CN108983195B - 基于子阵列自适应成像的目标雷达散射截面积测量方法 - Google Patents

基于子阵列自适应成像的目标雷达散射截面积测量方法 Download PDF

Info

Publication number
CN108983195B
CN108983195B CN201810942099.5A CN201810942099A CN108983195B CN 108983195 B CN108983195 B CN 108983195B CN 201810942099 A CN201810942099 A CN 201810942099A CN 108983195 B CN108983195 B CN 108983195B
Authority
CN
China
Prior art keywords
subarray
sub
array
target
optimal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810942099.5A
Other languages
English (en)
Other versions
CN108983195A (zh
Inventor
廖可非
刘扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201810942099.5A priority Critical patent/CN108983195B/zh
Publication of CN108983195A publication Critical patent/CN108983195A/zh
Application granted granted Critical
Publication of CN108983195B publication Critical patent/CN108983195B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/418Theoretical aspects

Abstract

本发明公开了一种基于子阵列自适应成像的目标雷达散射截面积测量方法,涉及雷达测量技术领域,解决的技术问题是提供一种克服大观测角下出现的回波不相参现象,提高雷达散射截面积测量精度的方法,包括如下步骤:(1)初始化参数;(2)获取回波数据;(3)进行三维成像处理;(4)通过子阵列成像并求互相关系数;(5)确定最佳子阵列;(6)划分剩余子阵列;(7)测量角度计算与判决;(8)获得所有最佳子阵列;(9)进行RCS计算与拟合得到RCS值曲线。采用本发明的技术方案将较大的二维虚拟阵列分成多个子阵列进行局部测量,避免了大观测角度下雷达回波不相参的影响,提高了目标雷达散射截面积的测量准确度。

Description

基于子阵列自适应成像的目标雷达散射截面积测量方法
技术领域
本发明涉及雷达测量技术领域,具体涉及一种基于子阵列自适应成像的目标雷达散射截面积测量方法。
背景技术
目标雷达散射截面积获取是电磁研究领域的重要研究方向之一。随着雷达技术的发展,雷达的探测能力不断提高,隐身技术成为了增强突击能力或保护自身的重要手段,而目标的隐身性能取决于其雷达散射截面积的大小,因此雷达散射截面积对于隐身材料的研究和隐身飞行器的设计有着重要的指导意义。
现有的雷达散射截面积特征研究方法主要包括理论计算和实际测量两大类。理论计算指通过计算电磁学方法对目标进行理论建模和数值模拟,该方法计算量庞大且存在不可避免的计算误差,也无法对复杂目标进行计算。实际测量包括远场测量、紧缩场测量和成像测量三种,前二者均存在测量成本昂贵,测量精度不够高,无法对目标局部成像的不足,而成像测量借助微波成像理论及多种技术手段,大大增加了获得的信息量,提高了测量精度,其中基于三维成像的雷达散射截面积测量技术是研究热点之一。
在基于三维成像的测量当中,为了保证分辨率,需要进行大观测角测量。在实测中发现,该方法对于角反射器的成像效果并不好,原因是回波存在相位逆转现象。在实际测量中,相位逆转现象存在于包含角反射器、腔体等结构的成像中,如汽车、飞机进气口等,这种现象将大大影响基于成像的雷达散射截面积测量精度,因此,采用大观测角测量方法往往会出现回波不相参现象,基于成像的雷达散射截面积测量精度下降的缺点。
发明内容
针对现有技术的不足,本发明所解决的问题是提供一种克服大观测角下出现的回波不相参现象,提高雷达散射截面积测量精度的方法。
为解决上述技术问题,本发明采用的技术方案是一种基于子阵列自适应成像的目标雷达散射截面积测量方法,包括如下步骤:
(1)初始化参数,具体分步骤如下:
(1.1)待测目标方位向分辨率指标,记作ρH;待测目标垂直向分辨率指标,记作ρv;待测目标距离向分辨率指标,记作ρr;测量中心频率,记作fc;发射信号带宽,记作B;天线阵列中心距离目标中心的距离,记作R;两幅图像的互相关系数门限,记作K;
(1.2)根据待测目标方位向分辨率指标,采用公式LH=λR/(2ρH)得到测量天线运动轨迹的方位向长度LH,其中λ为测量中心频率对应的波长,采用公式λ=c/fc计算,其中c为光速;
(1.3)根据待测目标垂直向分辨率,采用公式Lv=λR/(2ρv)得到测量天线运动轨迹的垂直向长度Lv
(1.4)设置天线阵元间隔为d=λ/2,可以得到方位向虚拟阵元数目 mH=LH/d,垂直向虚拟阵元数目mv=Lv/d;
(1.5)根据方位向虚拟阵元数目mH和垂直向虚拟阵元数目mv可以确定 mH×mv的均匀分布虚拟全阵列。
(2)获取回波数据
采用已确定的虚拟阵列对目标进行测量获得每个虚拟阵元位置的回波数据;
(3)进行三维成像处理
在虚拟阵元为mH×mv的情况下,取出获得的相应虚拟阵元的回波数据,采用三维后向投影算法,获得待测目标的三维图像,图像数据记为E0(x,y,z),其中(x,y,z)表示图像上点的坐标;
(4)通过子阵列成像并求互相关系数
子阵列的中心为原始虚拟阵列中心不变,虚拟阵元数目变为 (mH-2)×(mv-2),重复步骤(3),得到子阵列的数据E1(x,y,z),并采用如下公式计算E0(x,y,z)与E1(x,y,z)的互相关系数k:
Figure GDA0003747472670000031
其中
Figure GDA0003747472670000032
表示阿达马乘积,||||2表示取二范数;
(5)确定最佳子阵列
若求得的互相关系数k超过互相关系数门限K,则将子阵列的虚拟阵元数目变为(mH-2n)×(mv-2n)其中n=2,3,4...,子阵列中心不变,重复步骤(4),直到得到的互相关系数k小于互相关系数门限K,此时虚拟阵列 (mH-2n)×(mv-2n)即为最佳子阵列;
(6)划分剩余子阵列
将确定的最佳子阵列命名为最佳子阵列1,根据最佳子阵列1的边缘,将虚拟阵列分成九个子阵列,除去最佳子阵列1,分割出来的其他8个子阵列命名为子阵列2至9;
(7)测量角度计算与判决,具体分步骤如下:
(7.1)根据公式li=(mi-1)×d,计算子阵列2至9的最小边长大小li,其中mi表示当前子阵列短边对应的虚拟阵元数目,i表示子阵列2至9的编号,根据公式θi=arctan(li/R),计算子阵列2至9对应的测量角度大小为θi,对θi进行判断:
(7.2)若子阵列i对应的θi≤Θ,其中Θ表示测量角度门限,其值由具体测量目标决定,一般取值为2°~3°,则该子阵列i即为最佳子阵列i,对该子阵列进行步骤(3)的操作后,得到最佳子阵列i的图像数据Ei(x,y,z),将其存入步骤(9)待操作;
(7.3)若子阵列i对应的θi>Θ,则针对子阵列i,将阵列中心改为子阵列 i的中心,进行步骤(3)至(6)的操作,得到该子阵列的第二层最佳子阵列和第二层剩余子阵列;
(8)获得所有最佳子阵列
对第二层剩余子阵列进行步骤(7)的操作,若得到第三层剩余子阵列,则继续进行步骤(7),如此循环,直至所有子阵列均为最佳子阵列;
(9)进行RCS计算与拟合得到RCS值曲线
对于取得的所有最佳子阵列的图像数据,分别采用RCS反演算法计算最佳子阵列对应测量角度的RCS值曲线,并将所有曲线按对应测量角度进行拼接从而获得整个虚拟阵列对应测量角度的RCS值曲线。
采用本发明的技术方案将较大的二维虚拟阵列分成多个子阵列进行局部测量,避免了大观测角度下雷达回波不相参的影响,提高了目标雷达散射截面积的测量准确度。
附图说明
图1为虚拟阵列与待测物体的位置结构示意图;
图2为本发明方法流程图;
图3为最佳子阵列确定;
图4为总虚拟阵列的分割图;
图5为判决之后的对子阵列2的分割图;
图6为实施例小车水平向雷达散射截面积测量结果图。
具体实施方式
下面结合附图和实施例对本发明的具体实施方式作进一步的说明,但不是对本发明的限定。
实施例:将图1中待测物体设定为小车模型,计算小车水平向雷达散射截面积曲线。
图2示出了一种基于子阵列自适应成像的目标雷达散射截面积测量方法,包括如下步骤:
(1)初始化参数,具体分步骤如下:
(1.1)待测目标方位向分辨率指标ρH=0.075m;待测目标垂直向分辨率指标ρv=0.075m;待测目标距离向分辨率指标ρr=0.15m;测量波段fc=2GHz;发射信号带宽B=1GHz;天线阵列中心距离目标中心的距离R=2m;
(1.2)根据待测目标方位向分辨率指标,波长λ=c/fc=3×108/(2×109)=0.15m,雷达天线运动轨迹的方位向长度 LH=0.15×2/(2×0.075) =2m;
(1.3)根据待测目标垂直向分辨率,得到雷达天线运动轨迹的垂直向长度Lv=0.15×2/(2×0.075)=2m;
(1.4)天线阵元间隔为d=λ/2=0.075m,可以得到方位向虚拟阵元数目 mH=LH/d=2/0.075=27,垂直向虚拟阵元数目mv=Lv/d=2/0.075=27;
(1.5)根据方位向虚拟阵元数目mH和垂直向虚拟阵元数目mv可以确定目标天线阵列为27×27的均匀分布虚拟阵列。
(2)获取回波数据
采用步骤(1)中确定的虚拟阵列对目标进行测量(测量方法参考:Liao K.F.,Zhang X.L.,Shi J.Plane-Wave Synthesis and RCS Extraction via 3-D Linear ArraySAR.Antennas and Wireless Propagation Letters, IEEE,2015,14:994-997.,获得每个虚拟阵元位置的回波数据;
(3)进行三维成像处理
