CN108970607A - 一种用于制备燃料电池用氢的硅纳米线催化剂及制备方法 - Google Patents

一种用于制备燃料电池用氢的硅纳米线催化剂及制备方法 Download PDF

Info

Publication number
CN108970607A
CN108970607A CN201810803237.1A CN201810803237A CN108970607A CN 108970607 A CN108970607 A CN 108970607A CN 201810803237 A CN201810803237 A CN 201810803237A CN 108970607 A CN108970607 A CN 108970607A
Authority
CN
China
Prior art keywords
preparation
catalyst
silicon nanowires
fuel cell
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810803237.1A
Other languages
English (en)
Inventor
陈庆
廖健淞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu New Keli Chemical Science Co Ltd
Original Assignee
Chengdu New Keli Chemical Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu New Keli Chemical Science Co Ltd filed Critical Chengdu New Keli Chemical Science Co Ltd
Priority to CN201810803237.1A priority Critical patent/CN108970607A/zh
Publication of CN108970607A publication Critical patent/CN108970607A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于燃料电池的技术领域,提供了一种用于制备燃料电池用氢的硅纳米线催化剂及制备方法。该方法通过制备金属‑有机配体,并吸附于硅纳米线的表面,然后采用氢氟酸和双氧水进行刻蚀,制得贵金属复合硅纳米线催化剂。与传统方法相比,本发明的制备的贵金属复合硅纳米线催化剂,通过具有强力氢离子吸附性能的贵金属纳米颗粒吸附氢离子,转移至弱氢离子吸附性能的硅基表面进行析氢,用于电解水制氢时催化效率高,制氢效率好,可广泛用于电解水制氢领域。

Description

一种用于制备燃料电池用氢的硅纳米线催化剂及制备方法
技术领域
本发明属于燃料电池的技术领域,提供了一种用于制备燃料电池用氢的硅纳米线催化剂及制备方法。
背景技术
随着化石燃料的日趋枯竭和其带来的环境问题,人们迫切需要更有效的利用化石燃料及开发清洁、价廉的新能源。氢以其储量丰富、清洁、高效、便于运输、环境友好等特点在新能源开发中脱颖而出。氢气用于燃料电池,其化学能-电能转化比内燃机高3~4倍,因此欧、美、日等国家投入了大量的人力和财力开发高效燃料电池,并且将此种电源应用于汽车、宇宙飞船和航天飞机等各个领域。
制造氢气的原料目前主要是碳氢化合物(煤焦、轻油、天然气),甲醇、乙醇以其含氢量高、价廉、易储存、运输方便等优点在制氢研究中也受到广泛重视,近年来研究人员将目光投向了利用可再生资源制氢的研究,特别是利用水解制氢,具有工艺简单,无污染等优点,随着电解水工艺、设备的不断改进,电解水制氢的发展前景越来越受到重视。
在电解水制氢技术中,催化剂起着非常关键的作用,目前,电解水的主要催化剂为贵金属材料。贵金属材料的析氢电位较低,催化性能较好,在催化过程中,为了提高析氢效率,氢离子的吸附能和解吸能需要控制在一个平衡的位置,使贵金属催化剂的催化性能无法完全发挥。因此,对于贵金属材料基的复合材料提高其催化性能的研究具有十分重要的意义。
目前国内外在电解水制氢技术,尤其是电解水制氢贵金属催化剂方面已取得了一定成效。其中汪汉斌等人发明了一种复合光解水催化剂及其制备方法(中国发明专利申请号201510260324.3),此发明,通过在制备的ZnxCd1-xS半导体的材料上复合Pt基合金,获得了一种复合光解水产氢催化剂;该发明提供的制备方法能够实现半导体与金属的紧密结合,有利于提高半导体的催化制氢效率;得到的复合光解水产氢催化剂在可见光辐照下具有良好的光催化产氢效果,其光催化的稳定性高;另外利用Pt基合金来替代纯Pt作为助催化剂,在提高催化剂的产氢效率的同时又减少了贵金属用量,这对于太阳能制氢技术的开发与利用具有积极意义。另外,唐林等人发明了一种多壁碳纳米管基贵金属催化剂及其制备方法(中国发明专利申请号201711029571.8),该材料的化学组成CNT/Y/MOFs,其中Y为贵金属纳米颗粒,选自金、银、铂和钯中的一种;MOFs为Co-MOF-74;该发明还提供了所述多壁碳纳米管基贵金属催化剂的制备方法,所得的多壁碳纳米管基贵金属催化复合材料具有良好的热稳定性,同时催化剂中的金属有机骨架外壳内的孔道可促进反应物与贵金属纳米颗粒的充分接触,从而有利于提高催化反应的催化效率;该纳米复合材料在诸如汽车尾气处理、甲烷重整反应、污染物降解和光解水制氢等化学反应中有优异的应用前景。
可见,现有技术中的用于电解水制氢的贵金属催化剂存在析氢能力欠佳,应用催化性能无法完全发挥,催化活性和催化效率较低,制氢效果不理想等缺点。
发明内容
针对这种情况,我们提出一种用于制备燃料电池用氢的硅纳米线催化剂及制备方法,可有效提高催化剂的催化效率,制氢效果好。
为实现上述目的,本发明涉及的具体技术方案如下:
一种用于制备燃料电池用氢的硅纳米线催化剂的制备方法,通过制备金属-有机配体,并吸附于硅纳米线的表面,然后采用氢氟酸和双氧水进行刻蚀,制得贵金属复合硅纳米线催化剂,制备的具体步骤如下:
(1)将无机金属盐化合物溶解于去离子水中,然后加入络合剂、絮凝剂,形成金属-有机配体的溶液体系;
(2)向步骤(1)的溶液体系中加入硅纳米线,水浴加热并搅拌,一定时间后进行过滤,将滤渣在氩气保护下进行热处理;
(3)将热处理后的材料加入去离子水中,加入稀氢氟酸和双氧水,静置,然后过滤、烘干,制得贵金属复合硅纳米线催化剂。
优选的,步骤(1)所述各原料的重量份为,无机金属盐化合物25~32重量份、去离子水60~71重量份、络合剂2~4重量份、絮凝剂2~4重量份。
优选的,步骤(1)所述无机金属盐化合物为贵金属的水溶性盐,所述贵金属为铂、钯、铑、金、银中的一种。
优选的,步骤(1)所述络合剂为单乙醇胺、二乙醇胺、三乙醇胺中的至少一种。
优选的,步骤(1)所述絮凝剂为硫酸铝、氯化铝、硫酸铁、氯化铁中的至少一种。
优选的,步骤(2)所述水浴的温度为80~90℃,时间为50~70min。加入硅纳米线质量为溶液体系质量的20-25%。
优选的,步骤(2)所述热处理的温度为110~130℃,时间为30~50min。
优选的,步骤(3)所述各原料的重量份为,热处理后的材料25~30重量份、氢氟酸5~8重量份、双氧水12~15重量份、去离子水47~58重量份。
优选的,步骤(3)所述静置时间为4h。
贵金属材料的析氢电位较低,催化性能较好,在催化过程中,为了提高析氢效率,氢离子的吸附能和解吸能需要控制在一个平衡的位置,使贵金属催化剂的催化性能无法完全发挥。本发明通过金属有机相与硅纳米线混合加热搅拌,使金属有机相吸附在硅纳米线表面,热处理后金属有机相分解,纳米金属颗粒负载在硅纳米线表面。并加入氢氟酸与双氧水,使贵金属与附近的硅形成类原电池结构,双氧水在贵金属颗粒表层被还原产生空穴,通过贵金属颗粒传递至金属-硅界面将硅原子氧化为氧化硅,之后被氢氟酸刻蚀,金属原子嵌入硅纳米线被刻蚀出的微孔中。在催化析氢过程中,嵌入硅纳米线的金属颗粒吸附氢离子,之后向硅表面扩散,氢离子在硅表面与质子复合产生氢分子,从而达到良好的催化效率。
本发明还提供了一种上述制备方法制备得到的用于制备燃料电池用氢的硅纳米线催化剂。
该催化剂的制备方法是将无机金属盐化合物溶解于去离子水中,加入络合剂、絮凝剂形成金属-有机配体,之后加入硅纳米线进行水浴加热并搅拌,过滤后将滤渣在氩气保护下进行热处理,将处理后的产物加入去离子水,加入稀氢氟酸和双氧水静置后过滤烘干,获得贵金属复合硅纳米线催化剂。
本发明提供了一种用于制备燃料电池用氢的硅纳米线催化剂及制备方法,与现有技术相比,其突出的特点和优异的效果在于:
1.本发明制备的贵金属复合硅纳米线催化剂,可有效用于电解水制氢领域。
2.本发明的制备方法,通过具有强力氢离子吸附性能的贵金属纳米颗粒吸附氢离子,转移至弱氢离子吸附性能的硅基表面进行析氢,有效提高了催化剂的催化效率。
3.本发明的催化剂可有效提高电解水制氢的效率,并且性能稳定,制备简单。
具体实施方式
以下通过具体实施方式对本发明作进一步的详细说明,但不应将此理解为本发明的范围仅限于以下的实例。在不脱离本发明上述方法思想的情况下,根据本领域普通技术知识和惯用手段做出的各种替换或变更,均应包含在本发明的范围内。
实施例1
将29kg硝酸铂溶解于65kg去离子水中,然后加入3kg单乙醇胺、3kg硫酸铝,形成金属-有机配体;然后加入硅纳米线,加入硅纳米线质量为溶液体系质量的20%。在86℃下水浴搅拌62min,过滤将滤渣在氩气保护下加热到122℃热处理42min;最后将27kg热处理后的材料加入53kg去离子水中,加入7kg稀氢氟酸和13kg双氧水,静置4h,然后过滤、烘干,制得贵金属复合硅纳米线催化剂。
测试方法:
产氢速率:电解槽电解液为浓度为20%的氢氧化钾溶液,体积为500mL,加入0.5g本发明制得的贵金属复合硅纳米线催化剂,电解温度为70℃,工作电压为2V、3V和4V,电流密度为2000A/m2,采用全氟磺酸膜,采用在线气象色谱仪测定生成的氢气的量,换算成体积V,计算平均产氢速率A=V/(T·S),T为电解时间,S为膜面积。
所得数据如表1所示。
实施例2
将25kg硝酸铂溶解于71kg去离子水中,然后加入2kg二乙醇胺、2kg 氯化铝,形成金属-有机配体;然后加入硅纳米线,加入硅纳米线质量为溶液体系质量的25%。在80℃下水浴搅拌70min,过滤将滤渣在氩气保护下加热到110℃热处理50min;最后将25kg热处理后的材料加入58kg去离子水中,加入5kg稀氢氟酸和12kg双氧水,静置4h,然后过滤、烘干,制得贵金属复合硅纳米线催化剂。
测试方法与实施例1一致,所得数据如表1所示。
实施例3
将32kg硝酸铂溶解于60kg去离子水中,然后加入4kg三乙醇胺、4kg 硫酸铁,形成金属-有机配体;然后加入硅纳米线,加入硅纳米线质量为溶液体系质量的20%。在90℃下水浴搅拌50min,过滤将滤渣在氩气保护下加热到130℃热处理30min;最后将30kg热处理后的材料加入47kg去离子水中,加入8kg稀氢氟酸和15kg双氧水,静置4h,然后过滤、烘干,制得贵金属复合硅纳米线催化剂。
测试方法与实施例1一致,所得数据如表1所示。
实施例4
将27kg硝酸铂溶解于68kg去离子水中,然后加入2kg单乙醇胺、3kg 氯化铁,形成金属-有机配体;然后加入硅纳米线,加入硅纳米线质量为溶液体系质量的20%。在82℃下水浴搅拌65min,过滤将滤渣在氩气保护下加热到115℃热处理45min;最后将27kg热处理后的材料加入54kg去离子水中,加入6kg稀氢氟酸和13kg双氧水,静置4h,然后过滤、烘干,制得贵金属复合硅纳米线催化剂。
测试方法与实施例1一致,所得数据如表1所示。
实施例5
将30kg硝酸铂溶解于63kg去离子水中,然后加入4kg二乙醇胺、3kg硫酸铝,形成金属-有机配体;然后加入硅纳米线,加入硅纳米线质量为溶液体系质量的25%。在88℃下水浴搅拌55min,过滤将滤渣在氩气保护下加热到125℃热处理35min;最后将28kg热处理后的材料加入51kg去离子水中,加入7kg稀氢氟酸和14kg双氧水,静置4h,然后过滤、烘干,制得贵金属复合硅纳米线催化剂。
测试方法与实施例1一致,所得数据如表1所示。
实施例6
将29kg硝酸铂溶解于65kg去离子水中,然后加入3kg三乙醇胺、3kg 氯化铝,形成金属-有机配体;然后加入硅纳米线,加入硅纳米线质量为溶液体系质量的20%。在85℃下水浴搅拌60min,过滤将滤渣在氩气保护下加热到120℃热处理40min;最后将28kg热处理后的材料加入52kg去离子水中,加入6kg稀氢氟酸和14kg双氧水,静置4h,然后过滤、烘干,制得贵金属复合硅纳米线催化剂。
测试方法与实施例1一致,所得数据如表1所示。
对比例1
贵金属催化剂制备过程中,未采用氢氟酸和双氧水进行处理,其他制备条件与实施例6一致。
测试方法与实施例1一致,所得数据如表1所示。
表1:

Claims (10)

1.一种用于制备燃料电池用氢的硅纳米线催化剂的制备方法,其特征在于,通过制备金属-有机配体,并吸附于硅纳米线的表面,然后采用氢氟酸和双氧水进行刻蚀,制得贵金属复合硅纳米线催化剂,制备的具体步骤如下:
(1)将无机金属盐化合物溶解于去离子水中,然后加入络合剂、絮凝剂,形成金属-有机配体的溶液体系;
(2)向步骤(1)的溶液体系中加入硅纳米线,水浴加热并搅拌,一定时间后进行过滤,将滤渣在氩气保护下进行热处理;
(3)将热处理后的材料加入去离子水中,加入稀氢氟酸和双氧水,静置,然后过滤、烘干,制得贵金属复合硅纳米线催化剂。
2.根据权利要求1所述一种用于制备燃料电池用氢的硅纳米线催化剂的制备方法,其特征在于:步骤(1)所述各原料的重量份为,无机金属盐化合物25~32重量份、去离子水60~71重量份、络合剂2~4重量份、絮凝剂2~4重量份。
3.根据权利要求1所述一种用于制备燃料电池用氢的硅纳米线催化剂的制备方法,其特征在于:步骤(1)所述无机金属盐化合物为贵金属的水溶性盐,所述贵金属为铂、钯、铑、金、银中的一种。
4.根据权利要求1所述一种用于制备燃料电池用氢的硅纳米线催化剂的制备方法,其特征在于:步骤(1)所述络合剂为单乙醇胺、二乙醇胺、三乙醇胺中的至少一种。
5.根据权利要求1所述一种用于制备燃料电池用氢的硅纳米线催化剂的制备方法,其特征在于:步骤(1)所述絮凝剂为硫酸铝、氯化铝、硫酸铁、氯化铁中的至少一种。
6.根据权利要求1所述一种用于制备燃料电池用氢的硅纳米线催化剂的制备方法,其特征在于:步骤(2)所述水浴的温度为80~90℃,时间为50~70min,加入硅纳米线质量为溶液体系质量的20-25%。
7.根据权利要求1所述一种用于制备燃料电池用氢的硅纳米线催化剂的制备方法,其特征在于:步骤(2)所述热处理的温度为110~130℃,时间为30~50min。
8.根据权利要求1所述一种用于制备燃料电池用氢的硅纳米线催化剂的制备方法,其特征在于:步骤(3)所述各原料的重量份为,热处理后的材料25~30重量份、氢氟酸5~8重量份、双氧水12~15重量份、去离子水47~58重量份。
9.根据权利要求1所述一种用于制备燃料电池用氢的硅纳米线催化剂的制备方法,其特征在于:步骤(3)所述静置时间为4h。
10.权利要求1~9任一项所述制备方法制备得到的贵金属复合硅纳米线催化剂。
CN201810803237.1A 2018-07-20 2018-07-20 一种用于制备燃料电池用氢的硅纳米线催化剂及制备方法 Withdrawn CN108970607A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810803237.1A CN108970607A (zh) 2018-07-20 2018-07-20 一种用于制备燃料电池用氢的硅纳米线催化剂及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810803237.1A CN108970607A (zh) 2018-07-20 2018-07-20 一种用于制备燃料电池用氢的硅纳米线催化剂及制备方法

Publications (1)

Publication Number Publication Date
CN108970607A true CN108970607A (zh) 2018-12-11

Family

ID=64549121

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810803237.1A Withdrawn CN108970607A (zh) 2018-07-20 2018-07-20 一种用于制备燃料电池用氢的硅纳米线催化剂及制备方法

Country Status (1)

Country Link
CN (1) CN108970607A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112376067A (zh) * 2020-11-11 2021-02-19 武汉科技大学 降解乙醇胺并同时制氢的燃料电池-电解池串联装置
CN114164456A (zh) * 2021-12-08 2022-03-11 昆明理工大学 一种利用工业废硅粉制备复合硅纳米结构催化剂的方法及应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112376067A (zh) * 2020-11-11 2021-02-19 武汉科技大学 降解乙醇胺并同时制氢的燃料电池-电解池串联装置
CN112376067B (zh) * 2020-11-11 2022-07-05 武汉科技大学 降解乙醇胺并同时制氢的燃料电池-电解池串联装置
CN114164456A (zh) * 2021-12-08 2022-03-11 昆明理工大学 一种利用工业废硅粉制备复合硅纳米结构催化剂的方法及应用
CN114164456B (zh) * 2021-12-08 2023-08-08 昆明理工大学 一种利用工业废硅粉制备复合硅纳米结构催化剂的方法及应用

Similar Documents

Publication Publication Date Title
Zhang et al. Construction of a Z-scheme heterojunction for high-efficiency visible-light-driven photocatalytic CO 2 reduction
Wang et al. Sulfur doped In2O3-CeO2 hollow hexagonal prisms with carbon coating for efficient photocatalytic CO2 reduction
Li et al. Converting CO2 into Value‐Added Products by Cu2O‐Based Catalysts: From Photocatalysis, Electrocatalysis to Photoelectrocatalysis
Sun et al. Template-free self-assembly of three-dimensional porous graphitic carbon nitride nanovesicles with size-dependent photocatalytic activity for hydrogen evolution
Ma et al. Recent advances and future perspectives in MOF-derived single-atom catalysts and their application: a review
Zhang et al. Fabricating 1D/2D Co3O4/ZnIn2S4 core–shell heterostructures with boosted charge transfer for photocatalytic hydrogen production
CN102861597B (zh) 一种响应可见光的光解水制氢催化剂及其制备方法
Chen et al. Photocatalytic CO 2 reduction on Cu single atoms incorporated in ordered macroporous TiO 2 toward tunable products
CN102266787A (zh) 一种新型不含贵金属光解水制氢催化剂的制备方法
WO2021232751A1 (zh) 一种多孔CoO/CoP纳米管及其制备方法和应用
Xu et al. MOFs-derived C-In2O3/g-C3N4 heterojunction for enhanced photoreduction CO2
Shi et al. Cu-based tandem catalysts for electrochemical CO2 reduction
CN109821526A (zh) 一种基于异核MOFs模板构筑金属掺杂氧化铟光催化剂的制备方法
Sun et al. In situ synthesis of Cu3P/g-C3N4 heterojunction with superior photocatalytic hydrogen evolution
Xing et al. Synchronous fabrication of Ru single atoms and RuO2 on hierarchical TiO2 spheres for enhanced photocatalytic coproduction of H2 and benzaldehyde
Zhang et al. Cobalt-based metal–organic frameworks for the photocatalytic reduction of carbon dioxide
Su et al. Co3O4 modified Mn0. 2Cd0. 8S with different shells forms pn heterojunction to optimize energy/mass transfer for efficient photocatalytic hydrogen evolution
Wang et al. Selective visible-light driven highly efficient photocatalytic reduction of CO 2 to C 2 H 5 OH by two-dimensional Cu 2 S monolayers
Zhang et al. Shedding light on CO2: Catalytic synthesis of solar methanol
Sun et al. Tuning Interfacial Cu‐O Atomic Structures for Enhanced Catalytic Applications
Shang et al. Recent Advances on Single‐Atom Catalysts for Photocatalytic CO2 Reduction
CN116139867A (zh) 一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用
Li et al. Rational design on photo (electro) catalysts for artificial nitrogen looping
Sun et al. Synergetic effect of oxygen vacancies coupled with in-situ Bi clusters in Bi2WO6 for enhancing photocatalytic CO2 reduction
CN103272642B (zh) 吲哚修饰大孔碳担载过渡金属催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20181211