CN108977766B - 一种多层复合类金刚石薄膜材料及其制备方法 - Google Patents

一种多层复合类金刚石薄膜材料及其制备方法 Download PDF

Info

Publication number
CN108977766B
CN108977766B CN201810789778.3A CN201810789778A CN108977766B CN 108977766 B CN108977766 B CN 108977766B CN 201810789778 A CN201810789778 A CN 201810789778A CN 108977766 B CN108977766 B CN 108977766B
Authority
CN
China
Prior art keywords
film
dlc
duty ratio
multilayer composite
negative bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810789778.3A
Other languages
English (en)
Other versions
CN108977766A (zh
Inventor
黄雷
李超
洪东波
袁军堂
汪振华
殷增斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201810789778.3A priority Critical patent/CN108977766B/zh
Publication of CN108977766A publication Critical patent/CN108977766A/zh
Application granted granted Critical
Publication of CN108977766B publication Critical patent/CN108977766B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种多层复合类金刚石薄膜材料及其制备方法。该多层复合类金刚石薄膜通过掺杂Ti含氢非晶碳和无掺杂含氢非晶碳周期性按比例交替沉积获得。本发明制备的Ti‑DLC/α‑C:H薄膜具有高结合强度、高韧性、优良的减摩耐磨性,涂覆于切削刀具加工玻璃纤维增强复合材料可使得刀具寿命提高2倍,且相对传统单层类金刚石涂层刀具寿命可提高48%。本发明制备工艺先进、生产效率高、成本低,易于工业化生产,具有推广价值。

