A (zh) | 一种基于低功耗蓝牙rss的无钥匙系统定位方法 | |
CN115743101A (zh) | 车辆轨迹预测方法、轨迹预测模型训练方法和装置 | |
CN110290466A (zh) | 楼层判别方法、装置、设备及计算机存储介质 | |
CN107704870B (zh) | 基于ble指纹定位与imu动作识别融合的可靠人车临近感知装置与方法 | |
CN114916059B (zh) | 基于区间随机对数阴影模型的WiFi指纹稀疏地图扩建方法 | |
CN110703272B (zh) | 一种基于车车通信和gmphd滤波的周边目标车辆状态估计方法 | |
CN113300986B (zh) | 无人机图传信号与热点信号识别方法、介质、计算机设备 | |
CN110933631B (zh) | 基于wifi位置指纹的室内定位方法 | |
CN112016539B (zh) | 信号识别方法、装置、电子设备与存储介质 | |
CN113780573B (zh) | 一种抗噪的高精度测距方法及装置 | |
CN110261818B (zh) | 非直达超宽带信号识别与误差消除方法及装置、存储介质 | |
CN113514796A (zh) | 一种无源定位方法、系统和介质 | |
CN112929823A (zh) | 一种混合Wi-Fi室内定位方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |