CN108960556A - 一种冷热电联供系统多目标优化运行方法 - Google Patents

一种冷热电联供系统多目标优化运行方法 Download PDF

Info

Publication number
CN108960556A
CN108960556A CN201810258881.5A CN201810258881A CN108960556A CN 108960556 A CN108960556 A CN 108960556A CN 201810258881 A CN201810258881 A CN 201810258881A CN 108960556 A CN108960556 A CN 108960556A
Authority
CN
China
Prior art keywords
energy
formula
heat pump
cold
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810258881.5A
Other languages
English (en)
Inventor
李超群
陈涛
孙云东
张昕
王雪生
张丹丹
张奇
宋玉鼎
张名博
王竑晟
王磊
石屾
霍现旭
宋杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
NARI Group Corp
Nari Technology Co Ltd
NARI Nanjing Control System Co Ltd
Binhai Power Supply Co of State Grid Tianjin Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
NARI Group Corp
Nari Technology Co Ltd
NARI Nanjing Control System Co Ltd
Binhai Power Supply Co of State Grid Tianjin Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, NARI Group Corp, Nari Technology Co Ltd, NARI Nanjing Control System Co Ltd, Binhai Power Supply Co of State Grid Tianjin Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201810258881.5A priority Critical patent/CN108960556A/zh
Publication of CN108960556A publication Critical patent/CN108960556A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • F25B27/007Machines, plants or systems, using particular sources of energy using solar energy in sorption type systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning
    • Y02P90/84Greenhouse gas [GHG] management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Operations Research (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Sustainable Development (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Air Conditioning Control Device (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种冷热电联供系统多目标优化运行方法,先分别针对联供系统和分供系统的的设备建立数学模型;再针对各个设备分别计算联供和分供系统总运行成本、总碳排放量、总一次能源消耗量;再采用加权的方法建立多目标优化模型,再采用混合整数线性规划求解器对分供系统进行单目标优化求解,最后得到联供系统的优化运行策略与地源热泵耦合;本发明通能够有效提高终端用户的能源利用效率,缓解区域电网能源供需的矛盾,促进分布式可再生能源的就地消纳,最大程度实现联供系统的社会效益。

Description

一种冷热电联供系统多目标优化运行方法
技术领域
本发明属于电力系统运行分析与控制技术领域,具体涉及一种冷热电联供系统的多目标优化运行方法。
背景技术
随着经济技术的不断发展以及世界人口的不断增长,能源问题正面临巨大的挑战,未来能源需求将不断上升,以化石能源为主导的一次能源消耗形式进一步加剧了能源供应的紧张形势。此外,化石能源的燃烧带来了巨大的环境问题,合理有效地能源利用将成为学术界研究的热点。目前,用能形式逐渐由单一化转向多元化,传统能源供应系统一般以分供的形式满足能源需求,由此带来了一些问题。对于发电系统,化石能源经燃烧产生热能,只有其中一小部分的能量转化为了电能,其余热能都耗散在空气中,因此能量损失严重,能源利用率极低。对于冷能,由于夏季冷能需求量较大,传统冷能都由电制冷空调来满足,大量的空调制冷负荷增加了电网调峰调谷压力。冷热电联供系统是在热电联供系统基础上发展起来的吗,用于直接向用户提供冷能、热能、电能等,满足用户多样化的能源需求。冷热电联供利用燃料产生的能量进行做功,高品质的能量发电,低品质的热量通过余热回收用来供热、提供生活热水和制冷,实现能量的梯级利用。天津中新生态城是致力于改善生态环境、建设生态文明的战略性工程,该工程是多种能源综合利用的能源示范项目。因此,如何制定合理的能源调度策略,以充分发挥能源站的社会效益,具有重要的研究意义。
发明内容
为解决现有技术的不足,本发明的目的在于提供一种冷热电联供系统多目标优化运行方法,能够有效提高终端用户的能源利用效率,缓解区域电网能源供需的矛盾,促进分布式可再生能源的就地消纳,最大程度实现联供系统的社会效益。
为了实现上述目标,本发明采用如下的技术方案:
一种冷热电联供系统多目标优化运行方法,包括如下步骤:
步骤一,根据能源站冷热电联供系统的设备及能源供应方式,建立数学模型,同时建立各设备的数学模型;
采用的设备包括:燃气内燃机、电制冷机组、地源热泵机组、烟气热水型溴冷机、水蓄冷电锅炉、水蓄热电锅炉、连接于燃气内燃机的吸收式制冷机组、连接于燃气内燃机的吸收式制热机组、余热吸收机、蓄能槽;
能源供应方式包括:电网、天然气;
冷负荷主由冷地源热泵机组、吸收式制冷机组以及水蓄冷供应,缺额部分由电制冷机组供应;
电制冷机组由市政电网供电,地源热泵机组由燃气内燃机或市政电网供应,燃气内燃发电同时产生余热,该部分余热回收后可被吸收式制冷机利用,产生需要的冷能;
热负荷由地源热泵机组直接供热、余热吸收机供热以及蓄能槽释热;
步骤二,根据能源站冷热电分供系统的的设备及能源供应方式,建立数学模型,同时建立各设备的数学模型;
采用的设备包括:燃气内燃机、电制冷机组、地源热泵机组、烟气热水型溴冷机、水蓄冷电锅炉、水蓄热电锅炉、锅炉、连接于锅炉的吸收式制冷机、连接于锅炉的吸收式制热机;
能源供应方式包括:电网、天然气;
冷负荷由电制冷机、地源热泵机组、水蓄冷罐以及吸收式制冷机提供;
热负荷由地源热泵、锅炉以及吸收式制热机提供热能,电制冷机和地源热泵机组由市政电网供电;
步骤三,先针对各个设备分别计算联供和分供系统总运行成本,联供和分供系统总碳排放量,联供和分供系统总一次能源消耗量;再采用加权的方法建立多目标优化模型;
步骤四,根据所建立的模型,先通过采用混合整数线性规划求解器,可以得到优化后的分供系统总运行成本f1 SP、分供系统总碳排放量分供系统总一次能源消耗量再代入下式求解得到联供系统的优化运行策略;
式中:β1,β2,β3为多目标权重系数。
前述的一种冷热电联供系统多目标优化运行方法,联供系统、分供系统燃气内燃机组的数学模型如下所述:
冷热电联供系统发电机组选用燃气内燃发电机,利用天然气燃烧产生的动力带动发电机发电,发出的电力不并入电网,只用于烟气热水型余热吸收式空调机及辅机和地源热泵机组及其辅机,可表示为:
式中:为t时段燃气内燃机发电量;为第i台地源热泵机组耗电量;为吸收式制冷机耗电量。
因烟气热水型余热吸收式制冷机主要利用热能,因而其耗电量主要用于给其辅机供电,相比于其值很小,可忽略不计;燃气内燃机消耗天然气量以及热回收量分别为:
式中:为燃气内燃机消耗天然气量;ηpgu为燃气内燃机的效率;为热回收量;ηr为热回收效率。
前述的一种冷热电联供系统多目标优化运行方法,联供系统、分供系统电制冷机组的数学模型如下所述:
电制冷机组的制冷量与其电能输入量成正比:
式中:为电制冷机产生的冷能;为电网向电制冷机的供电量;COPec为电制冷机的性能系数。
前述的一种冷热电联供系统多目标优化运行方法,联供系统、分供系统地源热泵机组的数学模型如下所述:
地源热泵机组将低品位的电能转化为高品位的冷能或热能,其产生的能量可用于直接供应冷/热负荷,也可用于储存,表示为:
式中:为第i台地源热泵机组供冷量;为蓄冷量;为由市政电网向地源热泵机组的供电量;为由燃气内燃机向地源热泵供电量;COPgshp,c为地源热泵制冷性能系数;为表示地源热泵供冷的状态量,为0-1变量,表示地源热泵供冷;为地源热泵供冷上限。此外,变量下标中“c”代表供冷,当冬季供热时,变量下标可用“h”代替。
前述的一种冷热电联供系统多目标优化运行方法,联供系统、分供系统水蓄冷电锅炉、水蓄热电锅炉的数学模型如下所述:
能量来源于地源热泵机组,考虑到蓄能设备热量损失,其蓄能量可表示为:
式中:为t时段蓄冷设备的蓄冷量;ηST为热损失系数;为蓄冷设备释放的冷能;为表示蓄冷设备的运行状态的0-1变量,表示水蓄冷设备处于蓄冷状态,表示水蓄冷设备处于释放冷能状态。
前述的一种冷热电联供系统多目标优化运行方法,联供系统、分供系统吸收式制冷机组的数学模型如下所述:
当发电机组运行时,首先利用发电机组的余热作为吸收机的热源,供应部分冷能;吸收式制冷机组的制冷量与其热能输入量成正比:
式中:为吸收式制冷机的供冷量;COPam,c为吸收式制冷机性能系数。
前述的一种冷热电联供系统多目标优化运行方法,锅炉用于补充冷能或热能的能量缺额,分供系统锅炉的数学模型如下所述:
式中:ηb为锅炉效率。
前述的一种冷热电联供系统多目标优化运行方法,步骤三,先针对各个设备分别计算联供和分供系统总运行成本,联供和分供系统总碳排放量,联供和分供系统总一次能源消耗量;再采用加权的方法建立多目标优化模型;
联供系统总运行成本可表示为:
分供系统总运行成本可表示为:
式中:T为能源站调度周期;πe为峰谷电价;πg为天然气单价;为分供系统天然气需求量,CCHP表示冷热电联供系统,SP表示冷热电分供系统。
联供系统总碳排放量可表示为:
分供系统总碳排放量可表示为:
式中:μe,μg为电力和天然气的碳排放转换系数。
联供系统总一次能源消耗量可表示为:
分供系统总一次能源消耗量可表示为:
式中:ke,kg为电力和天然气的一次能源转换系数;ηgrid为电网传输效率。
联供系统可表达为如下形式:
即:
式中:β1,β2,β3为多目标权重系数。
前述的一种冷热电联供系统多目标优化运行方法,冷热电联供系统约束包括两类:一是冷、热、电能量的平衡约束;二是能源站各设备的物理约束;
电能平衡约束可表示为:
式中:为能源站电能负荷。
冷负荷平衡约束可表示为:
式中:为能源站冷负荷。
热负荷平衡约束可表示为:
式中:为能源站热负荷。
本发明的有益之处在于:本发明提供一种冷热电联供系统多目标优化运行方法,本系统与地源热泵耦合,全面考虑发电单元、电制冷机、吸收式制冷机、地源热泵、水(冰)蓄冷、电锅炉蓄热设备,分别对各个设备建立数学模型,通过蓄能技术储存一定的能量用于高峰时段使用;先通过采用混合整数线性规划求解器对分供系统进行单目标优化求解,再求解得到联供系统的优化运行策略;使得联供系统运行的社会效益最大化;能够有效提高终端用户的能源利用效率,缓解区域电网能源供需的矛盾,促进分布式可再生能源的就地消纳,最大程度实现联供系统的社会效益。
附图说明
图1是本发明冷热电联供系统的结构图;
图2是本发明冷热电分供系统的结构图;
图3本发明夏季电负荷和冷负荷;
图4本发明夏季电能供应调度结果;
图5本发明夏季冷能供应结果。
具体实施方式
以下结合附图和具体实施例对本发明作具体的介绍。
一种冷热电联供系统多目标优化运行方法,包括如下步骤:
步骤一,根据能源站冷热电联供系统的设备及能源供应方式,建立数学模型如图1所示,同时建立各设备的数学模型;
采用的设备包括:燃气内燃机、电制冷机组、地源热泵机组、烟气热水型溴冷机、水蓄冷电锅炉、水蓄热电锅炉、连接于燃气内燃机的吸收式制冷机组、连接于燃气内燃机的吸收式制热机组、余热吸收机、蓄能槽;
能源供应方式包括:电网、天然气;
冷负荷主由冷地源热泵机组、吸收式制冷机组以及水蓄冷供应,缺额部分由电制冷机组供应;
电制冷机组由市政电网供电,地源热泵机组由燃气内燃机或市政电网供应,燃气内燃发电同时产生余热,该部分余热回收后可被吸收式制冷机利用,产生需要的冷能;
热负荷由地源热泵机组直接供热、余热吸收机供热以及蓄能槽释热;
步骤二,根据能源站冷热电分供系统的的设备及能源供应方式,建立数学模型,同时建立各设备的数学模型;
采用的设备包括:燃气内燃机、电制冷机组、地源热泵机组、烟气热水型溴冷机、水蓄冷电锅炉、水蓄热电锅炉、锅炉、连接于锅炉的吸收式制冷机、连接于锅炉的吸收式制热机;
能源供应方式包括:电网、天然气;
冷负荷由电制冷机、地源热泵机组、水蓄冷罐以及吸收式制冷机提供;
热负荷由地源热泵、锅炉以及吸收式制热机提供热能,电制冷机和地源热泵机组由市政电网供电;
步骤三,先针对各个设备分别计算联供和分供系统总运行成本,联供和分供系统总碳排放量,联供和分供系统总一次能源消耗量;再采用加权的方法建立多目标优化模型;
联供系统总运行成本可表示为:
分供系统总运行成本可表示为:
式中:T为能源站调度周期;πe为峰谷电价;πg为天然气单价;为分供系统天然气需求量,CCHP表示冷热电联供系统,SP表示冷热电分供系统。
联供系统总碳排放量可表示为:
分供系统总碳排放量可表示为:
式中:μe,μg为电力和天然气的碳排放转换系数。
联供系统总一次能源消耗量可表示为:
分供系统总一次能源消耗量可表示为:
式中:ke,kg为电力和天然气的一次能源转换系数;ηgrid为电网传输效率。
联供系统可表达为如下形式:
即:
式中:β1,β2,β3为多目标权重系数。
不管是冷热电联供系统还是分供系统,都需要从经济性、环保性及节能性角度进行考虑,并满足运行约束。冷热电联供系统约束包括两类:一是冷、热、电能量的平衡约束;二是能源站各设备的物理约束;
电能平衡约束可表示为:
式中:为能源站电能负荷。
冷负荷平衡约束可表示为:
式中:为能源站冷负荷。
热负荷平衡约束可表示为:
式中:为能源站热负荷。
步骤四,根据所建立的模型,先通过采用混合整数线性规划求解器,可以得到优化后的分供系统总运行成本f1 SP、分供系统总碳排放量分供系统总一次能源消耗量再代入下式求解得到联供系统的优化运行策略;
式中:β1,β2,β3为多目标权重系数。当权重系数取相同的值时,能较好的描述目标函数的多目标特性。
需要说明的是:作为一种优选,混合整数线性规划求解器选用CPLEX求解器,CPLEX是IBM公司研发的一款高性能的数学规划问题求解器,可以快速、稳定地求解线性规划、混合整数规划、二次规划等一系列规划问题。CPLEX的速度非常快,可以解决现实世界中许多大规模的问题,它能够处理有数百万个约束和变量的问题,而且一直刷新数学规划的最高性能记录。其标准版本是一个WINDOS下的IDE应用软件,但是开发人员能通过组件库从其他程序语言调用CPLEX算法。随标准版本一起发布的文件中包含一个名为MATLAB文件夹,将此文件夹添加到搜索路径下就可以在MATLAB下调用CPLEX高效地求解数学规划问题。
联供系统、分供系统燃气内燃机组的数学模型如下所述:
冷热电联供系统发电机组选用燃气内燃发电机,利用天然气燃烧产生的动力带动发电机发电,发出的电力不并入电网,只用于烟气热水型余热吸收式空调机及辅机和地源热泵机组及其辅机,可表示为:
式中:为t时段燃气内燃机发电量;为第i台地源热泵机组耗电量;为吸收式制冷机耗电量。
因烟气热水型余热吸收式制冷机主要利用热能,因而其耗电量主要用于给其辅机供电,相比于其值很小,可忽略不计;燃气内燃机消耗天然气量以及热回收量分别为:
式中:为燃气内燃机消耗天然气量;ηpgu为燃气内燃机组效率;为热回收量;ηr为热回收效率。
联供系统、分供系统电制冷机组的数学模型如下所述:
电制冷机组的制冷量与其电能输入量成正比:
式中:为电制冷机产生的冷能;为电网向电制冷机的供电量;COPec为电制冷机的性能系数。
联供系统、分供系统地源热泵机组的数学模型如下所述:
地源热泵机组将低品位的电能转化为高品位的冷能或热能,其产生的能量可用于直接供应冷/热负荷,也可用于储存,表示为:
式中:为第i台地源热泵机组供冷量;为蓄冷量;为由市政电网向地源热泵机组的供电量;为由燃气内燃机向地源热泵供电量;COPgshp,c为地源热泵制冷性能系数;为表示地源热泵供冷的状态量,为0-1变量,表示地源热泵供冷;为地源热泵供冷上限。此外,变量下标中“c”代表供冷,当冬季供热时,变量下标可用“h”代替。
联供系统、分供系统水蓄冷电锅炉、水蓄热电锅炉的数学模型如下所述:
能量来源于地源热泵机组,考虑到蓄能设备热量损失,其蓄能量可表示为:
式中:为t时段蓄冷设备的蓄冷量;ηST为热损失系数;为蓄冷设备释放的冷能;为表示蓄冷设备的运行状态的0-1变量,表示水蓄冷设备处于蓄冷状态,表示水蓄冷设备处于释放冷能状态。
可以看出,公式表示不允许地源热泵同时供能和蓄能;公式表示蓄能设备不能同时蓄能和放能;公式表示调度周期前后储能设备蓄能量应保持不变。
联供系统、分供系统吸收式制冷机组的数学模型如下所述:
当发电机组运行时,首先利用发电机组的余热作为吸收机的热源,供应部分冷能;吸收式制冷机组的制冷量与其热能输入量成正比:
式中:为吸收式制冷机的供冷量;COPam,c为吸收式制冷机性能系数。
分供与联供系统采用的设备区别不大,分供系统增加了锅炉,用于补充冷能或热能的能量缺额。锅炉用于补充冷能或热能的能量缺额,分供系统锅炉的数学模型如下所述:
式中:ηb为锅炉效率。
为了进一步证明本方法的有益效果,本发明以天津中新生态城能源站冷热电联供为研究对象进行算例分析,以能源站夏季供冷为例说明;
冬季供热可以以相同的方式考虑,此处不赘述。该能源站总服务建筑面积约238000m2,站房总建筑面积4157m2。能源站年供冷天数约153日,从5月1日到9月30日,年制冷容量达9490GJ。年供热天数约151日,从11月1日到3月11日,总供热容量达7210GJ。本文研究的冷热电联供系统主要包括2台电制冷机组,2台地源热泵机组,4个蓄水罐,1台燃气内燃机组,1台吸收式制冷机组,其主要参数如表1。电价采用天津市峰谷电价,峰时6:00-21:00为1.33¥/kWh,谷时1:00-5:00,22:00-24:00为0.41¥/kWh,天然气价格为0.193¥/kWh。碳排放折算系数μe为968g/kWh,μg为220g/kWh,一次能源消耗折算系数ke为3.336,kg为1.047。
表1冷热电联供系统设备参数
首先利用EnergyPlus软件计算动漫园内夏季设计日电负荷和冷负荷曲线,如图附图1所示。首先分别对联供系统以及分供系统进行单目标优化,分别以经济成本、碳排放量以及一次能源消耗量最小为目标函数,所得结果如表2所示。
表2单目标优化结果
将分供系统单目标优化结果代入多目标优化模型中,所得优化调度结果如附图4和附图5,其中附图4表示能源站各设备的耗电量以及电网各时段的供电量,附图5表示能源站各设备的供冷量。以冷热电联供系统综合多目标优化为目标函数,所得最优经济成本为128512¥,碳排放量为103946kg,一次能源消耗为399037,比较表1,可以看出联供系统较分供系统在目标函数上有较大的改进;看表2的单目标优化的结果,可以看出虽然多目标优化牺牲了单目标优化的部分优化目标,但其达到了整体的综合优化,其考虑更为合理。
本发明提供一种冷热电联供系统多目标优化运行方法,本系统与地源热泵耦合,全面考虑发电单元、电制冷机、吸收式制冷机、地源热泵、水(冰)蓄冷、电锅炉蓄热设备,分别对各个设备建立数学模型,通过蓄能技术储存一定的能量用于高峰时段使用;先通过采用混合整数线性规划求解器对分供系统进行单目标优化求解,再求解得到联供系统的优化运行策略;使得联供系统运行的社会效益最大化;能够有效提高终端用户的能源利用效率,缓解区域电网能源供需的矛盾,促进分布式可再生能源的就地消纳,最大程度实现联供系统的社会效益。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,上述实施例不以任何形式限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (9)

1.一种冷热电联供系统多目标优化运行方法,其特征在于,包括如下步骤:
步骤一,根据能源站冷热电联供系统的设备及能源供应方式,建立数学模型,同时建立各设备的数学模型;
采用的设备包括:燃气内燃机、电制冷机组、地源热泵机组、烟气热水型溴冷机、水蓄冷电锅炉、水蓄热电锅炉、连接于燃气内燃机的吸收式制冷机组、连接于燃气内燃机的吸收式制热机组、余热吸收机、蓄能槽;
能源供应方式包括:电网、天然气;
冷负荷由冷地源热泵机组、吸收式制冷机组以及水蓄冷供应,缺额部分由电制冷机组供应;
电制冷机组由市政电网供电,地源热泵机组由燃气内燃机或市政电网供应,燃气内燃发电同时产生余热,该部分余热回收后可被吸收式制冷机利用,产生需要的冷能;
热负荷由地源热泵机组直接供热、余热吸收机供热以及蓄能槽释热;
步骤二,根据能源站冷热电分供系统的设备及能源供应方式,建立数学模型,同时建立各设备的数学模型;
采用的设备包括:燃气内燃机、电制冷机组、地源热泵机组、烟气热水型溴冷机、水蓄冷电锅炉、水蓄热电锅炉、锅炉、连接于锅炉的吸收式制冷机、连接于锅炉的吸收式制热机;
能源供应方式包括:电网、天然气;
冷负荷由电制冷机、地源热泵机组、水蓄冷罐以及吸收式制冷机提供;
热负荷由地源热泵、锅炉以及吸收式制热机提供热能,电制冷机和地源热泵机组由市政电网供电;
步骤三,先针对各个设备分别计算联供和分供系统总运行成本,联供和分供系统总碳排放量,联供和分供系统总一次能源消耗量;再采用加权的方法建立多目标优化模型;
步骤四,根据所建立的模型,先采用混合整数线性规划求解器对分供系统进行单目标优化求解,可以得到优化后的分供系统总运行成本f1 SP、分供系统总碳排放量分供系统总一次能源消耗量再代入下式求解得到联供系统的优化运行策略;
式中:β1,β2,β3为多目标权重系数。
2.根据权利要求1所述的一种冷热电联供系统多目标优化运行方法,其特征在于,联供系统、分供系统燃气内燃机组的数学模型如下所述:
冷热电联供系统发电机组选用燃气内燃发电机,利用天然气燃烧产生的动力带动发电机发电,发出的电力不并入电网,只用于烟气热水型余热吸收式空调机及辅机和地源热泵机组及其辅机,可表示为:
式中:为t时段燃气内燃机发电量;为第i台地源热泵机组耗电量;为吸收式制冷机耗电量;
因烟气热水型余热吸收式制冷机主要利用热能,因而其耗电量主要用于给其辅机供电,相比于其值很小,可忽略不计;燃气内燃机消耗天然气量以及热回收量分别为:
式中:为燃气内燃机消耗天然气量;ηpgu为燃气内燃机效率;为热回收量;ηr为热回收效率。
3.根据权利要求1所述的一种冷热电联供系统多目标优化运行方法,其特征在于,联供系统、分供系统电制冷机组的数学模型如下所述:
电制冷机组的制冷量与其电能输入量成正比:
式中:为电制冷机组产生的冷能;为电网向电制冷机组的供电量;COPec为电制冷机组的性能系数。
4.根据权利要求1所述的一种冷热电联供系统多目标优化运行方法,其特征在于,联供系统、分供系统地源热泵机组的数学模型如下所述:
地源热泵机组将低品位的电能转化为高品位的冷能或热能,其产生的能量可用于直接供应冷/热负荷,也可用于储存,表示为:
式中:为第i台地源热泵机组供冷量;为蓄冷量;为由市政电网向地源热泵机组的供电量;为由燃气内燃机向地源热泵供电量;COPgshp,c为地源热泵制冷性能系数;为表示地源热泵供冷的状态量,为0-1变量,表示地源热泵供冷;为地源热泵供冷上限;此外,变量下标中“c”代表供冷,当冬季供热时,变量下标可用“h”代替。
5.根据权利要求1所述的一种冷热电联供系统多目标优化运行方法,其特征在于,联供系统、分供系统水蓄冷电锅炉、水蓄热电锅炉的数学模型如下所述:能量来源于地源热泵机组,考虑到蓄能设备热量损失,其蓄能量可表示为:
式中:为t时段蓄冷设备的蓄冷量;ηST为热损失系数;为蓄冷设备释放的冷能;为表示蓄冷设备的运行状态的0-1变量,表示水蓄冷设备处于蓄冷状态,表示水蓄冷设备处于释放冷能状态。
6.根据权利要求1所述的一种冷热电联供系统多目标优化运行方法,其特征在于,联供系统、分供系统吸收式制冷机组的数学模型如下所述:
当发电机组运行时,首先利用发电机组的余热作为吸收机的热源,供应部分冷能;吸收式制冷机组的制冷量与其热能输入量成正比:
式中:为吸收式制冷机的供冷量;COPam,c为吸收式制冷机性能系数。
7.根据权利要求1所述的一种冷热电联供系统多目标优化运行方法,其特征在于,锅炉用于补充冷能或热能的能量缺额,分供系统锅炉的数学模型如下所述:
式中:ηb为锅炉效率。
8.根据权利要求1所述的一种冷热电联供系统多目标优化运行方法,其特征在于,步骤三,先针对各个设备分别计算联供和分供系统总运行成本,联供和分供系统总碳排放量,联供和分供系统总一次能源消耗量;再采用加权的方法建立多目标优化模型;
联供系统总运行成本可表示为:
分供系统总运行成本可表示为:
式中:T为能源站调度周期;πe为峰谷电价;πg为天然气单价;为分供系统天然气需求量,CCHP表示冷热电联供系统,SP表示冷热电分供系统;
联供系统总碳排放量可表示为:
分供系统总碳排放量可表示为:
式中:μe,μg为电力和天然气的碳排放转换系数;
联供系统总一次能源消耗量可表示为:
分供系统总一次能源消耗量可表示为:
式中:ke,kg为电力和天然气的一次能源转换系数;ηgrid为电网传输效率;
联供系统可表达为如下形式:
即:
式中:β1,β2,β3为多目标权重系数。
9.根据权利要求1所述的一种冷热电联供系统多目标优化运行方法,其特征在于,冷热电联供系统约束包括两类:一是冷、热、电能量的平衡约束;二是能源站各设备的物理约束;
电能平衡约束可表示为:
式中:为能源站电能负荷;
冷负荷平衡约束可表示为:
式中:为能源站冷负荷;
热负荷平衡约束可表示为:
式中:为能源站热负荷。
CN201810258881.5A 2018-03-27 2018-03-27 一种冷热电联供系统多目标优化运行方法 Pending CN108960556A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810258881.5A CN108960556A (zh) 2018-03-27 2018-03-27 一种冷热电联供系统多目标优化运行方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810258881.5A CN108960556A (zh) 2018-03-27 2018-03-27 一种冷热电联供系统多目标优化运行方法

Publications (1)

Publication Number Publication Date
CN108960556A true CN108960556A (zh) 2018-12-07

Family

ID=64495355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810258881.5A Pending CN108960556A (zh) 2018-03-27 2018-03-27 一种冷热电联供系统多目标优化运行方法

Country Status (1)

Country Link
CN (1) CN108960556A (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109658005A (zh) * 2018-12-29 2019-04-19 天津大学 考虑电储能的园区综合能源系统设备选型与容量规划方法
CN109696891A (zh) * 2018-12-20 2019-04-30 北京华建网源电力设计研究院有限公司 包含空气源热泵和储能的微能源网系统及其运行控制方法
CN109711080A (zh) * 2019-01-03 2019-05-03 山东大学 一种冷热电联供系统多时间尺度优化运行方法
CN109829643A (zh) * 2019-01-28 2019-05-31 山东大学 一种多层次分析的新能源冷热电联供系统综合评价方法及系统
CN109885855A (zh) * 2018-12-13 2019-06-14 中电智慧综合能源有限公司 考虑机组特性的冷-热-电三联供能源站稳态调度方法
CN109919506A (zh) * 2019-03-15 2019-06-21 南方电网科学研究院有限责任公司 用户级综合能源系统及其关键设备稳态建模方法及装置
CN109944650A (zh) * 2019-03-22 2019-06-28 东北大学 一种含超临界压缩空气储能的冷热电联产系统及方法
CN110309954A (zh) * 2019-06-13 2019-10-08 华北电力大学 一种天然气分布式能源系统运行机制优化方法
CN110361969A (zh) * 2019-06-17 2019-10-22 清华大学 一种冷热电综合能源系统优化运行方法
CN110400090A (zh) * 2019-07-31 2019-11-01 广东电网有限责任公司 一种基于多目标随机优化的智能园区多能源微网配置方法
CN110837938A (zh) * 2019-11-14 2020-02-25 山东大学 基于模型预测控制架构的综合能源系统优化运行方法及系统
CN111140911A (zh) * 2020-01-03 2020-05-12 南方电网科学研究院有限责任公司 一种智能楼宇综合供暖设备的调控方法
CN109764573B (zh) * 2018-12-13 2020-07-10 清华大学 考虑余热充分利用的楼宇型冷热电三联供系统的控制方法
CN111415042A (zh) * 2020-03-20 2020-07-14 上海燃气工程设计研究有限公司 一种基于气电耦合的区域分布式能源系统及优化方法
CN111429301A (zh) * 2020-03-26 2020-07-17 中国科学技术大学 一种容量配置和运行策略的协同优化处理方法和装置
CN111461433A (zh) * 2020-03-31 2020-07-28 国网上海市电力公司 基于需求分布连续条件下的区域分布式能源系统优化方法
CN111461429A (zh) * 2020-03-31 2020-07-28 上海燃气工程设计研究有限公司 一种气电协调的多能互补系统优化方法
CN111769603A (zh) * 2020-07-13 2020-10-13 国网天津市电力公司 一种基于电-气耦合系统安全裕度的机组优化调度方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102411303A (zh) * 2011-12-05 2012-04-11 华北电力大学 一种燃气型冷热电联供系统的优化调度装置及方法
CN104766133A (zh) * 2015-03-09 2015-07-08 山东大学 一种小型生物质沼气冷热电联供系统综合优化方法
CN105841396A (zh) * 2016-04-01 2016-08-10 华中科技大学 一种基于余热深度回收的冷热电三联供复合供能系统
CN107025519A (zh) * 2017-03-30 2017-08-08 厦门大学 区域分布式冷热电多联产系统混合整数非线性模型优化方法
CN107220427A (zh) * 2017-05-22 2017-09-29 贵州大学 一种光伏冷热电联产系统建模方法
CN107461276A (zh) * 2017-07-26 2017-12-12 中国科学院理化技术研究所 一种小型分布式冷热电联供系统
CN107807523A (zh) * 2017-10-18 2018-03-16 国网天津市电力公司电力科学研究院 考虑分时电价的区域能源互联网多源协调优化运行策略

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102411303A (zh) * 2011-12-05 2012-04-11 华北电力大学 一种燃气型冷热电联供系统的优化调度装置及方法
CN104766133A (zh) * 2015-03-09 2015-07-08 山东大学 一种小型生物质沼气冷热电联供系统综合优化方法
CN105841396A (zh) * 2016-04-01 2016-08-10 华中科技大学 一种基于余热深度回收的冷热电三联供复合供能系统
CN107025519A (zh) * 2017-03-30 2017-08-08 厦门大学 区域分布式冷热电多联产系统混合整数非线性模型优化方法
CN107220427A (zh) * 2017-05-22 2017-09-29 贵州大学 一种光伏冷热电联产系统建模方法
CN107461276A (zh) * 2017-07-26 2017-12-12 中国科学院理化技术研究所 一种小型分布式冷热电联供系统
CN107807523A (zh) * 2017-10-18 2018-03-16 国网天津市电力公司电力科学研究院 考虑分时电价的区域能源互联网多源协调优化运行策略

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杨永标: "含光伏和蓄能的冷热电联供系统调峰调蓄优化调度", 《电力系统自动化》 *
王庆华: "基于综合性能指标的天然气冷热电联供系统优化运行与配置", 《中国优秀硕士学位论文全文数据库_工程科技Ⅱ辑》 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109764573B (zh) * 2018-12-13 2020-07-10 清华大学 考虑余热充分利用的楼宇型冷热电三联供系统的控制方法
CN109885855A (zh) * 2018-12-13 2019-06-14 中电智慧综合能源有限公司 考虑机组特性的冷-热-电三联供能源站稳态调度方法
CN109885855B (zh) * 2018-12-13 2023-06-23 中电智慧综合能源有限公司 考虑机组特性的冷-热-电三联供能源站稳态调度方法
CN109696891A (zh) * 2018-12-20 2019-04-30 北京华建网源电力设计研究院有限公司 包含空气源热泵和储能的微能源网系统及其运行控制方法
CN109658005A (zh) * 2018-12-29 2019-04-19 天津大学 考虑电储能的园区综合能源系统设备选型与容量规划方法
CN109711080A (zh) * 2019-01-03 2019-05-03 山东大学 一种冷热电联供系统多时间尺度优化运行方法
CN109829643A (zh) * 2019-01-28 2019-05-31 山东大学 一种多层次分析的新能源冷热电联供系统综合评价方法及系统
CN109919506A (zh) * 2019-03-15 2019-06-21 南方电网科学研究院有限责任公司 用户级综合能源系统及其关键设备稳态建模方法及装置
CN109919506B (zh) * 2019-03-15 2023-11-14 南方电网科学研究院有限责任公司 用户级综合能源系统及其关键设备稳态建模方法及装置
CN109944650A (zh) * 2019-03-22 2019-06-28 东北大学 一种含超临界压缩空气储能的冷热电联产系统及方法
CN109944650B (zh) * 2019-03-22 2021-06-22 东北大学 一种含超临界压缩空气储能的冷热电联产系统及方法
CN110309954A (zh) * 2019-06-13 2019-10-08 华北电力大学 一种天然气分布式能源系统运行机制优化方法
CN110361969A (zh) * 2019-06-17 2019-10-22 清华大学 一种冷热电综合能源系统优化运行方法
CN110361969B (zh) * 2019-06-17 2021-01-05 清华大学 一种冷热电综合能源系统优化运行方法
CN110400090B (zh) * 2019-07-31 2023-09-22 广东电网有限责任公司 一种基于多目标随机优化的智能园区多能源微网配置方法
CN110400090A (zh) * 2019-07-31 2019-11-01 广东电网有限责任公司 一种基于多目标随机优化的智能园区多能源微网配置方法
CN110837938A (zh) * 2019-11-14 2020-02-25 山东大学 基于模型预测控制架构的综合能源系统优化运行方法及系统
CN110837938B (zh) * 2019-11-14 2023-03-10 山东大学 基于模型预测控制架构的综合能源系统优化运行方法及系统
CN111140911A (zh) * 2020-01-03 2020-05-12 南方电网科学研究院有限责任公司 一种智能楼宇综合供暖设备的调控方法
CN111415042A (zh) * 2020-03-20 2020-07-14 上海燃气工程设计研究有限公司 一种基于气电耦合的区域分布式能源系统及优化方法
CN111415042B (zh) * 2020-03-20 2024-03-08 上海能源建设工程设计研究有限公司 一种基于气电耦合的区域分布式能源系统及优化方法
CN111429301A (zh) * 2020-03-26 2020-07-17 中国科学技术大学 一种容量配置和运行策略的协同优化处理方法和装置
CN111461429A (zh) * 2020-03-31 2020-07-28 上海燃气工程设计研究有限公司 一种气电协调的多能互补系统优化方法
CN111461433A (zh) * 2020-03-31 2020-07-28 国网上海市电力公司 基于需求分布连续条件下的区域分布式能源系统优化方法
CN111461429B (zh) * 2020-03-31 2024-03-15 上海能源建设工程设计研究有限公司 一种气电协调的多能互补系统优化方法
CN111769603A (zh) * 2020-07-13 2020-10-13 国网天津市电力公司 一种基于电-气耦合系统安全裕度的机组优化调度方法
CN111769603B (zh) * 2020-07-13 2022-04-08 国网天津市电力公司 一种基于电-气耦合系统安全裕度的机组优化调度方法

Similar Documents

Publication Publication Date Title
CN108960556A (zh) 一种冷热电联供系统多目标优化运行方法
Li et al. Operation optimization for combined cooling, heating, and power system with condensation heat recovery
CN109696891B (zh) 包含空气源热泵和储能的微能源网系统及其运行控制方法
CN109474025B (zh) 一种园区级综合能源系统优化调度模型
CN108631343A (zh) 一种多能互补能源互联网优化调度方法
CN108491992A (zh) 一种含光伏和蓄能的冷热电联供系统调峰调蓄优化调度模型
CN108625988A (zh) 一种含压缩空气储能的cchp微网结构及其运行方法
CN104766133A (zh) 一种小型生物质沼气冷热电联供系统综合优化方法
CN107358345A (zh) 计及需求侧管理的分布式冷热电联供系统优化运行方法
CN105117557A (zh) 一种楼宇型冷热电联供系统动力装置选型方法
CN104820363B (zh) 基于生物质气的冷热电联供系统及能量优化控制方法
Han et al. Performance optimization for a novel combined cooling, heating and power-organic Rankine cycle system with improved following electric load strategy based on different objectives
Wu et al. Comparable analysis methodology of CCHP based on distributed energy system
CN114626721A (zh) 一种基于可时移负荷调度的农业产业园区近零碳实现方法
Chu et al. Optimization of operation strategy for a grid interactive regional energy system
CN109255487A (zh) 一种基于标准化矩阵模型的综合能源系统优化方法
Yuan et al. Operation optimization of CCHP-type microgrid considering units' part-load characteristics
CN108197412A (zh) 一种多能源耦合能量管理系统及优化方法
CN110570010A (zh) 一种含储热装置的分布式系统的能量管理方法
Yanan et al. Exergy analysis of cogeneration system for the wind–solar–gas turbine combined supply
CN207892667U (zh) 基于储热调节的局域多种能源优化物联网
CN111520841A (zh) 基于高效低碳排放准则的冷热电三联供系统调控策略
Niu et al. Research on operation optimization of integrated energy system
CN110986385A (zh) 一种太阳能和燃气耦合的多能互补供能系统
CN110222969A (zh) 一种考虑运行优化的海水淡化微能源网规划方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181207