在虚拟阵元为27×27的情况下,取出步骤(2)中获得的相应虚拟阵元的回波数据,采用三维后向投影算法(算法具体内容可参考:Shi,Jun;Zhang, Xiaoling;Yang,Jianyu;Wen Chen,"APC Trajectory Design for "One-Active"Linear-Array Three-Dimensional Imaging SAR"IEEE Trans on Geoscience and Remote Sensing,Volume48,Issue 3,Part 2,March 2010,pp.1470–1486),获得待测目标的三维图像,图像数据记为E0(x,y,z),其中(x,y,z)表示图像上点的坐标;
(4)通过子阵列成像并求互相关系数
子阵列的中心为原始虚拟阵列中心不变,虚拟阵元数目变为 (mH-2)×(mv-2),重复步骤(3),得到子阵列的数据E1(x,y,z),并采用如下公式计算E0(x,y,z)与E1(x,y,z)的互相关系数k:
Figure GDA0003747472670000071
其中
Figure GDA0003747472670000072
表示阿达马乘积,||||2表示取二范数;
(5)确定最佳子阵列
若求得的互相关系数k超过互相关系数门限K,则将子阵列的虚拟阵元数目变为(mH-2n)×(mv-2n)其中n=2,3,4...,子阵列中心不变,重复步骤(4),直到得到的互相关系数k小于互相关系数门限K。此时如图3所示,虚拟阵列 (mH-2n)×(mv-2n)即为最佳子阵列;
(6)划分剩余子阵列
根据步骤(5)确定的最佳子阵列,将其命名为最佳子阵列1,根据最佳子阵列1的边缘,将虚拟阵列分成九个子阵列,分割方式详见附图4,除去最佳子阵列1,分割出来的其他8个子阵列命名为子阵列2至9;
(7)测量角度计算与判决,具体分步骤如下:
(7.1)根据公式li=(mi-1)×d,计算子阵列2至9的最小边长大小li,其中mi表示当前子阵列短边对应的虚拟阵元数目,i表示子阵列2至9的编号。根据公式θi=arctan(li/R),计算子阵列2至9对应的测量角度大小为θi。对θi进行判断:
(7.2)若子阵列i对应的θi≤Θ,其中Θ表示测量角度门限(由具体测量目标决定,一般取值为2°~3°),则该子阵列i即为最佳子阵列i,对该子阵列进行步骤(3)的操作后,得到最佳子阵列i的图像数据Ei(x,y,z),将其存入步骤(9)待操作。
(7.3)若子阵列i对应的θi>Θ,则针对子阵列i,将虚拟阵列中心改为子阵列i的中心,进行步骤(3)至(6)的操作,得到该子阵列的第二层最佳子阵列和第二层剩余子阵列,如附图5所示;
(8)获得所有最佳子阵列
对第二层剩余子阵列进行步骤(7)的操作,若得到第三层剩余子阵列,则继续进行步骤(7),如此循环,直至所有子阵列均为最佳子阵列;
(9)RCS计算与拟合得到RCS值曲线
对于取得的所有最佳子阵例的图像数据,分别采用RCS反演算法(算法具体内容可参考:K.-F.Liao,X.-L.Zhang,J.Shi.Plane-Wave Synthesis and RCS Extraction via3-D Linear Array SAR[J].Antennas and Wireless Propagation Letters,IEEE,2015,14:994-997.)计算最佳子阵列对应测量角度的RCS值曲线,并将所有曲线按对应测量角度进行拼接从而获得整个虚拟阵列对应测量角度的RCS值曲线。如图6所示的是垂直向角度为0时,小车水平向雷达散射截面积的测量结果,从图中可以看出,本发明测量得到的RCS值与理论值误差在容许范围内,验证了本发明的有效性。
采用本发明的技术方案将较大的二维虚拟阵列分成多个子阵列进行局部测量,避免了大观测角度下雷达回波不相参的影响,提高了目标雷达散射截面积的测量准确度。
以上结合附图对本发明的实施方式做出了详细说明,但本发明不局限于所描述的实施方式。对于本领域技术人员而言,在不脱离本发明的原理和精神的情况下,对这些实施方式进行各种变化、修改、替换和变型仍落入本发明的保护范围内。

Claims (2)

1.一种基于子阵列自适应成像的目标雷达散射截面积测量方法,其特征在于:包括如下步骤:
(1)初始化参数;
(2)获取回波数据
采用已确定的虚拟阵列对目标进行测量获得每个虚拟阵元位置的回波数据;
(3)进行三维成像处理
在虚拟阵元为mH×mv的情况下,取出获得的相应虚拟阵元的回波数据,采用三维后向投影算法,获得待测目标的三维图像,图像数据记为E0(x,y,z),其中(x,y,z)表示图像上点的坐标;
(4)通过子阵列成像并求互相关系数
子阵列的中心为原始虚拟阵列中心不变,虚拟阵元数目变为(mH-2)×(mv-2),重复步骤(3),得到子阵列的数据E1(x,y,z),并采用如下公式计算E0(x,y,z)与E1(x,y,z)的互相关系数k:
Figure FDA0003747472660000011
其中
Figure FDA0003747472660000012
表示阿达马乘积,||||2表示取二范数;
(5)确定最佳子阵列
若求得的互相关系数k超过互相关系数门限K,则将子阵列的虚拟阵元数目变为(mH-2n)×(mv-2n)其中n=2,3,4...,子阵列中心不变,重复步骤(4),直到得到的互相关系数k小于互相关系数门限K,此时虚拟阵列(mH-2n)×(mv-2n)即为最佳子阵列;
(6)划分剩余子阵列
将确定的最佳子阵列命名为最佳子阵列1,根据最佳子阵列1的边缘,将虚拟阵列分成九个子阵列,除去最佳子阵列1,分割出来的其他8个子阵列命名为子阵列2至9;
(7)测量角度计算与判决,具体分步骤如下:
(7.1)根据公式li=(mi-1)×d,计算子阵列2至9的最小边长大小li,其中mi表示当前子阵列短边对应的虚拟阵元数目,i表示子阵列2至9的编号,根据公式θi=arctan(li/R),计算子阵列2至9对应的测量角度大小为θi,对θi进行判断,其中R为天线阵列中心距离目标中心的距离;
(7.2)若子阵列i对应的θi≤Θ,其中Θ表示测量角度门限,其值由具体测量目标决定,取值为2°~3°,则该子阵列i即为最佳子阵列i,对该子阵列进行步骤(3)的操作后,得到最佳子阵列i的图像数据Ei(x,y,z),将其存入步骤(9)待操作;
(7.3)若子阵列i对应的θi>Θ,则针对子阵列i,将虚拟阵列中心改为子阵列i的中心,进行步骤(3)至(6)的操作,得到该子阵列的第二层最佳子阵列和第二层剩余子阵列;
(8)获得所有最佳子阵列
对第二层剩余子阵列进行步骤(7)的操作,若得到第三层剩余子阵列,则继续进行步骤(7),如此循环,直至所有子阵列均为最佳子阵列;
(9)进行RCS计算与拟合得到RCS值曲线
对于取得的所有最佳子阵列的图像数据,分别采用RCS反演算法计算最佳子阵列对应测量角度的RCS值曲线,并将所有曲线按对应测量角度进行拼接从而获得整个虚拟阵列对应测量角度的RCS值曲线。
2.如权利要求1所述的基于子阵列自适应成像的目标雷达散射截面积测量方法,其特征在于:步骤(1)中,具体分步骤如下:
(1.1)待测目标方位向分辨率指标,记作ρH;待测目标垂直向分辨率指标,记作ρv;待测目标距离向分辨率指标,记作ρr;测量中心频率,记作fc;发射信号带宽,记作B;天线阵列中心距离目标中心的距离,记作R;两幅图像的互相关系数门限,记作K;
(1.2)根据待测目标方位向分辨率指标,采用公式LH=λR/(2ρH)得到测量天线运动轨迹的方位向长度LH,其中λ为测量中心频率对应的波长,采用公式λ=c/fc计算,其中c为光速;
(1.3)根据待测目标垂直向分辨率,采用公式Lv=λR/(2ρv)得到测量天线运动轨迹的垂直向长度Lv
(1.4)设置天线阵元间隔为d=λ/2,可以得到方位向虚拟阵元数目mH=LH/d,垂直向虚拟阵元数目mv=Lv/d;
(1.5)根据方位向虚拟阵元数目mH和垂直向虚拟阵元数目mv可以确定mH×mv的均匀分布虚拟全阵列。
CN201810942099.5A 2018-08-17 2018-08-17 基于子阵列自适应成像的目标雷达散射截面积测量方法 Active CN108983195B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810942099.5A CN108983195B (zh) 2018-08-17 2018-08-17 基于子阵列自适应成像的目标雷达散射截面积测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810942099.5A CN108983195B (zh) 2018-08-17 2018-08-17 基于子阵列自适应成像的目标雷达散射截面积测量方法

Publications (2)

Publication Number Publication Date
CN108983195A CN108983195A (zh) 2018-12-11
CN108983195B true CN108983195B (zh) 2022-08-30

Family

ID=64553478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810942099.5A Active CN108983195B (zh) 2018-08-17 2018-08-17 基于子阵列自适应成像的目标雷达散射截面积测量方法

Country Status (1)

Country Link
CN (1) CN108983195B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113671494B (zh) * 2021-08-17 2023-10-24 桂林电子科技大学 一种基于超分辨成像的雷达散射截面积测量方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW298690B (en) * 1993-08-04 1997-02-21 Defence Dept Chung Shan Inst Radar cross section measurement system implemented with non-uniform amplitude taper wave-front removal technique
US6580388B1 (en) * 2001-11-20 2003-06-17 The United States Of America As Represented By The Secretary Of The Navy Calculation methodology for complex target signatures
CN102279387A (zh) * 2011-07-18 2011-12-14 西安电子科技大学 Mimo雷达的目标到达角估计方法
CN103246781A (zh) * 2013-05-17 2013-08-14 南京理工大学 基于空间映射的阵列天线雷达散射截面减缩方法
CN104215953A (zh) * 2014-08-28 2014-12-17 中国科学院电子学研究所 基于柱面扫描三维近场成像的反向散射截面测量方法
CN105842687A (zh) * 2016-03-21 2016-08-10 西安电子科技大学 基于rcs预测信息的检测跟踪一体化方法
JP2017003498A (ja) * 2015-06-12 2017-01-05 株式会社東芝 レーダシステム及びレーダ信号処理方法
CN107255805A (zh) * 2017-08-01 2017-10-17 西安电子科技大学 基于加权最小二乘的雷达目标rcs的预测方法
CN107544063A (zh) * 2017-08-08 2018-01-05 西安电子科技大学 一种雷达跟踪状态下的目标rcs的预测方法
CN108169727A (zh) * 2018-01-03 2018-06-15 电子科技大学 一种基于fpga的动目标雷达散射截面测量方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW298690B (en) * 1993-08-04 1997-02-21 Defence Dept Chung Shan Inst Radar cross section measurement system implemented with non-uniform amplitude taper wave-front removal technique
US6580388B1 (en) * 2001-11-20 2003-06-17 The United States Of America As Represented By The Secretary Of The Navy Calculation methodology for complex target signatures
CN102279387A (zh) * 2011-07-18 2011-12-14 西安电子科技大学 Mimo雷达的目标到达角估计方法
CN103246781A (zh) * 2013-05-17 2013-08-14 南京理工大学 基于空间映射的阵列天线雷达散射截面减缩方法
CN104215953A (zh) * 2014-08-28 2014-12-17 中国科学院电子学研究所 基于柱面扫描三维近场成像的反向散射截面测量方法
JP2017003498A (ja) * 2015-06-12 2017-01-05 株式会社東芝 レーダシステム及びレーダ信号処理方法
CN105842687A (zh) * 2016-03-21 2016-08-10 西安电子科技大学 基于rcs预测信息的检测跟踪一体化方法
CN107255805A (zh) * 2017-08-01 2017-10-17 西安电子科技大学 基于加权最小二乘的雷达目标rcs的预测方法
CN107544063A (zh) * 2017-08-08 2018-01-05 西安电子科技大学 一种雷达跟踪状态下的目标rcs的预测方法
CN108169727A (zh) * 2018-01-03 2018-06-15 电子科技大学 一种基于fpga的动目标雷达散射截面测量方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MIMO雷达信号设计及其目标特性研究;刘海鹏;《中国优秀博硕士学位论文全文数据库(硕士) 信息科技辑》;20170315(第03(2017)期);第I136-2067页 *
基于合成孔径三维成像的雷达散射截面测量技术研究;廖可非;《中国优秀博硕士学位论文全文数据库(博士) 信息科技辑》;20160715(第07(2016)期);第I136-99页 *

Also Published As

Publication number Publication date
CN108983195A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
Major et al. Vehicle detection with automotive radar using deep learning on range-azimuth-doppler tensors
US8358239B2 (en) Iterative clutter calibration with phased array antennas
KR20190035895A (ko) 3d 프린트된 루네부르크 렌즈를 사용하는 새로운 차량 레이더
US11029403B2 (en) Millimeter-wave airborne radar for 3-Dimensional imaging of moving and stationary targets
AU2017222240A1 (en) Radar mounting estimation with unstructured data
CN115166714B (zh) 单通道sar运动舰船二维速度估计与重定位方法及装置
Mohsin Riaz et al. Through-wall image enhancement based on singular value decomposition
CN108983195B (zh) 基于子阵列自适应成像的目标雷达散射截面积测量方法
Mansour et al. Sparse blind deconvolution for distributed radar autofocus imaging
US20220214441A1 (en) Methods and System for Compressing Radar Data
CN115291207A (zh) 基于mimo雷达的小型旋翼无人机多目标检测方法
Hémon et al. Computation of EM field scattered by an open-ended cavity and by a cavity under radome using the iterative physical optics
CN114708257A (zh) Sar运动舰船目标检测方法及装置
US20180120430A1 (en) Electromagnetic wave imaging system and antenna array signal correction method
CN113167885B (zh) 车道线检测方法和车道线检测装置
CN115546526B (zh) 三维点云聚类方法、装置及存储介质
US10371813B2 (en) Systems and methods for using time of flight measurements for imaging target objects
CN113050098B (zh) 基于块稀疏稳健主成分分析的反蛙人声呐混响抑制方法
CN109738890A (zh) 一种基于弹载双基sar距离多普勒图像生成地距图的方法
Wielgo et al. Convolutional neural network for 3D ISAR non-cooperative target recognition
JP7211510B2 (ja) レーダシステムおよびイメージング方法
Feng et al. Constained adaptive monopulse algorithm based on sub-array
Bialer et al. Object surface estimation from radar images
Wilson et al. An estimation and verification of vessel radar-cross-sections for HF Surface Wave Radar
CN114609604B (zh) 无人机集群目标检测及目标轮廓、集群规模估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant