CN108969903A - 千伏辐射治疗 - Google Patents

千伏辐射治疗 Download PDF

Info

Publication number
CN108969903A
CN108969903A CN201810550938.9A CN201810550938A CN108969903A CN 108969903 A CN108969903 A CN 108969903A CN 201810550938 A CN201810550938 A CN 201810550938A CN 108969903 A CN108969903 A CN 108969903A
Authority
CN
China
Prior art keywords
electron beam
anode
ray
disease damage
target disease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810550938.9A
Other languages
English (en)
Inventor
D·P·博伊德
M·韦尔
S·M·松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Precision Radio Corp
Original Assignee
Precision Radio Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Precision Radio Corp filed Critical Precision Radio Corp
Publication of CN108969903A publication Critical patent/CN108969903A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1043Scanning the radiation beam, e.g. spot scanning or raster scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • A61N5/1067Beam adjustment in real time, i.e. during treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/12Cooling non-rotary anodes
    • H01J35/13Active cooling, e.g. fluid flow, heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • H01J35/153Spot position control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/24Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof
    • H01J35/30Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof by deflection of the cathode ray
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/70Circuit arrangements for X-ray tubes with more than one anode; Circuit arrangements for apparatus comprising more than one X ray tube or more than one cathode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N2005/002Cooling systems
    • A61N2005/005Cooling systems for cooling the radiator
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1054Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using a portal imaging system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1089Electrons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1091Kilovoltage or orthovoltage range photons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1069Target adjustment, e.g. moving the patient support

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

本发明提供用于朝向身体内的靶病损递送kV X射线的设备和方法,包括:治疗阳极,所述治疗阳极被配置成接收电子束并通过专门设计的准直器来输出所述kV X射线;电子束源,所述电子束源被配置成产生所述电子束并朝向所述治疗阳极引导所述电子束;以及至少一个磁体,所述至少一个磁体被配置成沿着所述治疗阳极操纵并扫描所述电子束以防止所述治疗阳极过热。所述部件安装于台架上,所述台架绕所述靶病损旋转以使所递送的剂量分布在大量的健康组织上,同时基本上最大化递送到所述靶病损的剂量。

Description

千伏辐射治疗
相关申请的交叉引用
本申请要求在2017年6月2日提交的发明名称为“System for KilovoltageRadiation Therapy”的共同未决的美国临时专利申请No.62/514,466依据35U.S.C.§119(e)获得的优先权利益。以上提到的申请的公开内容以引用方式并入本文中。
背景
本公开的领域
本公开涉及将X射线辐射递送到靶病损,并且更具体地说,涉及使用治疗阳极和多个成像阳极来递送X射线辐射。
背景
艰难的经济几乎没有机会来填平大的基础设施缺口并且缺少熟练的专业人员来进行医疗服务。尽管医疗技术和数据分析迅猛增长,但许多最常见的致命疾病一直缺少定向和成本划算的治疗。在这个背景下,癌症仍是全球健康护理服务的主要负担和挑战。虽然用于癌症的标准辐射治疗系统可能对治疗大多数癌症有效,但是辐射治疗系统是昂贵且复杂的。因此,辐射治疗系统的使用在发展中国家受到严重限制,并且甚至在发达国家,辐射治疗系统的分布都通常是不均的。因此,减少用于辐射治疗的资本设备成本可能是重要的。
概要
本公开涉及递送X射线辐射。在一个实现方式中,使用治疗阳极和多个成像阳极将X射线辐射递送到靶病损。部件安装于台架上,所述台架绕所述靶病损旋转以使所递送的剂量分布在大量的健康组织上,同时基本上最大化递送到所述靶病损的剂量。
在一个实现方式中,公开一种用于朝向身体内的靶病损递送kV X射线的设备。所述设备包括:治疗阳极,所述治疗阳极被配置成接收电子束并输出所述kV X射线;电子束源,所述电子束源被配置成产生所述电子束并朝向所述治疗阳极引导所述电子束;以及一个或多个磁体,所述一个或多个磁体被配置成沿着所述治疗阳极操纵并扫描所述电子束,用水冷却所述阳极以防止所述治疗阳极过热。
在另一个实现方式中,公开一种用于朝向身体内的靶病损递送千伏(kV)X射线的方法。所述方法包括:产生电子束并朝向治疗阳极引导所述电子束;使用一个或多个磁体沿着所述治疗阳极操纵和扫描所述电子束,使得所述治疗阳极产生所述kV X射线;使用专门设计的准直器来阻挡未被引导到会聚点的所有所述kV X射线,所述会聚点的中心位于所述靶病损处;以及使所述电子束源、所述一个或多个磁体、所述治疗阳极和所述准直器绕所述靶病损旋转。
从本说明书中将显而易见其它特征和优点,本说明书举例说明了本公开的方面。
图式简单说明
可以通过查看附图来部分地了解本公开的、关于其结构和操作的细节,在附图中,相同的元件符号指代相同的部分,并且其中:
图1A是根据本公开的一个实现方式的kV辐射治疗系统的框图;
图1B是根据本公开的一个实现方式的kV X射线源的详细框图;
图1C是阳极的详细框图,所述阳极包括治疗阳极(所述治疗阳极产生治疗束)和成像阳极(所述成像阳极实现了实时成像和追踪);
图2是根据本公开的一个实现方式的kV辐射治疗系统的透视图;
图3是根据本公开的一个实现方式的包括X射线管的X射线源的详细透视图;
图4是根据本公开的一个实现方式的X射线管的剖切透视图;
图5A示出被配置成朝向会聚点引导X射线的准直器;
图5B示出准直器的正视图,在顶部具有两个缩放视图;
图6A示出使用200kVp、200mA kV弧形治疗(KVAT)的蒙特卡罗模型病人剂量分布;
图6B示出使用15兆伏(MV)线性加速器(线性加速器)体积调控弧形治疗(VMAT)的蒙特卡罗模型病人剂量分布;
图7A示出在准直器出口处的隔膜厚度固定(t=0.2mm)时准直器效率和全宽半高(FWHM)随准直器孔大小(D)而变;
图7B示出在具有适当倾斜(相对于电子束路径的平面成30°)的阳极的平面上使用大小为75×2cm2的X射线源的剂量分布,其中(D,t)=(2.3mm,0.2mm);
图8是示出根据本公开的一个实现方式的用于朝向身体内的靶病损递送kV X射线的方法800的流程图。
详细描述
过去,由于千伏(kV)X射线穿过靶病损上游的健康组织(尤其是表层皮肤)的高衰减而使kV X射线的医疗使用限于表层辐射治疗。明确地说,kV X射线的常规使用目前仅可用于表层治疗,原因是:(1)难以通过单个焦点将剂量分布于大面积上;以及(2)大多数X射线管和电源供应器用于成像目的(~120kVp)并且由于过热而无法在高功率下长时间运行的事实。虽然MV系统通常用于治疗深层病损,但是使用MV系统的成本可能非常高。MV系统还是体积大的并且可能需要大量空间来容纳所述系统。另外,来自MV系统的对靶病损的高能量辐射可能会对周围健康组织造成很多损害。
为了解决常规辐射系统和使用的上述问题,本公开的若干实现方式涉及一种kV辐射治疗系统,所述kV辐射治疗系统采用具有被设计用于实现组合的治疗与成像的准直器和检测器的扫描电子束技术。本公开的kV辐射治疗系统被配置成使用安装于台架上的扫描电子束X射线管和用水冷却的阳极来防止钨阳极损坏而克服常规辐射系统的上述问题中的两者。
实验表明,通过具有1×8mm2的焦点的130kV、600mA源,钨在0.7毫秒时开始起泡并且在暴露1.0毫秒时熔化。由于使电子束停留在钨阳极上可能会易于破坏所述阳极,因此在一个实现方式中,使钨阳极保持为冷的,并且使用一个或多个磁体使电子束一直保持移动(“扫描”)。另外,使电子束散焦以增加焦点大小并且因此防止钨熔化。因此,本公开的kV辐射治疗系统被配置成(1)用水冷却所述阳极(铜块上的钨),(2)使电子束散焦(例如,散焦到1cm2),和(3)不断地移动所述束。
在一个实现方式中,本公开的kV辐射治疗系统包括具有3-D轨迹的强度调控型kVX射线源,所述3-D轨迹是通过用台架和以磁力操纵的不断扫描的电子束来调整旋转治疗来实现。因此,电子束以电子方式沿着治疗阳极的长轴扫掠并且通过机械运动而基本上垂直于所述长轴移动。结果是由光子组成的倒置金字塔形状,其中顶点是在靶病损上。这与具有停留在预定数目个准直器上的电子束的常规X射线源大不相同。对于本系统,在通过操纵磁体来操纵电子束时,可以调整阳极上的扫描速度和束电流以实时地调控剂量率。此外,较缓慢地移动电子束会递送更多剂量(在当前束位置处)。
本公开的实现方式在对现有基础设施进行微小修改的情况下以相对较低的成本来提供优于常规系统的优势。由于kV部件的成本和屏蔽要求(例如,具有两米厚水泥墙的数百万美金的地下堡垒通常用于MV辐射屏蔽)低于常规部件的成本和要求,因此kV辐射治疗系统的总成本较低。本公开的kV辐射治疗系统的成本估计不到常规MV线性加速器系统的成本的20%。用于200kVp X射线的屏蔽将仅要求壁中有3mm的铅,使得普通的房间也能容易地进行屏蔽。
在阅读了这些描述之后,将明白在各种实现方式和应用中如何实施本公开。然而,虽然将在本文中描述本公开的各种实现方式,但是应理解,这些实现方式仅举例呈现并且并非限制性的。因而,对各种实现方式的此详细描述不应被理解为限制本公开的范围或宽度。
在一个实现方式中,本公开的kV辐射治疗系统提供组合的治疗与成像以使得能够实时追踪病损以便将治疗束精确地递送到靶病损。已发现所提出的能量范围(130-220mA时分别为180-300kV)的剂量测定(所述剂量测定是人体吸收的离子化辐射剂量的测量、计算和评定)与常规辐射治疗系统中通常使用的MV束相当。
图1A是根据本公开的一个实现方式的kV辐射治疗系统100的框图。在图1A的所示实现方式中,kV辐射治疗系统100包括kV X射线源110、检测器140和成像器/追踪器150。kVX射线源110将X射线递送到预定靶病损和周围的组织130。成像器/追踪器150确定靶病损的确切位置。kV X射线源110和检测器140大体上安置于台架上。
图1B是根据本公开的一个实现方式的kV X射线源110的详细框图。在图1B的所示实现方式中,kV X射线源110包括电子束源(例如,X射线管)112、阳极120和准直器114。在一个实现方式中,准直器可移动以使准直器能够调整会聚点。
图1C是阳极120的详细框图,所述阳极包括治疗阳极122(所述治疗阳极产生治疗束)和成像阳极124(所述成像阳极实现了规划成像、实时成像和追踪)。
在一个实现方式中,使用扫描电子束和台架旋转通过3-D轨迹来对kV X射线源110进行强度调控,这使得治疗束能够在大得多的皮肤面积和组织体积上进入身体。如上文所述,使扫描电子束在治疗阳极122上不断地扫掠,所述治疗阳极允许用制冷机进行冷却。在一个实现方式中,使用一个或多个操纵磁体(容纳在离开电子束源112的束的四周)来“扫描”(或操纵)电子束以在阳极122上扫掠。操纵磁体包括并且可以是偶极磁体、四极磁体和螺线管磁体中的一者或多者。
当电子束撞击阳极122时,阳极产生近各向同性的X射线,使得X射线在所有方向上传播。因此,准直器114被配置成通过阻挡不朝向“会聚点”传播的X射线来将X射线引导到靶病损和周围组织130,所述会聚点是以所述靶病损为中心。成像阳极124被配置成提供对周围组织130内的靶病损的规划成像、实时成像和追踪以使得能够将治疗束精确地瞄准周围组织130内的靶病损。
在一个示例性实现方式中,kV辐射治疗系统100包括电子束源112(例如,在X射线源110内),所述电子束源在高达30分钟的治疗时间内绕位于等中心点处的、具有癌性病损的患者旋转。电子束源112通过阻挡不朝向“会聚点”传播的所有X射线来将治疗X射线束引导到预定的靶病损(例如,等中心点处的1cm球体)(详情请参见图5A和图5B)。因此,通过充分的冷却和热管理,X射线管(详情请参见图4)可以容纳200kVp、200mA(40kW)、1-cm直径的电子束,所述电子束在高达30分钟内在75×3cm2钨阳极上不断地扫描。大阳极面积上的扫描电子束允许充分冷却到400℃以下,400℃是X射线管/源烘烤温度,如此确保进行操作而不会发生损坏或出气。1-cm直径的电子束焦点大小是上述“散焦的电子束”的一个实例,所述散焦的电子束最大化通量并且将热分布在相对较大的面积上。然而,光点大小可以根据病损的大小和距病损的距离而变化。
使用以上示例性实现方式(所述实现方式包括含有辐射变色薄膜或法莫型电离室的适当体模),可以在少于30分钟内递送(例如)用于肺癌的3-D剂量分布以证实与预计值偏差在5%之内的剂量递送。可以将此剂量分布与现有技术的标准线性加速器MV治疗系统的那些剂量分布直接进行比较。在复杂的病损形状或较大体积的情况下,源与病人检查台可以在治疗期间移动,由此将适当剂量分布在整个几何形状上。
对于深层病损,常规kV X射线治疗的较高组织衰减会对靶病损上游的皮肤和组织用药过量。因此,非常希望治疗X射线的进入点分布在尽可能大的区域上。具有3-D轨迹(使用扫描电子束和台架旋转)的强度调控型kV X射线源使得治疗X射线的进入点分布在大区域上。
在具有3-D轨迹的强度调控型kV X射线源的一个实现方式中,X射线管安装在台架上,在将电子束以磁力操纵(使用磁体的操纵线圈)到与台架的圆形轨迹正交的治疗阳极(例如,钨阳极)上的同时,所述台架使所述管旋转。因此,源位置的轨迹变成圆柱体的表面(对于360°治疗计划)。此几何形状使治疗X射线的进入点分布在大的皮肤区域上,由此增加靶病损到皮肤的剂量。因此,可以通过改变电子束电流(被定义为每秒安培或库伦,其中1库伦=6.25×1018个电子)或改变电子束在治疗阳极上扫掠的速度来“调控”X射线的强度。这与MV系统大不相同,在MV系统中,通过改变约5微秒的脉冲的脉冲重复频率来执行调控。
使用诊断检查的容易获得的CT扫描器剂量率数据,可以通过假设对kVp的二次相关和对电流-时间乘积(mAs)的线性相关来估计由kV辐射治疗系统递送的剂量。对于25岁和更老的成人,具有120kV、240mA源的腹部CT递送约15mGy。假设花了大约一秒钟来进行检查(情况通常是这样),kV辐射治疗系统将每秒递送35mGy(=15×200/240×(200/120)2)。这对应于2Gy/min(=35×60),这是在由典型MV系统递送的1Gy/min至6Gy/min的邻区内。在10cm深度处,对于kV系统和MV系统,剂量率分别将减少到约0.2和0.5。因此,200kVp、200mAkV辐射治疗的剂量率可以是一Gy/min到几Gy/min并且将与基于MV系统的治疗相当。实际上,本公开的kV辐射治疗系统甚至可能优于MV系统,因为kV X射线可以在快速剂量下降的情况下进行准直,而MV多叶准直器系统由于(通常是)钨叶的厚度和钝缘而产生具有弱剂量下降的剂量分布。也就是说,较高能量的MV X射线较难以阻挡,因为阻挡材料需要为厚的(通常是约1cm或更厚的钨),而较低能量的kV X射线通常用薄铅板就能容易地阻挡。
图2是根据本公开的一个实现方式的kV辐射治疗系统100的透视图。在图2的所示实现方式中,kV辐射治疗系统100包括kV X射线源110和检测器140。如上所述,kV X射线源110将X射线递送到靶病损和周围的组织130。在一个实现方式中,kV X射线源110和检测器140安置于台架210上。另外,台架210可被配置成绕躺在平坦表面220上的患者旋转以使X射线源110能够从各种角度照亮靶病损。
图3是根据本公开的一个实现方式的包括X射线管300的X射线源110的详细透视图。在一个实现方式中,X射线源110被配置成通过阻挡不朝向会聚点340传播的所有X射线(使用阳极330和准直器240)来将X射线230(经由扫描电子束312产生)递送到预定的靶病损350(例如,等中心点处的1cm球体)。在一个实现方式中,X射线管300包括电子枪310和被配置有一个或多个磁体的操纵线圈320。
在图3的所示实现方式中,X射线管300的电子枪310产生电子束312并朝向治疗阳极330引导所述电子束。由于使电子束312停留在钨阳极330上可能会易于破坏所述阳极,因此使钨阳极330保持为冷的(例如,如图4中所示,为水冷却的)。使用所述一个或多个磁体(即,操纵线圈320)使电子束312一直保持移动(“扫描”和/或“操纵”),使得每一束落在钨阳极330的不同部分上。因此,通过调整以磁力操纵的不断扫描的电子束312(所述电子束是以磁力沿着阳极330的长轴来扫掠)使之适应旋转治疗,强度调控型kV X射线源110实现3-D轨迹,所述旋转治疗通过图2中所示的台架210的机械运动使所得光子基本上垂直于所述长轴来移动。结果是由光子组成的倒置金字塔形状,其中顶点340是在靶病损350上。另外,在一个实现方式中,电子枪310包括散焦单元,所述散焦单元使每一电子束散焦以增加焦点314的大小并且因此防止阳极330熔化。在一个实现方式中,扫描电子束和台架旋转的上述使用使得治疗束230能够在大得多的皮肤面积和组织体积上进入身体。
如上所述,当电子束312撞击阳极330时,阳极330产生各向同性的X射线以在所有方向上传播。因此,准直器240被配置成通过阻挡不朝向“会聚点”340传播的X射线来将X射线230引导到靶病损350,所述会聚点是以所述靶病损350为中心。
图4是根据本公开的一个实现方式的在治疗阳极442附近的X射线源400的剖切透视图(无图3中所示的梯形准直器)。在图4的所示实现方式中,在电子束420(例如,束大小=1×1cm2)以倾角(例如,60°)撞击水冷却的钨治疗阳极442(例如,大小=75×3cm2)时,X射线422经由水冷却的窗452离开源400。治疗阳极442上的大电子束光点(例如,大小=1×2cm2)会降低阳极冷却要求。在一个实现方式中,通过从外部的40kW制冷机经由冷却水通道450泵抽出的4Gal/min的水,对40kW(=200kV×200mA)X射线源冷却使之持续工作是足够的。在图4的所示实现方式中,准直器(示出于图5A和图5B中)(例如,大小=75×2×6cm3)通过阻挡未朝向“会聚点”(例如,图3中的点340)引导的所有X射线来将X射线422引导到靶病损,所述会聚点是以所述靶为中心。X射线源400进一步包括成像阳极440。在另一个实现方式中,准直器通过阻挡未朝向“会聚区”引导的所有X射线来将X射线422引导到靶病损。会聚区是3-D空间中的小体积,例如,一厘米至几厘米的球体。
图5A和图5B是示出根据本公开的一个实现方式的准直器500的图。图5A示出被配置成将X射线510朝向会聚点520引导的准直器500。图5B示出准直器500的正视图,在顶部具有两个缩放视图530、540。
在图5B的所示实现方式中,准直器500由缩放视图530中所示的六角形孔532(和相关联的隔膜)建构。所述六角形孔被配置成将X射线引导到会聚点520处的点。也就是说,在本公开的一个实现方式中,在将X射线510朝向会聚点520向下游引导时,六角形孔532和相关联隔膜的截面变小且变薄。在另一个实现方式中,所述截面是矩形的。
在查看了在会聚点处通过虚拟光源取得的第一缩放视图530之后,可以在视觉上验证图5B的准直器设计。请注意,光源在中间是最明显的,表明到会聚点520的清楚视线。在准直器入口处从别处朝向会聚点的其它视图将示出类似呈现。
在图5A和图5B中所示的一个特定实现方式中,准直器500被配置为六角形孔的阵列,所述六角形孔具有直径D=2mm 542(在入口处)、隔膜厚度t=0.2mm 544(在入口处)和在距准直器500的出口40cm处的会聚点520。距会聚点520的距离(即,焦距)指示直径和隔膜厚度的大小改变的速率。
为了进行治疗,可以使用具有不同会聚点和具有不同治疗区的若干准直器。因此,可以取决于特定治疗计划来选择准直器。可以针对不同的靶病损大小(例如,大小s=1、2、3、4cm)和焦距(例如,焦距f=26、36、46cm)建构若干可附接准直器。
往回参看图4,通过成像阳极440(例如,可以使用19个成像阳极)来实现kV辐射治疗系统的实时成像和追踪能力。在治疗期间,电子束420可以周期性地循环遍历所述成像阳极440。在一个实现方式中,电子束420聚焦到成像阳极440中的一者上达1毫秒至10毫秒(并且类似地循环遍历所有成像阳极),并且通过检测器(例如,图2的平板检测器140)来俘获投影图像。之后使用投影图像(例如,由检测器140俘获的投影图像)来重建构3-D体积图像(使用(例如)断层融合算法来检测和显示靶病损的图像)。靶病损的准确位置允许准确定位以进行准确且精确的剂量递送。断层融合算法的使用实现了使用19个投影图像对靶病损的准确3-D重建构(以呈现癌性病损(例如,在肺部中,所述癌性病损在治疗期间会移动)的足够细节以允许进行检测和追踪)。
图6A示出使用200kVp、200mA kV弧形治疗(KVAT)的蒙特卡罗模型病人剂量分布600。图6B示出使用15MV线性加速器体积调控弧形治疗(VMAT)的蒙特卡罗模型病人剂量分布610。
图6A和图6B示出对深层病损的治疗展现出同样出色的剂量分布的KVAT与VMAT。因此,如果可以解决对阳极的冷却,那么使用KVAT的治疗系统可以与VMAT系统相当。
图7A和图7B是示出在kV辐射治疗系统中使用的准直器(例如,准直器500)的性能的图。
图7A示出在准直器出口处的固定隔膜厚度(t=0.2mm)时准直器效率和全宽半高(FWHM)随准直器孔大小(D)而变。图7A提供了选择隔膜厚度(t)和准直器孔大小(D)的重要的设计指导方针。举例来说,在FWHM为1.0cm时,可以实现55%的效率。
图7B示出在D和t的特定设置时的实际递送的剂量分布。图7B示出在具有适当倾斜(相对于电子束路径的平面成30°)的阳极的平面上使用大小为75×2cm2的X射线源的剂量分布,其中(D,t)=(2.3mm,0.2mm)。检测器为中心的射线投射与位于距准直器的出射面40cm处的检测平面一起使用。
图7A和图7B中示出的结果表明,剂量分布的形状不是太依赖于隔膜厚度(t),而是依赖于准直器孔大小(D)。
图8是示出根据本公开的一个实现方式的用于朝向身体内的靶病损递送kV X射线的方法800的流程图。在框810处,产生电子束并朝向治疗阳极引导所述电子束。在框820处,接着使用一个或多个磁体沿着治疗阳极操纵和扫描所述电子束,使得所述治疗阳极产生kVX辐射。在框830处,使用准直器来阻挡未朝向中心位于靶病损处的会聚点引导的所有kV X射线。在框840处,接着使电子束源、一个或多个磁体、治疗阳极和准直器绕靶病损旋转。
在一个实现方式中,方法800进一步包括调整操纵和扫描所述电子束的速度以调控kV X射线到靶病损的剂量率。在另一个实现方式中,所述操纵和扫描包括沿着治疗阳极的纵轴不断地移动电子束。在另一个实现方式中,方法800进一步包括调控kV X射线的强度。在另一个实现方式中,所述调控包括改变电子束电流。在另一个实现方式中,所述调控包括改变沿着治疗阳极操纵和扫描电子束的速度。在另一个实现方式中,方法800进一步包括使朝向治疗阳极引导的电子束散焦,使得电子束的光点大小增加。在另一个实现方式中,阻挡X射线进一步包括在基本上垂直于被操纵和扫描到治疗阳极上的电子束的平面中从准直器输出kV X射线。在另一个实现方式中,所述准直器是可移动的,并且所述方法进一步包括使用多个成像阳极对靶病损实时成像以使得能够调整所述可移动准直器,使得会聚点跟随移动(例如,随着呼吸移动)的靶病损。在另一个实现方式中,方法800进一步包括使用水冷却单元来冷却治疗阳极。
对这些实现方式的各种修改将是本领域的技术人员易于显而易见的,并且在不脱离本公开的精神或范围的情况下,本文中描述的一般原理可以应用于其它实现方式。因此,所述技术不限于上文描述的特定实例。因此,将理解,本文中呈现的描述和图式表示本公开的当前可能的实现方式并且因此代表在广义上被本公开涵盖的标的。进一步理解,本公开的范围完全涵盖可能变成本领域的技术人员显而易见的其它实现方式,并且本公开的范围相应地仅受所附权利要求书限制。

Claims (20)

1.一种用于朝向身体内的靶病损递送kV X射线的设备,所述设备包括:
治疗阳极,所述治疗阳极被配置成接收电子束并输出所述kV X射线;
电子束源,所述电子束源被配置成产生所述电子束并朝向所述治疗阳极引导所述电子束;以及
至少一个磁体,所述至少一个磁体被配置成沿着所述治疗阳极操纵和扫描所述电子束以防止所述治疗阳极过热。
2.如权利要求1所述的设备,所述设备进一步包括
准直器,所述准直器被配置成从所述治疗阳极接收所述kV X射线并阻挡未被引导到会聚点的所有所述kV X射线,所述会聚点的中心位于所述靶病损处。
3.如权利要求2所述的设备,所述设备进一步包括
台架,所述台架被配置成安装所述电子束源、所述至少一个磁体、所述治疗阳极和所述准直器并使所述电子束源、所述至少一个磁体、所述治疗阳极和所述准直器绕某一轴线旋转,所述轴线包括所述靶病损。
4.如权利要求2所述的设备,其中从所述准直器输出的所述kV X射线位于基本上垂直于被操纵和扫描到所述治疗阳极上的所述电子束的平面中。
5.如权利要求2所述的设备,所述设备进一步包括
多个成像阳极,所述成像阳极被配置成提供所述靶病损的实时图像,
其中所述实时图像使得能够追踪所述靶病损并调整所述准直器以将所述会聚点移动到所述靶病损。
6.如权利要求1所述的设备,所述设备进一步包括
水冷却单元,所述水冷却单元联接至所述治疗阳极,所述水冷却单元被配置成冷却所述治疗阳极。
7.如权利要求1所述的设备,其中所述电子束源包括散焦单元,所述散焦单元被配置成使朝向所述治疗阳极引导的所述电子束散焦,使得所述电子束的光点大小增加。
8.如权利要求1所述的设备,其中所述治疗阳极由钨形成。
9.如权利要求1所述的设备,其中所述至少一个磁体包括偶极磁体、四极磁体和螺线管磁体中的至少一者。
10.一种用于朝向身体内的靶病损递送kV X射线的方法,所述方法包括:
产生电子束并朝向治疗阳极引导所述电子束;
使用至少一个磁体来沿着所述治疗阳极操纵并扫描所述电子束,使得所述治疗阳极产生所述kV X射线;
使用准直器来阻挡未被引导到会聚点的所述kV X射线,所述会聚点的中心位于所述靶病损处;以及
使使用所述至少一个磁体操纵的所述电子束的源、所述治疗阳极和所述准直器绕所述靶病损旋转。
11.如权利要求10所述的方法,所述方法进一步包括
调整操纵和扫描所述电子束的速度以调控所述kV X射线到所述靶病损的剂量率。
12.如权利要求10所述的方法,其中所述操纵和扫描包括
沿着所述治疗阳极的纵轴不断地移动所述电子束。
13.如权利要求10所述的方法,所述方法进一步包括
调控所述kV X射线的强度。
14.如权利要求13所述的方法,其中所述调控包括
改变电子束电流。
15.如权利要求13所述的方法,其中所述调控包括
改变沿着所述治疗阳极操纵和扫描所述电子束的速度。
16.如权利要求10所述的方法,所述方法进一步包括
使朝向所述治疗阳极引导的所述电子束散焦,使得所述电子束的光点大小增加。
17.如权利要求10所述的方法,其中所述阻挡进一步包括
在基本上垂直于被操纵和扫描到所述治疗阳极上的所述电子束的平面中从所述准直器输出所述kV X射线。
18.如权利要求10所述的方法,其中所述准直器可相对于X射线管在三个维度上移动,所述准直器附接至所述X射线管。
19.如权利要求18所述的方法,所述方法进一步包括
使用多个成像阳极对所述靶病损实时成像以使得能够追踪所述靶病损并调整所述准直器以将所述会聚点移动到所述靶病损。
20.如权利要求10所述的方法,所述方法进一步包括
使用水冷却单元来冷却所述治疗阳极。
CN201810550938.9A 2017-06-02 2018-05-31 千伏辐射治疗 Pending CN108969903A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762514466P 2017-06-02 2017-06-02
US62/514,466 2017-06-02
US15/722,979 2017-10-02
US15/722,979 US11058893B2 (en) 2017-06-02 2017-10-02 Kilovoltage radiation therapy

Publications (1)

Publication Number Publication Date
CN108969903A true CN108969903A (zh) 2018-12-11

Family

ID=62104123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810550938.9A Pending CN108969903A (zh) 2017-06-02 2018-05-31 千伏辐射治疗

Country Status (8)

Country Link
US (1) US11058893B2 (zh)
EP (1) EP3409321B1 (zh)
JP (1) JP2018202146A (zh)
KR (1) KR20180132516A (zh)
CN (1) CN108969903A (zh)
MA (1) MA46212A (zh)
RU (1) RU2018114108A (zh)
TW (1) TW201902532A (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11058893B2 (en) * 2017-06-02 2021-07-13 Precision Rt Inc. Kilovoltage radiation therapy
EP3967367A1 (en) * 2017-11-16 2022-03-16 Varian Medical Systems Inc Increased beam output and dynamic field shaping for radiotherapy system
JP7300745B2 (ja) * 2018-06-29 2023-06-30 北京納米維景科技有限公司 走査型のx線源及びその画像形成システム
JP6784908B2 (ja) * 2018-10-26 2020-11-18 株式会社大一商会 遊技機

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004037088A1 (en) * 2002-10-25 2004-05-06 Koninklijke Philips Electronics N.V. Four-dimensional helical tomographic scanner
US20050276377A1 (en) * 2004-06-10 2005-12-15 Carol Mark P Kilovoltage delivery system for radiation therapy
CN103889135A (zh) * 2014-02-18 2014-06-25 宫良平 医用直线加速器kv/mv同轴x射线影像系统
CN104616952A (zh) * 2012-12-31 2015-05-13 同方威视技术股份有限公司 阴控多阴极分布式x射线装置
CN104882350A (zh) * 2015-06-11 2015-09-02 杭州与盟医疗技术有限公司 一种提供多能量和更大覆盖范围x射线球管系统
CN105849851A (zh) * 2013-10-29 2016-08-10 瓦里安医疗系统公司 发射特点可调节以及磁性操控和聚焦的具有平面发射器的x射线管

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4998268A (en) * 1989-02-09 1991-03-05 James Winter Apparatus and method for therapeutically irradiating a chosen area using a diagnostic computer tomography scanner
US5335255A (en) * 1992-03-24 1994-08-02 Seppi Edward J X-ray scanner with a source emitting plurality of fan beams
US5541975A (en) * 1994-01-07 1996-07-30 Anderson; Weston A. X-ray tube having rotary anode cooled with high thermal conductivity fluid
JP3048912B2 (ja) * 1996-02-06 2000-06-05 日本電気株式会社 光ヘッド装置
US5751784A (en) * 1996-09-27 1998-05-12 Kevex X-Ray X-ray tube
US6327340B1 (en) * 1999-10-29 2001-12-04 Varian Medical Systems, Inc. Cooled x-ray tube and method of operation
JP2001332472A (ja) * 2000-05-19 2001-11-30 Canon Inc X線露光装置
US20040067014A1 (en) * 2002-10-04 2004-04-08 Hollars Dennis R. Miniature optical multiplexer/de-multiplexer DWDM device, and method of aligning components thereof
US20080049897A1 (en) * 2004-05-24 2008-02-28 Molloy Janelle A System and Method for Temporally Precise Intensity Modulated Radiation Therapy (Imrt)
WO2006130630A2 (en) * 2005-05-31 2006-12-07 The University Of North Carolina At Chapel Hill X-ray pixel beam array systems and methods for electronically shaping radiation fields and modulating radiation field intensity patterns for radiotherapy
US20070016014A1 (en) * 2005-06-15 2007-01-18 Kenji Hara Radio therapy apparatus and operating method of the same
US7263170B2 (en) * 2005-09-30 2007-08-28 Pellegrino Anthony J Radiation therapy system featuring rotatable filter assembly
US7418079B2 (en) * 2006-05-23 2008-08-26 Carestream Health, Inc. System for the real-time detection of targets for radiation therapy
US7945024B2 (en) * 2006-08-16 2011-05-17 General Electric Company Method for reducing X-ray tube power de-rating during dynamic focal spot deflection
DE102006053760B4 (de) * 2006-11-15 2008-09-18 Bruker Axs Gmbh Drehbare, wassergekühlte Röntgenquelle
EP2283712B1 (en) * 2008-05-22 2018-01-24 Vladimir Yegorovich Balakin X-ray apparatus used in conjunction with a charged particle cancer therapy system
CN102047034B (zh) * 2008-05-30 2014-06-18 皇家飞利浦电子股份有限公司 包括准直器的照明设备
US8625738B2 (en) * 2008-09-22 2014-01-07 Telesecurity Sciences, Inc. Radiation therapy and scanning system
JP2011067333A (ja) * 2009-09-25 2011-04-07 Fujifilm Corp 放射線画像撮影装置及び撮影制御装置
US8917813B2 (en) * 2010-02-24 2014-12-23 Accuray Incorporated Gantry image guided radiotherapy system and related treatment delivery methods
JP2011189016A (ja) * 2010-03-15 2011-09-29 Japan Synchrotron Radiation Research Inst 放射線治療装置および放射線治療装置の照射野確認画像取得方法
US8848867B2 (en) * 2010-11-26 2014-09-30 Triple Ring Technologies, Inc. Method and apparatus for adaptive exposure in x-ray systems
US8536547B2 (en) * 2011-01-20 2013-09-17 Accuray Incorporated Ring gantry radiation treatment delivery system with dynamically controllable inward extension of treatment head
CL2011000898A1 (es) * 2011-04-20 2011-06-24 Univ La Frontera Dispositivo para generar un haz convergente de electrones y rayos-x que comprende uno o mas lentes magneticos y/o electricos que permiten focalizar un haz de electrones provenientes de una fuente, impactar el haz en un casquete anodico y generar un haz de rayos-x colimado convergente.
KR101247453B1 (ko) * 2011-08-18 2013-03-25 경희대학교 산학협력단 냉각 및 차폐 기능이 있는 엑스레이 소스
US9460823B2 (en) * 2012-09-10 2016-10-04 Telesecurity Sciences, Inc. Dynamic beam aperture control to reduce radiation dose using collimator
US11534122B2 (en) * 2012-09-20 2022-12-27 Virginia Tech Intellectual Properties, Inc. Stationary source computed tomography and CT-MRI systems
US9484179B2 (en) * 2012-12-18 2016-11-01 General Electric Company X-ray tube with adjustable intensity profile
US10660588B2 (en) * 2013-05-24 2020-05-26 Imatrex Inc. Tumor tracing device with multiple scan tubes
US20150065777A1 (en) * 2013-08-29 2015-03-05 Naser Darwish Radiation therapy machine with real-time ebt imaging
EP3043863B1 (en) * 2013-09-11 2019-12-04 The Board of Trustees of the Leland Stanford Junior University Arrays of accelerating structures and rapid imaging for facilitating rapid radiation therapies
US10231687B2 (en) * 2014-10-17 2019-03-19 Triple Ring Technologies, Inc. Method and apparatus for enhanced X-ray computing arrays
US10460900B2 (en) * 2014-11-21 2019-10-29 Hitachi, Ltd. X-ray tube device and x-ray CT apparatus
JP6456172B2 (ja) * 2015-02-04 2019-01-23 キヤノン株式会社 陽極及びこれを用いたx線発生管、x線発生装置、x線撮影システム
CA2989042C (en) * 2015-06-13 2020-12-08 Saskatchewan Cancer Agency Mini-beam collimators for medical linear accelerators
US10124194B2 (en) * 2015-08-05 2018-11-13 The Research Foundation for State University of New York Radiation therapy with orthovoltage X-ray minibeams
JP6571501B2 (ja) * 2015-11-24 2019-09-04 キヤノンメディカルシステムズ株式会社 X線管及びx線ct装置
US10839973B2 (en) * 2016-02-25 2020-11-17 Illinois Tool Works Inc. X-ray tube and gamma source focal spot tuning apparatus and method
US10383202B2 (en) * 2016-04-28 2019-08-13 Varex Imaging Corporation Electronic focal spot alignment of an x-ray tube
US10290460B2 (en) * 2016-09-07 2019-05-14 General Electric Company X-ray tube with gridding electrode
US11058893B2 (en) * 2017-06-02 2021-07-13 Precision Rt Inc. Kilovoltage radiation therapy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004037088A1 (en) * 2002-10-25 2004-05-06 Koninklijke Philips Electronics N.V. Four-dimensional helical tomographic scanner
US20050276377A1 (en) * 2004-06-10 2005-12-15 Carol Mark P Kilovoltage delivery system for radiation therapy
CN104616952A (zh) * 2012-12-31 2015-05-13 同方威视技术股份有限公司 阴控多阴极分布式x射线装置
CN105849851A (zh) * 2013-10-29 2016-08-10 瓦里安医疗系统公司 发射特点可调节以及磁性操控和聚焦的具有平面发射器的x射线管
CN103889135A (zh) * 2014-02-18 2014-06-25 宫良平 医用直线加速器kv/mv同轴x射线影像系统
CN104882350A (zh) * 2015-06-11 2015-09-02 杭州与盟医疗技术有限公司 一种提供多能量和更大覆盖范围x射线球管系统

Also Published As

Publication number Publication date
MA46212A (fr) 2019-07-17
RU2018114108A3 (zh) 2021-07-07
US11058893B2 (en) 2021-07-13
RU2018114108A (ru) 2019-10-25
US20180345039A1 (en) 2018-12-06
EP3409321B1 (en) 2022-04-20
KR20180132516A (ko) 2018-12-12
TW201902532A (zh) 2019-01-16
EP3409321A1 (en) 2018-12-05
JP2018202146A (ja) 2018-12-27

Similar Documents

Publication Publication Date Title
US20210370096A1 (en) Automated treatment in particle therapy
US7659521B2 (en) System for taking wide-field beam-eye-view (BEV) x-ray-images simultaneously to the proton therapy delivery
US5039867A (en) Therapeutic apparatus
US10500420B2 (en) Small beam area, mid-voltage radiotherapy system with reduced skin dose, reduced scatter around the treatment volume, and improved overall accuracy
CN108969903A (zh) 千伏辐射治疗
US7453076B2 (en) Bi-polar treatment facility for treating target cells with both positive and negative ions
US8613694B2 (en) Method for biological modulation of radiation therapy
US8519370B2 (en) Modifying radiation beam shapes
US10737122B2 (en) Self-shielded image guided radiation oncology system
US20140321615A1 (en) Image-Guided Radiotherapy
US8625739B2 (en) Charged particle cancer therapy x-ray method and apparatus
EP2823501A1 (en) Pluridirectional very high electron energy radiation therapy systems and processes
US20150231413A1 (en) Small beam area, mid-voltage radiotherapy system with reduced skin dose, reduced scatter around the treatment volume, and improved overall accuracy
WO2017100611A1 (en) Self-shielded image guided radiation oncology system
CN112004576B (zh) 粒子束引导系统和方法以及相关的放射治疗系统
US20210370095A1 (en) System of and Method for Particle Beam Radiotherapy
WO2023238121A1 (en) Installation of proton therapy equipment in existing radiotherapy treatment vaults
WO2023205395A1 (en) Small animal flash radiotherapy irradiator and inverse geometry micro-ct
Mazal Proton beams in radiotherapy
Mills et al. Radiotherapy beam production
Landau et al. Advances in External Beam Radiotherapy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40000804

Country of ref document: HK

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181211

WD01 Invention patent application deemed withdrawn after publication