Description

一种多层复合类金刚石薄膜材料及其制备方法
技术领域
本发明涉及类金刚石薄膜材料领域,尤其涉及多层复合类金刚石薄膜材料及其制备方法。
背景技术
类金刚石(Diamond-like Carbon,DLC)薄膜主要是由金刚石结构的sp3杂化碳原子以及石墨结构的sp2杂化碳原子构成的非晶或纳米晶—非晶复合体,拥有众多与金刚石薄膜相似的优异性能如高硬度、低摩擦系数、耐磨损、化学性能稳定等,拥有巨大的应用前景。但是由于其本身存在膜基结合强度不足、韧性差以及摩擦学性能不稳定等问题,严重制约了薄膜优异性能的发挥。因此,如何改变薄膜设计理念,开发新型DLC薄膜,进而改善并提高DLC薄膜的综合性能,对实现DLC薄膜在世界范围内的大规模应用具有重大的现实和社会价值。
研究发现通过在非晶碳基网络中掺入异质元素可以有效改善DLC薄膜的综合性能。Zou等人(Zou C W,Wang H J,Feng L,et al.Effects of Cr concentrations on themicrostructure,hardness,and temperature-dependent tribological properties ofCr-DLC coatings,J.Applied Surface Science,2013,286:137-141)利用中频磁控溅射结合离子束沉积技术制备了Cr掺杂DLC薄膜,与未掺杂DLC相比,内应力从0.98GPa降低至0.49GPa,但薄膜硬度却从23GPa左右削减至12GPa;Pauleau等人(Pauleau Y,Thiery F,Barna P B,et al.Nanostructured copper/hydrogenated amorphous carbon compositefilms prepared by microwave plasma-assisted deposition process fromacetylene-argon gas mixtures,J.Reviews on Advanced Materials Science,2004,6(2):140-149)采用等离子体辅助磁控溅射法制备Cu掺杂DLC薄膜,发现复合薄膜中界面强化效应及金属纳米颗粒良好的延展性的协同作用可以提高DLC薄膜韧性,但薄膜耐磨性能下降,黏着磨损将加剧。由此可以发现,引入DLC碳基网络的元素往往一方面在降低DLC薄膜内应力、改善薄膜高脆性的同时,对薄膜的机械强度或耐磨性能有一定程度削弱。
多层构筑DLC薄膜是一种新型DLC制备方法,研究表明这种构筑体系可以使DLC薄膜获得更加优异的力学和摩擦学性能。目前最常见的体系有金属/金属碳化物或金属氮化物/DLC、软/硬DLC多层体系。Liu等人(Hongxi L,Yehua J,Rong Z,et al.Wear behaviourand rolling contact fatigue life of Ti/TiN/DLC multilayer films fabricated onbearing steel by PIIID,J.Vacuum,2012,86(7):848-853)采用等离子体注入法在GCr15轴承钢基体表面制备了Ti/TiN/DLC多层复合薄膜,结果发现DLC与金属基体之间结合强度得到了显著提高,且与GCr15对磨后耐磨性有了明显提高;Zhang等人(Zhang Y,Zhai Y,LiF,et al.Effect of microstructure and mechanical properties difference betweensub-layers on the performance of alternate hard and soft diamond-like carbonmultilayer films,J.Surface and Coatings Technology,2013,232:575-581)通过改变DLC沉积过程中基体偏压大小实现软/硬层DLC的控制,并以软/硬层DLC交替制备形成多层交替复合结构,发现薄膜韧性相较单层DLC薄膜提高了2倍,并且在干摩擦和水润滑情况下表现出更为优秀的耐磨性能。但是考虑到尽管同质外延相对异质外延更利于薄膜均匀生长,但制备方法不变,仅通过改变单一工艺参数来实现同种薄膜软硬层的交替制备,同时又要保证软硬层各自的优异性能,难度较大,不易实现。因此多层复合DLC薄膜制备工艺有待进一步研究和探索。
中频反应磁控溅射是近年来发展起来的一种新型溅射技术,具有靶材利用率高、运行稳定等优点。不仅可以有效增加薄膜沉积速率,而且可减轻或避免靶中毒现象,在靶的寿命期内,可实现长期稳定的运行。而阳极层线性离子源技术具有不受空间电荷限制、离子束发射角大、离子束流密度高等特点。本发明即综合两种技术的优势,分别以中频反应磁控溅射制备Ti-DLC,阳极层线性离子源制备α-C:H,两种不同薄膜周期性交替沉积来获得综合性能极佳的新型DLC多层复合薄膜。目前尚未有相关的技术报道。
发明内容
本发明的目的在于改善传统DLC薄膜存在的膜基结合强度不足、韧性差以及摩擦学性能不稳定等问题,提供一种多层复合类金刚石薄膜材料及其制备方法。
多层复合类金刚石薄膜为以金属层Ti为过渡缓冲层,多层结构为交替的Ti-DLC和α-C:H;多层结构调制层数为4~12层。
本发明的以中频反应磁控溅射制备Ti-DLC和阳极层线性离子源制备α-C:H为基础前提,通过调节两种单层薄膜调制周期和调制比,制备出具有高结合强度、高韧性、优良的减摩耐磨性的DLC多层复合薄膜。
上述多层复合DLC薄膜制备方法是:
步骤1,镀膜前将硬质合金基体打磨抛光,经过石油醚、无水乙醇、丙酮和去离子水超声波清洗并晾干;
步骤2,将基体固定于腔体内试样架,对腔体抽真空并加热;
步骤3,真空室内通入150ml/min的氩气,打开阳极层线性离子源电源对样品进行离子束预清洗;
步骤4,打开直流磁控溅射电源,开始缓冲层/过渡层金属Ti的沉积;
步骤5,分别打开中频反应磁控溅射电源和阳极层线性离子源电源进行Ti-DLC和α-C:H薄膜的沉积,控制调制周期和调制比获得最终多层复合Ti-DLC/α-C:H薄膜。
进一步的,步骤(1)中,硬质合金经过金相砂纸打磨抛光,表面粗糙度Ra约为0.1μm,随后经过石油醚、无水乙醇、丙酮和去离子水超声波清洗,各步骤清洗时间均为15min,随置于大气中烘干。
进一步的,步骤(2)中,对真空室进行抽真空至本底真空度5×10-3Pa。随后对真空室进行100℃加热,并保持30min,对真空室继续抽真空,直至重新回到本底真空度5×10- 3Pa。
进一步的,步骤(3)中,腔体真空度为2Pa,阳极层线性离子源电源电压设置为1000V,占空比60%,同时对基体施加-1200V,占空比60%的脉冲负偏压,离子束清洗时间为30min。
进一步的,步骤(4)中,通入150ml/min的氩气,并设置真空度为1.5Pa。直流磁控溅射电源恒流电流6A,脉冲负偏压为-500V,占空比30%,过渡层Ti制备时间6min,厚度约为0.1μm。
进一步的,步骤(5)中,腔体真空度为1.5Pa,Ti-DLC薄膜制备工艺为中频反应磁控溅射电源恒流5A,占空比80%,脉冲负偏压为-700V,占空比70%,初始温度为100℃,沉积时间9~24min;α-C:H薄膜制备工艺为真空度0.3Pa,阳极层线性离子源电压-1000V,占空比60%,脉冲负偏压为-1400V,占空比60%,初始温度为50℃,沉积时间为11~32min。Ti-DLC/α-C:H薄膜的调制周期控制在183~550nm,调制比控制在3/1~1/3范围内。
本发明与现有技术相比,具有以下显著优点:
(1)本发明分别采用中频反应磁控溅射技术和阳极层线性离子源技术制备多层薄膜,首先可有效避免因为单一元素掺杂,造成的薄膜性能顾此失彼现象;此外,分别采用不同的工艺可更方便获得性能条件良好的单层薄膜。
(2)本发明获得的Ti-DLC/α-C:H复合薄膜,与传统单层DLC薄膜相比,结合强度、韧性、耐磨性能均有显著提高,并在应用于涂层刀具切削加工玻璃纤维复合材料试验中,有效提高刀具寿命,相对于单层DLC涂层刀具寿命提高30%~43%,极具推广价值。
附图说明
图1为实施例2制备的多层复合DLC薄膜(Ti-DLC/α-C:H)截面SEM形貌。
图2为实施例2制备的多层复合DLC薄膜涂层刀具外观形貌。
具体实施方式
下面结合附图技术实施例多本发明做进一步说明
本发明为一种多层复合DLC薄膜制备方法。
本发明利用中频反应磁控溅射以及阳极层线性离子源技术,交替沉积单层DLC薄膜,最终获得力学性能良好的多层复合DLC薄膜。
实施例1
以YG8硬质合金为基体,经由预清洗后放置真空室内,抽真空后100℃加热30min,再次抽真空至本底真空度5×10-5Pa。打开离子源电压和脉冲负偏压进行30min离子束溅射清洗。通入150ml/min氩气,真空度恒定保持1.5Pa,直流磁控溅射恒流6A,脉冲负偏压-500V,占空比30%,沉积6min钛过渡层。打开中频磁控溅射电源恒流5A,占空比80%,脉冲负偏压-700V,占空比70%,沉积Ti-DLC薄膜24min;打开阳极层线性离子源恒压1000V,占空比60%,真空度0.3Pa,脉冲负偏压-1400V,占空比60%,沉积α-C:H薄膜30min。如此重复2次,制得调制周期550nm,调制比1:1,调制层数4层的Ti-DLC/α-C:H薄膜。
实施例2
以YG8硬质合金为基体,经由预清洗后放置真空室内,抽真空后100℃加热30min,再次抽真空至本底真空度5×10-5Pa。打开离子源电压和脉冲负偏压进行30min离子束溅射清洗。通入150ml/min氩气,真空度恒定保持1.5Pa,直流磁控溅射恒流6A,脉冲负偏压-500V,占空比30%,沉积6min钛过渡层。打开中频磁控溅射电源恒流5A,占空比80%,脉冲负偏压-700V,占空比70%,沉积Ti-DLC薄膜17min;打开阳极层线性离子源恒压1000V,占空比60%,真空度0.3Pa,脉冲负偏压-1400V,占空比60%,沉积α-C:H薄膜21min。如此重复3次,制得调制周期366nm,调制比1:1,调制层数6层的Ti-DLC/α-C:H薄膜。
实施例3
以YG8硬质合金为基体,经由预清洗后放置真空室内,抽真空后100℃加热30min,再次抽真空至本底真空度5×10-5Pa。打开离子源电压和脉冲负偏压进行30min离子束溅射清洗。通入150ml/min氩气,真空度恒定保持1.5Pa,直流磁控溅射恒流6A,脉冲负偏压-500V,占空比30%,沉积6min钛过渡层。打开中频磁控溅射电源恒流5A,占空比80%,脉冲负偏压-700V,占空比70%,沉积Ti-DLC薄膜13min;打开阳极层线性离子源恒压1000V,占空比60%,真空度0.3Pa,脉冲负偏压-1400V,占空比60%,沉积α-C:H薄膜17min。如此重复4次,制得调制周期275nm,调制比1:1,调制层数8层的Ti-DLC/α-C:H薄膜。
实施例4
以YG8硬质合金为基体,经由预清洗后放置真空室内,抽真空后100℃加热30min,再次抽真空至本底真空度5×10-5Pa。打开离子源电压和脉冲负偏压进行30min离子束溅射清洗。通入150ml/min氩气,真空度恒定保持1.5Pa,直流磁控溅射恒流6A,脉冲负偏压-500V,占空比30%,沉积6min钛过渡层。打开中频磁控溅射电源恒流5A,占空比80%,脉冲负偏压-700V,占空比70%,沉积Ti-DLC薄膜10min;打开阳极层线性离子源恒压1000V,占空比60%,真空度0.3Pa,脉冲负偏压-1400V,占空比60%,沉积α-C:H薄膜14min。如此重复5次,制得调制周期220nm,调制比1:1,调制层数10层的Ti-DLC/α-C:H薄膜。
实施例5
以YG8硬质合金为基体,经由预清洗后放置真空室内,抽真空后100℃加热30min,再次抽真空至本底真空度5×10-5Pa。打开离子源电压和脉冲负偏压进行30min离子束溅射清洗。通入150ml/min氩气,真空度恒定保持1.5Pa,直流磁控溅射恒流6A,脉冲负偏压-500V,占空比30%,沉积6min钛过渡层。打开中频磁控溅射电源恒流5A,占空比80%,脉冲负偏压-700V,占空比70%,沉积Ti-DLC薄膜9min;打开阳极层线性离子源恒压1000V,占空比60%,真空度0.3Pa,脉冲负偏压-1400V,占空比60%,沉积α-C:H薄膜11min。如此重复6次,制得调制周期183nm,调制比1:1,调制层数12层的Ti-DLC/α-C:H薄膜。
实施例6
以YG8硬质合金为基体,经由预清洗后放置真空室内,抽真空后100℃加热30min,再次抽真空至本底真空度5×10-5Pa。打开离子源电压和脉冲负偏压进行30min离子束溅射清洗。通入150ml/min氩气,真空度恒定保持1.5Pa,直流磁控溅射恒流6A,脉冲负偏压-500V,占空比30%,沉积6min钛过渡层。打开中频磁控溅射电源恒流5A,占空比80%,脉冲负偏压-700V,占空比70%,沉积Ti-DLC薄膜23.5min;打开阳极层线性离子源恒压1000V,占空比60%,真空度0.3Pa,脉冲负偏压-1400V,占空比60%,沉积α-C:H薄膜11min。如此重复3次,制得调制周期366nm,调制比3:1,调制层数6层的Ti-DLC/α-C:H薄膜。
实施例7
以YG8硬质合金为基体,经由预清洗后放置真空室内,抽真空后100℃加热30min,再次抽真空至本底真空度5×10-5Pa。打开离子源电压和脉冲负偏压进行30min离子束溅射清洗。通入150ml/min氩气,真空度恒定保持1.5Pa,直流磁控溅射恒流6A,脉冲负偏压-500V,占空比30%,沉积6min钛过渡层。打开中频磁控溅射电源恒流5A,占空比80%,脉冲负偏压-700V,占空比70%,沉积Ti-DLC薄膜21.5min;打开阳极层线性离子源恒压1000V,占空比60%,真空度0.3Pa,脉冲负偏压-1400V,占空比60%,沉积α-C:H薄膜15min。如此重复3次,制得调制周期366nm,调制比2:1,调制层数6层的Ti-DLC/α-C:H薄膜。
实施例8
以YG8硬质合金为基体,经由预清洗后放置真空室内,抽真空后100℃加热30min,再次抽真空至本底真空度5×10-5Pa。打开离子源电压和脉冲负偏压进行30min离子束溅射清洗。通入150ml/min氩气,真空度恒定保持1.5Pa,直流磁控溅射恒流6A,脉冲负偏压-500V,占空比30%,沉积6min钛过渡层。打开中频磁控溅射电源恒流5A,占空比80%,脉冲负偏压-700V,占空比70%,沉积Ti-DLC薄膜12min;打开阳极层线性离子源恒压1000V,占空比60%,真空度0.3Pa,脉冲负偏压-1400V,占空比60%,沉积α-C:H薄膜28.5min。如此重复3次,制得调制周期366nm,调制比1:2,调制层数6层的Ti-DLC/α-C:H薄膜。
实施例9
以YG8硬质合金为基体,经由预清洗后放置真空室内,抽真空后100℃加热30min,再次抽真空至本底真空度5×10-5Pa。打开离子源电压和脉冲负偏压进行30min离子束溅射清洗。通入150ml/min氩气,真空度恒定保持1.5Pa,直流磁控溅射恒流6A,脉冲负偏压-500V,占空比30%,沉积6min钛过渡层。打开中频磁控溅射电源恒流5A,占空比80%,脉冲负偏压-700V,占空比70%,沉积Ti-DLC薄膜9min;打开阳极层线性离子源恒压1000V,占空比60%,真空度0.3Pa,脉冲负偏压-1400V,占空比60%,沉积α-C:H薄膜32min。如此重复3次,制得调制周期366nm,调制比1:3,调制层数6层的Ti-DLC/α-C:H薄膜。
实施例10
将实例2多层复合DLC薄膜与传统单层DLC薄膜统一涂覆于YG8型硬质合金车刀表面,刀具前角γo=20°,后角αo=0°,主偏角κr=45°,刃倾角λs=0°。φ80mm的玻璃纤维增强复合材料作为涂层刀具车削加工对象,其纤维为无碱类E型玻璃纤维,基体为热固性环氧树脂。选择的切削条件分别为:切削深度ap=0.6mm,进给量f=0.1mm/r,切削速度250m/min。切削方式为干式无冷却连续切削。以后刀面磨损量VB=0.3mm作为磨钝标准,对比无涂层刀具、传统单层DLC薄膜涂层刀具以及本次发明的多层复合DLC薄膜涂层刀具加工寿命及加工表面质量。
表1实施例1~9参数
Figure BDA0001734557330000071
表2实施例10~16参数
Figure BDA0001734557330000072
Figure BDA0001734557330000081

Claims (3)

1.一种多层复合类金刚石薄膜材料,其特征在于,该多层复合DLC薄膜为以金属层Ti为过渡缓冲层,多层结构为交替的Ti-DLC和α-C:H;多层结构调制层数为4~12层,该多层复合类金刚石薄膜材料通过如下方法制得,包括如下步骤:
(1)将镀膜机腔体在真空度5×10-3Pa下进行100℃加热预激活,时间为30min;
(2)以氩气和乙炔作为工作气体,通过中频磁控溅射沉积Ti-DLC薄膜,中频恒流5A,占空比80%,频率80KHz;脉冲负偏压-700V,占空比70%;
(3)以乙炔作为工作气体,通过阳极层线性离子源沉积α-C:H薄膜,离子源恒压1000V,占空比60%;脉冲负偏压-1400V,占空比60%;
(4)Ti-DLC薄膜和α-C:H薄膜交替形成的多层结构,按调制周期183~550nm,调制比3/1~1/3获得多层复合DLC薄膜。
2.如权利要求1所述的多层复合类金刚石薄膜材料,其特征在于,步骤(2)中,氩气和乙炔的进气量分别为80~120mL /min和20mL /min,薄膜生长时间为9~24min。
3.如权利要求2所述的多层复合类金刚石薄膜材料,其特征在于,步骤(3)中,乙炔进气流量为15~30mL /min,薄膜生长时间为11~32min。
CN201810789778.3A 2018-07-18 2018-07-18 一种多层复合类金刚石薄膜材料及其制备方法 Active CN108977766B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810789778.3A CN108977766B (zh) 2018-07-18 2018-07-18 一种多层复合类金刚石薄膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810789778.3A CN108977766B (zh) 2018-07-18 2018-07-18 一种多层复合类金刚石薄膜材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108977766A CN108977766A (zh) 2018-12-11
CN108977766B true CN108977766B (zh) 2020-09-11

Family

ID=64548732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810789778.3A Active CN108977766B (zh) 2018-07-18 2018-07-18 一种多层复合类金刚石薄膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108977766B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113442179A (zh) * 2021-05-24 2021-09-28 江苏利宇剃须刀有限公司 一种软硬交替的碳纳米复合涂层的剃须刀片及其制备方法
CN113873738B (zh) * 2021-09-26 2024-01-12 中国工程物理研究院激光聚变研究中心 一种自支撑碳基电容器靶及其制备方法
CN114703458B (zh) * 2022-03-02 2023-04-07 燕山大学 CoCrFeNi高熵合金掺杂非晶碳薄膜在制备重载工况下材料中的应用
CN114892126A (zh) * 2022-05-10 2022-08-12 西南石油大学 一种用于钻杆接头的类金刚石薄膜耐磨带

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9617654B2 (en) * 2012-12-21 2017-04-11 Exxonmobil Research And Engineering Company Low friction coatings with improved abrasion and wear properties and methods of making
CN103510046A (zh) * 2013-09-29 2014-01-15 星弧涂层新材料科技(苏州)股份有限公司 含金属掺杂的类金刚石厚膜及其制备方法
CN104630708B (zh) * 2015-03-06 2017-04-12 重庆大学 一种类金刚石厚膜及其制备方法及一种工件
CN105908143B (zh) * 2016-05-05 2018-07-27 广州今泰科技股份有限公司 易锈蚀金属件表面类金刚石薄膜及其制备方法
CN107419228B (zh) * 2017-06-19 2019-11-22 信利光电股份有限公司 一种金属钛掺杂类金刚石薄膜及其制备方法
CN107287571B (zh) * 2017-07-17 2019-11-12 维达力实业(深圳)有限公司 类金刚石薄膜

Also Published As

Publication number Publication date
CN108977766A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
CN108977766B (zh) 一种多层复合类金刚石薄膜材料及其制备方法
CN107022761A (zh) 基于类金刚石薄膜的复合厚膜及其镀膜方法
CN101525734B (zh) 一种制备硼碳氮硬质涂层的方法
CN207313693U (zh) 基于类金刚石薄膜的复合厚膜
CN104928638A (zh) 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
CN105239039B (zh) 一种多层纳米复合涂层冲压模具及其制备方法
CN107022745A (zh) 基于类金刚石薄膜的增厚型复合薄膜及其镀膜方法
CN107190243A (zh) 一种TiB2/AlTiN复合涂层及其制备方法与应用
CN102925862B (zh) 一种掺Ti的类金刚石涂层的制备方法
CN108728802B (zh) 多层耐高温Ti/Zr共掺杂类金刚石涂层及其制备方法
CN105296949B (zh) 一种具有超高硬度的纳米结构涂层及其制备方法
CN101792898A (zh) 一种提高镁合金抗磨损性能的碳膜及其制备方法
CN109082647B (zh) 铝合金表面dlc防护薄膜制备方法
CN103374697A (zh) 类金刚石膜层的表面处理方法及制品
CN103212729A (zh) 一种具有CrAlTiN超晶格涂层的数控刀具及其制备方法
CN109182997B (zh) 一种掺Si的类金刚石涂层的制备方法
CN107254662A (zh) 蓝色复合薄膜及其制备方法
CN111500998A (zh) 一种AlTiN/TiAlSiN梯度纳米复合结构涂层及其一体化制备方法与应用
CN103009697B (zh) 一种自润滑梯度复合超硬膜及其制备方法
CN110042343B (zh) 一种多周期结构的二硼化钛基涂层及其制备方法和应用
CN110735107A (zh) 一种类金刚石涂层制备前的离子表面刻蚀方法
CN111304612A (zh) 具有高硬度和高抗氧化性能的CrAlN/AlN纳米多层涂层及其制备方法
CN112941463B (zh) 一种纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用
CN107881469B (zh) 类金刚石复合涂层及其制备方法与用途以及涂层工具
CN110484881A (zh) 一种致密二硼化钛涂层及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant