CN108964051A - 一种电力系统预防调度与恢复调度协调优化策略构建方法 - Google Patents

一种电力系统预防调度与恢复调度协调优化策略构建方法 Download PDF

Info

Publication number
CN108964051A
CN108964051A CN201810981856.XA CN201810981856A CN108964051A CN 108964051 A CN108964051 A CN 108964051A CN 201810981856 A CN201810981856 A CN 201810981856A CN 108964051 A CN108964051 A CN 108964051A
Authority
CN
China
Prior art keywords
bus
follows
period
generator
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810981856.XA
Other languages
English (en)
Other versions
CN108964051B (zh
Inventor
覃智君
陈心维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN201810981856.XA priority Critical patent/CN108964051B/zh
Publication of CN108964051A publication Critical patent/CN108964051A/zh
Application granted granted Critical
Publication of CN108964051B publication Critical patent/CN108964051B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Abstract

本发明公开了一种电力系统预防调度与恢复调度协调优化策略构建方法。该方法将建立考虑多种新元件/新特性的预防调度模型和恢复调度模型,同时,将预防调度和恢复调度作为防御者,极端天气作为电力系统攻击者,将两种模型与极端天气的冲击结合在防御者‑攻击者‑防御者多层安全博弈模型中,构建两者共同应对极端天气所带来冲击的协调优化策略。与单独考虑预防调度或恢复调度相比,协调优化后的策略可显著降低极端天气冲击下电力系统总停电损失。

Description

一种电力系统预防调度与恢复调度协调优化策略构建方法
技术领域
本发明涉及电力系统运行与调度技术领域,具体而言,就是通过优化策略对电力系统预防调度与恢复调度进行协调,从而得到应对极端天气所带来冲击的协调优化策略,使得电力系统总体损失最小。
背景技术
世界经济高速发展的背后,离不开大量化石能源的燃烧,给全球气候环境带来了巨大的威胁。全世界范围内由于气候变化造成的极端天气事件频频发生,各国基础设施和人身财产损失严重,这其中,电力系统设备属于重要基础设施,提高其应对极端天气威胁的能力迫在眉睫。
极端天气事件(如干旱、寒潮、山火、强对流天气等)对电网的冲击具有高度的不可预见性,且冲击具有持续性。这就希望电力系统能够主动进行预防调度,待极端天气不再对系统产生影响后,进行恢复调度,尽快恢复电网形态和负荷水平,提升电网应对极端天气的顺应性。
如图1所示,为电力系统调度传统理论体系,状态的被动变化主要由独立偶发事件引起的线路或者变压器等元件的保护跳闸,以及负荷的持续缓慢变化所引发。状态的主动变化主要由调度人员施加预防控制、校正控制和恢复控制来实现。上述控制通常由独立事件进行驱动,当负荷持续变化与继电保护配合失当,或者调度人员的控制措施不得当,有可能造成电网元件相继退出,电网难以维持可靠供电,最终可能导致系统失去完整性。这种级联故障(cascading failure)是发生大面积停电的内因。
发明内容
本发明所要解决的技术问题是克服上述现有技术的不足,提供一种电力系统预防调度与恢复调度协调优化策略构建方法,将长时间尺度预防调度与恢复调度分别作为防御者,将极端天气作为电力系统的攻击者,将两种调度之间的协调策略构建防御者-攻击者-防御者多层安全博弈模型求解,获得电力系统应对极端天气的协调优化策略。与单独考虑预防调度或恢复调度相比,协调优化后的策略可显著降低极端天气下电力系统总体停电损失。并且,本发明采用多种解耦算法设计高性能计算方法,以求解大规模协调优化策略,满足电力系统实际应用需求。
为实现上述发明目的,本发明采用了如下技术方案:
一种电力系统预防调度与恢复调度协调优化策略构建方法,包括如下步骤:
步骤一、建立预防调度模型,将FCB机组出力、HVDC系统线路容量和可调度负荷作为不确定集建模;
步骤二、建立恢复调度模型,恢复调度是一个多阶段决策过程,建立多阶段鲁棒自适应模型,任一阶段的决策受上一阶段不确定集线性函数的约束;
步骤三、将预防调度和恢复调度作为防御者(Defender),极端天气作为电力系统攻击者(Attacker),将步骤一和步骤二所建模型与极端天气的冲击结合在防御者-攻击者-防御者(Defender-Attacker-Defender,D-A-D)多层安全博弈模型中,构建预防调度与恢复调度协调优化策略,对预防调度与恢复调度进行协调。该D-A-D多层安全博弈模型的目标函数为最小化整个过程中的负荷损失,包括预防调度中的主动切负荷、极端天气展开过程中的被动切负荷以及恢复调度中的停电负荷;
步骤四、采用嵌套列-约束生成(Column-and-Constraint Generation,C&CG)算法对步骤三中D-A-D多层安全博弈模型进行求解;
步骤五、设计高效算法提升算法效率,采用Benders分解对整数变量和连续变量进行解耦,采用最优性条件解耦或拉格朗日松弛解耦进行时段间解耦。
其中,步骤一所述预防调度模型的目标函数定义为最小化给定时段内所有发电机的总发电费用,每台发电机的费用表达式为:
式中e=(1,1,...,1)T为元素全为1的相应尺寸的列向量,a,b,c为所有发电机的发电费用系数向量,Pgt为发电机在第t时段发出的有功功率向量;
所述预防调度模型的静态约束为在每个时段内与变量相关的电力系统运行约束,具体如下:
1)潮流平衡约束为:
式中Qgt为发电机在第t时段发出的无功功率向量,P1t,Q1t为在第t时段负荷的有功需求向量和无功需求向量,为所有母线在第t时段的母线电压及其共轭向量,为节点导纳矩阵的共轭;
2)支路视在功率约束为:
为支路视在功率的上下限向量;
3)节点电压约束为:
为节点电压的上下限向量;
4)发电机出力约束为:
为发电机有功出力的上下限,为发电机无功出力的上下限;
所述预防调度模型的动态约束为在不同时段内与变量相关的不等式约束,具体如下:
a)爬坡率约束为:
为发电机爬坡率的上下限向量;
b)其他发电约束为:
为发电机发电上下限向量。
步骤二所述恢复调度模型的目标函数定义为最小化最坏情况下电力系统的总负荷损失,表达式为:
式中,N B表示母线数,N T表示时段数,N C表示场景数;pc表示输电故障场景c的发生概率,Ii,t,c表示在时段t内母线i发生场景c的状态,表示在时段t内母线i发生场景c时的发电功率减少量,表示在时段t内母线i发生场景c时的切负荷量;
所述恢复调度模型的运行约束为:
①功率平衡约束为:
Ii,t,c∈{0,1}
式中,表示在时段t内母线i发生场景c时的可调度发电机的输出功率,表示母线i与母线j间支路在场景c时的节点导纳矩阵元素,θj,t,c表示在时段t内母线i发生场景c时的相角,表示在时段t内母线i上的净负荷,分别表示在t时段内母线i上净负荷的最小值和最大值;
②发电机出力限制为:
Pi g,min和Pi g,max分别表示母线i上可调度发电机最小输出和最大输出;
③输电线功率限制为:
式中,表示母线i与母线j间支路的最大功率传输限制,表示母线i与母线j间支路在场景c时的支路导纳矩阵元素;
④热备用约束:
0≤τi,t,c≤τmax
式中,τi,t,c表示可调度发电机组所提供热备用容量的最大爬坡时间,RUi表示母线i上的可调度发电机所提供热备用容量的爬坡率;
所述恢复调度模型的动态约束为:
A)爬坡率约束为:
式中,ΔPi g,dn,ΔPi g,up分别表示在母线i上可调度发电机的坡下降速率和坡上升速率;
B)可调度发电机出力约束为:
式中εi分别表示母线i总发电量和对应差值的限制;
所述恢复调度模型的校正控制约束为:
式中,ΔPi re,max表示母线i上的可调度发电机的最大应急备用容量。
步骤三所述防御者-攻击者-防御者多层安全博弈模型具体形式如下:
其中,分别表示预防调度第t时段的常规发电机、FCB机组、HVDC系统、线路投切以及可调度负荷的控制变量;分别表示恢复调度第t时段发电机、线路投切以及可调度负荷的控制变量;F· t表示对应控制变量的可行域;其中,恢复调度的可行域是预防调度策略以及极端天气场景的函数。
与现有技术相比,本发明具有以下有益效果:
(1)本发明在协调优化策略构建上,充分考虑了预防调度与恢复调度的决策依赖关系与合作性,建立D-A-D多层安全博弈模型,在长时间尺度上对两者进行了协调优化。
(2)采用嵌套C&CG算法求解D-A-D多层安全博弈模型,求解过程更迅速、准确。
(3)采用多种解耦算法设计高性能计算方法,降低模型求解的复杂度,提升计算效率。
(4)本发明所提出的协调优化策略能够使得电力系统在极端天气过境时电力系统总体损失最小。
附图说明
图1是电力系统调度传统理论体系图;
图2是防御者-攻击者-防御者多层安全博弈模型;
图3是预防调度与恢复调度决策先后次序与合作关系图;
图4是算法方案图。
具体实施方式
为了能更清晰地理解本发明的上述目的、特征和优点,下面结合模型的具体实现形式对本发明技术方案进行进一步的详细描述。
一种电力系统预防调度与恢复调度协调优化策略构建方法,具体步骤如下:
步骤一、建立预防调度模型
建立多时段最优潮流模型来构建预防调度策略。极端天气下预防调度的根本目的是调整电力系统运行方式,避免极端天气过境造成元件损坏停运或运行特性变化时导致的被动损失。FCB机组和HVDC系统可分别用于预防性解列与潮流转移。在预防调度中考虑FCB机组的贡献。且需注意,FCB机组出力受极端天气影响,具有不确定性。HVDC系统线路容量也具有不确定性。因此,建立预防调度模型,将FCB机组出力、HVDC系统线路容量和可调度负荷作为不确定集建模。
1.目标函数定义为最小化给定时段内所有发电机的总发电费用,每台发电机的费用表达式为:
式中e=(1,1,...,1)T为元素全为1的相应尺寸的列向量,a,b,c为所有发电机的发电费用系数向量,Pgt为发电机在第t时段发出的有功功率向量,·*表示两个向量对应元素相乘。
2.静态约束为在每个时段内与变量相关的电力系统运行约束。包括:
1)潮流平衡约束:
式中Qgt为发电机在第t时段发出的无功功率向量,P1t,Q1t为在第t时段负荷的有功需求向量和无功需求向量,为所有母线在第t时段的母线电压及其共轭向量,为节点导纳矩阵的共轭。
2)支路视在功率约束:
为支路视在功率的上下限向量。
3)节点电压约束:
为节点电压的上下限向量。
4)发电机出力约束:
为发电机有功出力的上下限,为发电机无功出力的上下限。
3.动态约束为在不同时段内与变量相关的不等式约束。包括:
a)爬坡率约束:
为发电机爬坡率的上下限向量。
b)其他发电约束。由于与用户签订的商业合同或一次能源限制(例如水库容量限制),一些发电机在给定时段内的总发电量受到限制。因此,这些发电机在整个时间范围内的有功功率输出受到如下限制:
为发电机发电上下限向量。
步骤二、建立恢复调度模型
建立鲁棒安全约束多时段最优潮流模型来构建恢复调度策略。该模型涉及负荷恢复过程中冷负荷的不确定性。恢复调度是一个多阶段决策过程,建立多阶段鲁棒自适应模型,任一阶段的决策受上一阶段不确定集线性函数的约束。
1.目标函数定义为最小化最坏情况下电力系统的总负荷损失,表达式为:
式中,N B表示母线数,N T表示时段数,N C表示场景数;pc表示输电故障场景c的发生概率,Ii,t,c表示在时段t内母线i发生场景c的状态,表示在时段t内母线i发生场景c时的发电功率减少量,表示在时段t内母线i发生场景c时的切负荷量。
2.运行约束
①功率平衡约束:
Ii,t,c∈{0,1} (14)
式中,表示在时段t内母线i发生场景c时的可调度发电机的输出功率,表示母线i与母线j间支路在场景c时的节点导纳矩阵元素,θj,t,c表示在时段t内母线i发生场景c时的相角,表示在时段t内母线i上的净负荷,分别表示在t时段内母线i上净负荷的最小值和最大值。
②发电机出力限制:
Pi g,min和Pi g,max分别表示母线i上可调度发电机最小输出和最大输出。
③输电线功率限制:
式中,表示母线i与母线j间支路的最大功率传输限制,表示母线i与母线j间支路在场景c时的支路导纳矩阵元素。
④热备用约束:
0≤τi,t,c≤τmax (18)
式中,τi,t,c表示可调度发电机组所提供热备用容量的最大爬坡时间,RUi表示母线i上的可调度发电机所提供热备用容量的爬坡率。
3.动态约束:
A)爬坡率约束:
式中,ΔPi g,dn,ΔPi g,up分别表示在母线i上可调度发电机的坡下降速率和坡上升速率。
B)可调度发电机出力约束:
式中εi表示母线i总发电量和对应差值的限制。
4.校正控制约束:
式中,ΔPi re,max表示母线i上的可调度发电机的最大应急备用容量。
步骤三、建立D-A-D多层安全博弈模型来构建预防调度与恢复调度协调优化策略;
将预防调度和恢复调度作为防御者(Defender),极端天气作为电力系统攻击者(Attacker),将步骤一和步骤二所建模型与极端天气的冲击结合在防御者-攻击者-防御者(Defender-Attacker-Defender,D-A-D)多层安全博弈模型中,构建预防调度与恢复调度协调优化策略,对预防调度与恢复调度进行协调。该D-A-D多层安全博弈模型的目标函数为最小化整个过程中的负荷损失,包括预防调度中的主动切负荷、极端天气展开过程中的被动切负荷以及恢复调度中的停电负荷。
由上述步骤一及步骤二所建模型按照图2形式组合,得到本发明的D-A-D多层安全博弈模型:
其中,分别表示预防调度第t时段的常规发电机、FCB机组、HVDC系统、线路投切以及可调度负荷的控制变量;分别表示恢复调度第t时段发电机、线路投切以及可调度负荷的控制变量;F.t表示对应控制变量的可行域;其中,恢复调度的可行域是预防调度策略以及极端天气场景的函数。
极端天气下预防调度与恢复调度存在决策上的先后关系与依赖性,如图3所示,预防调度针对极端天气预测路径和强度进行决策,恢复调度在极端天气过境后进行决策。前者为后者提供了电网初始拓扑与元件运行方式。此拓扑与运行方式在极端天气展开过程中有可能受到破坏,或者由调度人员进行被动调整。后者目标是恢复被主动切除的负荷以及极端天气展开过程中被动切除的负荷。预防调度与恢复调度在目标上具有一致性,即最小化负荷损失,两者具有合作性。另一方面,预防调度切除的负荷过多,则恢复调度时间过长;若预防调度切除的负荷不足,则极端天气展开过程中有可能被动损失的负荷更大。因此两者与极端天气具有博弈性。这一建模充分体现了预防调度与恢复调度的决策先后次序与依赖关系。
步骤四、采用嵌套C&CG算法对步骤三中D-A-D多层安全博弈模型进行求解
上述D-A-D多层安全博弈模型是典型的非凸问题,需要采用迭代算法不断求解其上下界,逼近其最优解。设计嵌套C&CG算法对其进行求解。将预防调度作为主问题(即外层min子问题),求其最优策略,获得原问题目标函数的下界。通过求解内层max-min问题(子问题)获得极端天气最坏场景,并求解最优恢复调度策略,获得原问题目标函数的上界。并且内层max-min子问题包括了线路投入(0-1变量),也需要采用嵌套C&CG算法进行求解。因此,需采用嵌套C&CG算法求解预防调度与恢复调度的协调优化策略。该算法方案如图4所示。
步骤五、设计高效算法提升算法效率
预防调度与恢复调度都是多阶段混合整数规划问题,计算复杂度高。为满足实际大规模算例的计算性能要求,在求解恢复调度策略与预防调度策略时均采用解耦算法。具体而言,采用Benders分解对整数变量和连续变量进行解耦,采用最优性条件解耦或拉格朗日松弛解耦进行时段间解耦。通过设计恰当的解耦策略,降低模型求解的复杂度,提升计算效率。该算法方案如图4所示。
实例分析
采用IEEE-118节点算例EirGrid的风电数据进行算例分析对本发明模型进行验证计算。该测试系统包含54台发电机,186条支路,总负荷需求为3668MW。计算可得:
最坏情况为线路5-8、30-38、23-24、49-54、64-65、82-83易受攻击从而导致级联故障发生,为避免更严重故障发生,在冲击到来前将这些线路切除,并重新调整潮流分布。
将该系统内发电机按如下形式分组:
下表为发电机组在应对冲击时在一个时段(24小时)内各机组的启停情况(1表示启动,0表示退出)
与未进行协调优化调度相比,该方法平均损失降低率为50%左右。

Claims (4)

1.一种电力系统预防调度与恢复调度协调优化策略构建方法,其特征在于,包括如下步骤:
步骤一、建立预防调度模型,将FCB机组出力、HVDC系统线路容量和可调度负荷作为不确定集建模;
步骤二、建立恢复调度模型,恢复调度是一个多阶段决策过程,建立多阶段鲁棒自适应模型,任一阶段的决策受上一阶段不确定集线性函数的约束;
步骤三、将预防调度和恢复调度作为防御者,极端天气作为电力系统攻击者,将步骤一和步骤二所建模型与极端天气的冲击结合在防御者-攻击者-防御者多层安全博弈模型中,构建预防调度与恢复调度协调优化策略;所述防御者-攻击者-防御者多层安全博弈模型的目标函数为最小化整个过程中的负荷损失,包括预防调度中的主动切负荷、极端天气展开过程中的被动切负荷以及恢复调度中的停电负荷;
步骤四、采用嵌套列-约束生成算法对步骤三中防御者-攻击者-防御者多层安全博弈模型进行求解;
步骤五、设计高效算法提升算法效率,采用Benders分解对整数变量和连续变量进行解耦,采用最优性条件解耦或拉格朗日松弛解耦进行时段间解耦。
2.根据权利要求1所述的方法,其特征在于,步骤一所述预防调度模型的目标函数定义为最小化给定时段内所有发电机的总发电费用,每台发电机的费用表达式为:
式中e=(1,1,...,1)T为元素全为1的相应尺寸的列向量,a,b,c为所有发电机的发电费用系数向量,Pgt为发电机在第t时段发出的有功功率向量;
所述预防调度模型的静态约束为在每个时段内与变量相关的电力系统运行约束,具体如下:
1)潮流平衡约束为:
式中Qgt为发电机在第t时段发出的无功功率向量,P1t,Q1t为在第t时段负荷的有功需求向量和无功需求向量,为所有母线在第t时段的母线电压及其共轭向量,为节点导纳矩阵的共轭;
2)支路视在功率约束为:
S b,为支路视在功率的上下限向量;
3)节点电压约束为:
V,为节点电压的上下限向量;
4)发电机出力约束为:
P g,为发电机有功出力的上下限,Q g,为发电机无功出力的上下限;
所述预防调度模型的动态约束为在不同时段内与变量相关的不等式约束,具体如下:
a)爬坡率约束为:
R,为发电机爬坡率的上下限向量;
b)其他发电约束为:
C,为发电机发电上下限向量。
3.根据权利要求1所述的方法,其特征在于,步骤二所述恢复调度模型的目标函数定义为最小化最坏情况下电力系统的总负荷损失,表达式为:
式中,N B表示母线数,N T表示时段数,N C表示场景数;pc表示输电故障场景c的发生概率,Ii,t,c表示在时段t内母线i发生场景c的状态,表示在时段t内母线i发生场景c时的发电功率减少量,表示在时段t内母线i发生场景c时的切负荷量;
所述恢复调度模型的运行约束为:
①功率平衡约束为:
Ii,t,c∈{0,1}
式中,表示在时段t内母线i发生场景c时的可调度发电机的输出功率,表示母线i与母线j间支路在场景c时的节点导纳矩阵元素,θj,t,c表示在时段t内母线i发生场景c时的相角,表示在时段t内母线i上的净负荷,分别表示在t时段内母线i上净负荷的最小值和最大值;
②发电机出力限制为:
Pi g,min和Pi g,max分别表示母线i上可调度发电机最小输出和最大输出;
③输电线功率限制为:
式中,表示母线i与母线j间支路的最大功率传输限制,表示母线i与母线j间支路在场景c时的支路导纳矩阵元素;
④热备用约束:
j∈g(t),
0≤τi,t,c≤τmax
式中,τi,t,c表示可调度发电机组所提供热备用容量的最大爬坡时间,RUi表示母线i上的可调度发电机所提供热备用容量的爬坡率;
所述恢复调度模型的动态约束为:
A)爬坡率约束为:
式中,ΔPi g,dn,ΔPi g,up分别表示在母线i上可调度发电机的坡下降速率和坡上升速率;
B)可调度发电机出力约束为:
式中εi分别表示母线i总发电量和对应差值的限制;
所述恢复调度模型的校正控制约束为:
式中,ΔPi re,max表示母线i上的可调度发电机的最大应急备用容量。
4.根据权利要求2和3所述的方法,其特征在于,步骤三所述防御者-攻击者-防御者多层安全博弈模型具体形式如下:
其中,分别表示预防调度第t时段的常规发电机、FCB机组、HVDC系统、线路投切以及可调度负荷的控制变量;分别表示恢复调度第t时段发电机、线路投切以及可调度负荷的控制变量;F· t表示对应控制变量的可行域;其中,恢复调度的可行域是预防调度策略以及极端天气场景的函数。
CN201810981856.XA 2018-08-27 2018-08-27 一种电力系统预防调度与恢复调度协调优化策略构建方法 Active CN108964051B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810981856.XA CN108964051B (zh) 2018-08-27 2018-08-27 一种电力系统预防调度与恢复调度协调优化策略构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810981856.XA CN108964051B (zh) 2018-08-27 2018-08-27 一种电力系统预防调度与恢复调度协调优化策略构建方法

Publications (2)

Publication Number Publication Date
CN108964051A true CN108964051A (zh) 2018-12-07
CN108964051B CN108964051B (zh) 2021-10-12

Family

ID=64474260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810981856.XA Active CN108964051B (zh) 2018-08-27 2018-08-27 一种电力系统预防调度与恢复调度协调优化策略构建方法

Country Status (1)

Country Link
CN (1) CN108964051B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763951A (zh) * 2019-09-18 2020-02-07 中国南方电网有限责任公司超高压输电公司检修试验中心 用于输电线路停电检测识别的最快变化检测模型构建方法
CN111969658A (zh) * 2020-08-26 2020-11-20 重庆大学 考虑风电的发输电系统防御性-常规协调规划方法
CN112260271A (zh) * 2020-10-10 2021-01-22 北京交通大学 一种配电网故障恢复策略的生成方法和装置
CN112801533A (zh) * 2021-02-08 2021-05-14 重庆大学 一种考虑决策依赖不确定的电力系统运行可靠性评估方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011038031A1 (en) * 2009-09-22 2011-03-31 Alnylam Pharmaceuticals, Inc. Dual targeting sirna agents
CN102195362A (zh) * 2011-05-26 2011-09-21 中国电力科学研究院 一种计及系统运行可靠性的概率动态调度方法
CN103033715A (zh) * 2012-12-25 2013-04-10 山东电力集团公司电力科学研究院 变电站内区域设备运行状态检测系统
WO2013176784A1 (en) * 2012-05-24 2013-11-28 University Of Southern California Optimal strategies in security games
CN103544372A (zh) * 2013-08-05 2014-01-29 中国科学院电工研究所 一种微型燃气轮机热电联供系统的机组选型方法
CN105337971A (zh) * 2015-10-20 2016-02-17 上海电机学院 一种电力信息系统云安全保障体系及其实现方法
CN105760959A (zh) * 2016-02-24 2016-07-13 武汉大学 一种基于两阶段萤火虫编码的机组组合优化方法
CN105791280A (zh) * 2016-02-29 2016-07-20 西安交通大学 一种抵御电力系统直流状态估计中数据完整性攻击的方法
CN107591844A (zh) * 2017-09-22 2018-01-16 东南大学 考虑节点注入功率不确定性的主动配电网鲁棒重构方法
CN107909276A (zh) * 2017-11-20 2018-04-13 广东电网有限责任公司电力调度控制中心 一种电力信息物理融合系统的脆弱性评估方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011038031A1 (en) * 2009-09-22 2011-03-31 Alnylam Pharmaceuticals, Inc. Dual targeting sirna agents
CN102195362A (zh) * 2011-05-26 2011-09-21 中国电力科学研究院 一种计及系统运行可靠性的概率动态调度方法
WO2013176784A1 (en) * 2012-05-24 2013-11-28 University Of Southern California Optimal strategies in security games
CN103033715A (zh) * 2012-12-25 2013-04-10 山东电力集团公司电力科学研究院 变电站内区域设备运行状态检测系统
CN103544372A (zh) * 2013-08-05 2014-01-29 中国科学院电工研究所 一种微型燃气轮机热电联供系统的机组选型方法
CN105337971A (zh) * 2015-10-20 2016-02-17 上海电机学院 一种电力信息系统云安全保障体系及其实现方法
CN105760959A (zh) * 2016-02-24 2016-07-13 武汉大学 一种基于两阶段萤火虫编码的机组组合优化方法
CN105791280A (zh) * 2016-02-29 2016-07-20 西安交通大学 一种抵御电力系统直流状态估计中数据完整性攻击的方法
CN107591844A (zh) * 2017-09-22 2018-01-16 东南大学 考虑节点注入功率不确定性的主动配电网鲁棒重构方法
CN107909276A (zh) * 2017-11-20 2018-04-13 广东电网有限责任公司电力调度控制中心 一种电力信息物理融合系统的脆弱性评估方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHENG WANG: "Robust Defense Strategy for Gas–Electric Systems", 《TRANSACTIONS ON POWER SYSTEMS》 *
KAIMING XIAO: "Dynamic Defense Strategy against Stealth Malware", 《IEEE CONFERENCE ON COMPUTER COMMUNICATIONS》 *
XUAN WU: "An Efficient Tri-Level Optimization Model for for Electric Grid Defense Planning", 《IEEE TRANSACTIONS ON POWER SYSTEMS》 *
YUNHE HOU: "Generation Dispatch with Air Pollutant Dispersion", 《2013 IEEE POWER & ENERGY SOCIETY GENERAL MEETING》 *
ZHIJUN QIN: "Quantification of Intra-hour Security-Constrained", 《IEEE TRANSACTIONS ON SUSTAINABLE ENERGY》 *
孙磊: "弹性电力系统环境下的系统规划与恢复优化", 《浙江大学》 *
王震: "安全博弈论研究综述", 《指挥与控制学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763951A (zh) * 2019-09-18 2020-02-07 中国南方电网有限责任公司超高压输电公司检修试验中心 用于输电线路停电检测识别的最快变化检测模型构建方法
CN110763951B (zh) * 2019-09-18 2020-08-11 中国南方电网有限责任公司超高压输电公司检修试验中心 用于输电线路停电检测识别的最快变化检测模型构建方法
CN111969658A (zh) * 2020-08-26 2020-11-20 重庆大学 考虑风电的发输电系统防御性-常规协调规划方法
CN112260271A (zh) * 2020-10-10 2021-01-22 北京交通大学 一种配电网故障恢复策略的生成方法和装置
CN112801533A (zh) * 2021-02-08 2021-05-14 重庆大学 一种考虑决策依赖不确定的电力系统运行可靠性评估方法
CN112801533B (zh) * 2021-02-08 2023-08-25 重庆大学 一种考虑决策依赖不确定的电力系统运行可靠性评估方法

Also Published As

Publication number Publication date
CN108964051B (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
Zhang et al. Optimal allocation of PV generation and battery storage for enhanced resilience
Chen et al. Key technologies for integration of multitype renewable energy sources—Research on multi-timeframe robust scheduling/dispatch
Varaiya et al. Smart operation of smart grid: Risk-limiting dispatch
CN108964051A (zh) 一种电力系统预防调度与恢复调度协调优化策略构建方法
Panda et al. Optimizing hybrid power systems with compressed air energy storage
CN108599158A (zh) 一种用于灾害后快速恢复供电的多微网的分层优化调度方法及系统
Salyani et al. Chance constrained simultaneous optimization of substations, feeders, renewable and non-renewable distributed generations in distribution network
Nick et al. Wind power optimal capacity allocation to remote areas taking into account transmission connection requirements
CN105006844A (zh) 一种间歇式发电并网条件下的电力系统日前鲁棒调度系统
CN104751246A (zh) 一种基于随机机会约束的有源配电网规划方法
Zhai et al. Robust model predictive control for energy management of isolated microgrids
CN104079000B (zh) 一种适用于大规模风电接入的电网输电裕度控制方法
Cao et al. Chance-constrained optimal configuration of BESS considering uncertain power fluctuation and frequency deviation under contingency
Kabouris et al. Application of interruptible contracts to increase wind-power penetration in congested areas
Zhou et al. Robust energy management in active distribution systems considering temporal and spatial correlation
Abdalla et al. Two-stage robust generation expansion planning considering long-and short-term uncertainties of high share wind energy
Ogimoto et al. Making renewables work: Operational practices and future challenges for renewable energy as a major power source in Japan
Hashemifar et al. Two-layer robust optimization framework for resilience enhancement of microgrids considering hydrogen and electrical energy storage systems
Stasinos et al. Microgrids for power system resilience enhancement
Cao et al. Multi-objective optimal siting and sizing of BESS considering transient frequency deviation and post-disturbance line overload
Bernal-Rubiano et al. Mathematical uncertainty cost functions for controllable photo-voltaic generators considering uniform distributions
Picioroaga et al. Resilient operation of distributed resources and electrical networks in a smart city context
Matevosyan et al. Operational security: The case of Texas
Aznavi et al. Two-stage energy management of smart homes in presence of intermittencies
Le et al. Design, sizing and operation of a hybrid renewable energy system for farming

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant