CN108957225A - 一种计及电缆分布电容的直流配电线路单端故障测距方法 - Google Patents

一种计及电缆分布电容的直流配电线路单端故障测距方法 Download PDF

Info

Publication number
CN108957225A
CN108957225A CN201810586235.1A CN201810586235A CN108957225A CN 108957225 A CN108957225 A CN 108957225A CN 201810586235 A CN201810586235 A CN 201810586235A CN 108957225 A CN108957225 A CN 108957225A
Authority
CN
China
Prior art keywords
fault
distributed capacitance
meter
cable distributed
power distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810586235.1A
Other languages
English (en)
Other versions
CN108957225B (zh
Inventor
段建东
汪鑫鑫
杨青
魏朝阳
李再男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201810586235.1A priority Critical patent/CN108957225B/zh
Publication of CN108957225A publication Critical patent/CN108957225A/zh
Application granted granted Critical
Publication of CN108957225B publication Critical patent/CN108957225B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)

Abstract

本发明公开了一种计及电缆分布电容的直流配电线路单端故障测距方法,步骤1、建立计及电缆分布电容的故障测距模型,并推导在计及电缆分布电容情况下的故障测距方程以及常系数公式;步骤2、采集故障后的整流侧正极电压和整流侧正极电流,代入常系数公式得到多组系数,将多组系数代入故障测距方程形成超定方程组;步骤3、应用最小二乘法解上述超定方程组,得到故障距离x和过渡电阻Rf。针对当前直流配电线路故障测距所存在的问题,推导了计及电缆分布电容的故障测距方程,并应用最小二乘法对方程进行参数识别,为直流配电系统提供低成本、高精度的故障定位方法。

Description

一种计及电缆分布电容的直流配电线路单端故障测距方法
技术领域
本发明属于电力系统故障定位方法技术领域,具体涉及一种计及电缆分布电容的直流配电线路单端故障测距方法。
背景技术
直流配电网因其电能质量好、便于分布式电源接入、供电容量大等优点,引起国内外广泛关注。与交流配电系统类似,直流配电系统所使用的电力电缆大多为直埋敷设,其故障主要是由工队施工或绝缘老化造成。电力电缆不论是发生单极接地故障还是极间故障,由于无树枝、电线杆等高阻性物质的存在,故障点处的过渡电阻通常不大。据统计,单极接地故障发生的概率往往较大。当直流配电线路上发生单极接地故障时,直流侧出口处大电容的存在使得线路上流过迅速增大的故障电流,导致直流断路器快速动作。为能及时排查出故障位置并恢复供电,提高供电可靠性,研究一种准确的故障测距方法显得尤为重要。
目前直流配电网的故障测距研究还在初级阶段。国内提出的直流配电电缆故障测距方法绝大多数都是基于线路的R-L模型。当直流配电线路发生故障时,直流断路器首先动作开断故障区段,然后将一个带初始电压的电容和电感投入故障回路中,利用快速傅里叶变换得出电容放电电流的特征频率,通过数值拟合得到电容放电电流的衰减系数,再利用特征频率和衰减系数两个等式计算出故障距离和过渡电阻。该方法最终通过计算出的故障电感来确定故障距离,在实际运行中,电缆易受沿线环境影响,导致其电感分布不均匀的,且放电电流属高频信号,电缆的集肤效应也会影响定位精度。为消除电感分布不均对定位精度的影响,有学者利用双端测量法,在故障区段的两端都投入电容和电感,分别通过Prony算法提取特征频率和衰减系数,联立特征频率和衰减系数两个等式消去线路电感参数,然后利用两端的测量参数计算出故障距离。注意故障线路两端的电容不能同时投入,否则会形成高阶电路。上述两种定位方法虽然可以快速准确地实现定位,但需在故障区段额外投入含电容和电感的定位模块,成本较高。国外也对直流配电系统的故障测距进行了一定研究,有研究提出了基于电感的故障测距方法,利用电容电压和线路初始阶段的电容放电电流计算出故障电感,从而得到故障距离。这种方法需要在测量点处安装足够大的电容器。在此基础上有学者开发了一个基于阻抗的故障定位装置,将该离线装置的电容放电电流注入到所隔离的故障段,利用电容放电电流的频率来实现故障定位,但是这种方法不能在线应用。随后有学者提出了一个可在线应用的基于本地测量信息的故障检测和定位算法,并在硬件测试平台上在线实现了该算法。基于此,有人提出了一种考虑电缆分布电容的单端频域故障测距方法,但该方法需投入定位模块,成本较高。
发明内容
本发明的目的在于提供一种计及电缆分布电容的直流配电线路单端故障测距方法,能够为直流配电系统提供低成本、高精度的故障定位方法。
本发明采用的技术方案为,一种计及电缆分布电容的直流配电线路单端故障测距方法,具体按照以下步骤实施:
步骤1、建立计及电缆分布电容的故障测距模型,并推导在计及电缆分布电容情况下的故障测距方程以及常系数公式;
步骤2、采集故障后的整流侧正极电压和整流侧正极电流,代入常系数公式得到多组系数,将多组系数代入故障测距方程形成超定方程组;
步骤3、应用最小二乘法解上述超定方程组,得到故障距离x和过渡电阻Rf
步骤1推导在计及电缆分布电容情况下的故障测距方程具体过程为:
根据故障回路KCL和KVL推导得到的故障测距方程为:
A1Rf+A2Rf·x+A3Rf·x2+A4Rf·x3+A5Rf·x4+A6x+A7x2+A8x3+A9x4=B (1);
A1,A2,A3,A4,A5,A6,A7,A8,A9,B为电压及电流的二阶至五阶导数,即为常系数公式;
其中,x表示故障距离,Rf表示过渡电阻。
步骤2具体过程为:
步骤2.1、采集故障后的整流侧正极电压和整流侧正极电流,然后将其代入步骤1中A1,A2,A3,A4,A5,A6,A7,A8,A9,B的常系数表达式中,得到多组常系数值,从而组成多个参数方程;
步骤2.2、上述步骤中常系数表达式中的电压及电流的二阶至五阶导数应用拉格朗日插值公式推导得到,具体表达式如下:
其中,h为采样间隔;
步骤2.3、将解得的常系数分别代入故障测距方程形成超定方程组,其表达式如下:
步骤3具体过程为:
步骤3.1、将超定方程组写成AX=B形式;
步骤3.2、采集m组直流侧出口处的数据ujp、ijp,通过常系数表达式计算得到一组m*9维矩阵A,其中m>9,矩阵A第k行为Ak=[A1(k) A2(k) A3(k) A4(k) A5(k) A6(k) A7(k)A8(k) A9(k)],1≤k≤m,B=[B1 B2 B3 ... Bm]T
步骤3.3、由矩阵A和矩阵B计算X的值。
步骤3.3具体过程为:采用最小二乘法求解,以误差平方和最小作为目标函数来估计X的值,得到故障距离x和过渡电阻Rf
本发明一种计及电缆分布电容的直流配电线路单端故障测距方法有益效果是:
针对当前直流配电线路故障测距所存在的问题,推导了计及电缆分布电容的故障测距方程,并应用最小二乘法对方程进行参数识别,为直流配电系统提供低成本、高精度的故障定位方法。
附图说明
图1是直流配电线路故障类型示意图;
图2是计及电缆分布电容情况下的正极接地故障图;
图3是忽略电缆分布电容情况下的正极接地故障图;
图4是直流配电系统结构图;
图5是同一过渡电阻下不同故障位置与误差均值图;
图6是同一故障距离下不同过渡电阻与误差均值图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种计及电缆分布电容的直流配电线路单端故障测距方法,具体按照以下步骤实施:
步骤1、建立了计及电缆分布电容的故障测距模型,并推导在计及电缆分布电容情况下的故障测距方程以及常系数公式;
推导在计及电缆分布电容情况下的故障测距方程具体过程为:
图1是直流配电线路故障类型示意图,图中f1和f2分别正极接地故障和极间接地故障。其中计及电缆分布电容情况下的正极接地故障图和忽略电缆分布电容情况下的正极接地故障图分别如图2和图3所示。此处以正极接地故障为例,根据图2正极接地故障图推导得到的故障测距方程为:
A1Rf+A2Rf·x+A3Rf·x2+A4Rf·x3+A5Rf·x4+A6x+A7x2+A8x3+A9x4=B (1);
A1,A2,A3,A4,A5,A6,A7,A8,A9,B均为用电压、电流以及电压电流的二阶至五阶导数,其中,x表示故障距离,Rf表示过渡电阻;具体常系数公式表达式如下:
步骤2、采集故障后的整流侧正极电压和整流侧正极电流,代入常系数公式得到多组系数,将多组系数代入故障测距方程形成超定方程组;具体过程为:
步骤2.1、采集故障后的整流侧正极电压和整流侧正极电流以及二至五阶导数,然后将其代入步骤1中A1,A2,A3,A4,A5,A6,A7,A8,A9,B的常系数表达式中,得到多组常系数值,从而组成多个参数方程;
步骤2.2、上述步骤中常系数表达式中的电压及电流的二阶至五阶导数应用拉格朗日插值公式推导得到,具体表达式如下:
其中,h为采样间隔;
步骤2.3、将解得的常系数分别代入故障测距方程形成超定方程组,其表达式如下:
步骤3、应用最小二乘法解上述超定方程组,得到故障距离x和过渡电阻Rf
具体过程为:
步骤3.1、将超定方程组写成AX=B形式;
步骤3.2、采集m组直流侧出口处的数据ujp、ijp,通过常系数表达式计算得到一组m*9维矩阵A,其中m>9,矩阵A第k行为Ak=[A1(k) A2(k) A3(k) A4(k) A5(k) A6(k) A7(k)A8(k) A9(k)],1≤k≤m,B=[B1 B2 B3 ... Bm]T
步骤3.3、由矩阵A和矩阵B计算X的值。
步骤3.3具体过程为:采用最小二乘法求解,以误差平方和最小作为目标函数来估计X的值,得到故障距离x和过渡电阻Rf
下面以一实例对本发明进行较为详细的说明,该实例基于前述发明方案,并包含相应的具体实施操作过程。
以电力系统实时仿真平台RT-LAB为基础,搭建了如图4所示的放射状直流配电系统拓扑结构模型。该直流配电线路由三段直流线路组成,分别称之为线路L1、L2、L3,与之对应的线路保护装置称为保护1、保护2、保护3,负载1,2,3分别为100kW,总负载为300kW,直流配电线路总长为3km,各段线路长度均为1km,系统的直流电压udc为±750V,即极间电压为1500V。
以正极接地故障为例在线路0.5km、0.97km、1.5km、1.97km、2.5km、2.97km位置处进行大量故障仿真后,采集直流侧出口处的故障电压和故障电流数据,然后利用发明内容中所阐述的直流配电线路单端故障测距的最小二乘算法计算出不同过渡电阻和不同故障位置情况下的故障距离和过渡电阻,具体求解结果如下所示。
表1-1a忽略电缆分布电容情况下的测距结果(Rf=0.2Ω)
表1-1a
表1-1b计及电缆分布电容情况下的测距结果(Rf=0.2Ω)
表1-1b
表1-2a忽略电缆分布电容情况下的测距结果(Rf=1Ω)
表1-2a
表1-2b计及电缆分布电容情况下的测距结果(Rf=1Ω)
表1-2b
由上述测距结果得到如图5和图6所示的误差均值图。可以看出:
在不同过渡电阻下,计及分布电容时的测距误差平均值在6%以内,明显小于忽略分布电容的测距误差平均值,并且随着过渡电阻增大,测距误差均值有增大趋势,但计及分布电容的测距误差平均值增加幅度较小;
在不同过渡电阻下,计及分布电容时的过渡电阻误差平均值整体小于忽略分布电容的过渡电阻误差平均值。因此,仿真结果表明考虑电缆分布电容后提高了测距精度,证明了考虑分布电容的重要性。

Claims (5)

1.一种计及电缆分布电容的直流配电线路单端故障测距方法,其特征在于,具体按照以下步骤实施:
步骤1、建立计及电缆分布电容的故障测距模型,并推导在计及电缆分布电容情况下的故障测距方程以及常系数公式;
步骤2、采集故障后的整流侧正极电压和整流侧正极电流,代入常系数公式得到多组系数,将多组系数代入故障测距方程形成超定方程组;
步骤3、应用最小二乘法解上述超定方程组,得到故障距离x和过渡电阻Rf
2.根据权利要求1所述的一种计及电缆分布电容的直流配电线路单端故障测距方法,其特征在于,步骤1所述推导在计及电缆分布电容情况下的故障测距方程具体过程为:
根据故障回路KCL和KVL推导得到的故障测距方程为:
A1Rf+A2Rf·x+A3Rf·x2+A4Rf·x3+A5Rf·x4+A6x+A7x2+A8x3+A9x4=B (1);
A1,A2,A3,A4,A5,A6,A7,A8,A9,B均用电压、电流及电压电流的二阶至五阶导数表示,即为常系数公式;
其中,x表示故障距离,Rf表示过渡电阻。
3.根据权利要求2所述的一种计及电缆分布电容的直流配电线路单端故障测距方法,其特征在于,步骤2具体过程为:
步骤2.1、采集故障后的整流侧正极电压和整流侧正极电流,然后将其代入步骤1中A1,A2,A3,A4,A5,A6,A7,A8,A9,B的常系数表达式中,得到多组常系数值,从而组成多个参数方程;
步骤2.2、上述步骤中常系数表达式中的电压及电流的二阶至五阶导数应用拉格朗日插值公式推导得到,具体表达式如下:
其中,h为采样间隔;
步骤2.3、将解得的常系数分别代入故障测距方程形成超定方程组,其表达式如下:
4.根据权利要求1所述的一种计及电缆分布电容的直流配电线路单端故障测距方法,其特征在于,步骤3具体过程为:
步骤3.1、将超定方程组写成AX=B形式;
步骤3.2、采集m组直流侧出口处的数据ujp、ijp,通过常系数表达式计算得到一组m*9维矩阵A,其中m>9,矩阵A第k行为Ak=[A1(k)A2(k)A3(k)A4(k)A5(k)A6(k)A7(k)A8(k)A9(k)],1≤k≤m,B=[B1 B2 B3 ... Bm]T
步骤3.3、由矩阵A和矩阵B计算X的值。
5.根据权利要求4所述的一种计及电缆分布电容的直流配电线路单端故障测距方法,其特征在于,步骤3.3具体过程为:采用最小二乘法求解,以误差平方和最小作为目标函数来估计X的值,得到故障距离x和过渡电阻Rf
CN201810586235.1A 2018-06-08 2018-06-08 一种计及电缆分布电容的直流配电线路单端故障测距方法 Active CN108957225B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810586235.1A CN108957225B (zh) 2018-06-08 2018-06-08 一种计及电缆分布电容的直流配电线路单端故障测距方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810586235.1A CN108957225B (zh) 2018-06-08 2018-06-08 一种计及电缆分布电容的直流配电线路单端故障测距方法

Publications (2)

Publication Number Publication Date
CN108957225A true CN108957225A (zh) 2018-12-07
CN108957225B CN108957225B (zh) 2020-08-18

Family

ID=64493839

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810586235.1A Active CN108957225B (zh) 2018-06-08 2018-06-08 一种计及电缆分布电容的直流配电线路单端故障测距方法

Country Status (1)

Country Link
CN (1) CN108957225B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950884A (zh) * 2019-03-14 2019-06-28 天津大学 一种基于控保协同的环形直流微网系统测距式保护方法
CN110161369A (zh) * 2019-04-11 2019-08-23 华北电力大学 一种基于架空线路rl模型的直流电网双极短路故障定位方法
CN114184884A (zh) * 2021-11-23 2022-03-15 昆明理工大学 一种电网故障行波测距方程自动构造方法
CN114355096A (zh) * 2021-10-18 2022-04-15 上海科技大学 基于分层模型的交直流电缆输配电系统精确故障定位方法
CN114384376A (zh) * 2022-03-23 2022-04-22 浙江浙能能源服务有限公司 一种直流配电网故障分类定位方法
CN116908622A (zh) * 2023-09-13 2023-10-20 三峡电能有限公司 一种直流配电线路故障离线定位装置及其定位方法
CN114184884B (zh) * 2021-11-23 2024-05-24 昆明理工大学 一种电网故障行波测距方程自动构造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102023275A (zh) * 2010-09-27 2011-04-20 华北电力大学 基于定位函数相位突变特性的线路单端测距方法
CN102129014A (zh) * 2011-01-28 2011-07-20 福建省电力有限公司福州超高压输变电局 一种利用分布参数模型实现线路相间故障单端测距方法
CN103293441A (zh) * 2013-05-19 2013-09-11 国家电网公司 利用分布参数实现线路单相接地故障单端测距方法
CN103744001A (zh) * 2014-01-17 2014-04-23 昆明理工大学 一种基于分布参数模型的高压直流接地极线路故障测距的频域方法
EP2738561A2 (en) * 2012-11-30 2014-06-04 Schneider Electric Industries SAS Method and device for determining location of earth fault
CN104931849A (zh) * 2015-05-13 2015-09-23 广西电网有限责任公司河池供电局 一种供电线路弧光接地故障测距方法
CN106199333A (zh) * 2016-06-30 2016-12-07 国网江西省电力公司检修分公司 基于分布电容补偿的单端工频量改进分布参数自适应测距方法
RU2608889C1 (ru) * 2015-09-15 2017-01-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский национальный исследовательский технический университет" (ФГБОУ ВО "ИРНИТУ") Способ определения мест повреждения многоцепных воздушных линий электропередачи с учётом наведённого напряжения (варианты)
CN106383296A (zh) * 2016-11-02 2017-02-08 华北电力大学(保定) 一种基于相量分析的改进阻抗型有源配电网故障测距算法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102023275A (zh) * 2010-09-27 2011-04-20 华北电力大学 基于定位函数相位突变特性的线路单端测距方法
CN102129014A (zh) * 2011-01-28 2011-07-20 福建省电力有限公司福州超高压输变电局 一种利用分布参数模型实现线路相间故障单端测距方法
EP2738561A2 (en) * 2012-11-30 2014-06-04 Schneider Electric Industries SAS Method and device for determining location of earth fault
CN103293441A (zh) * 2013-05-19 2013-09-11 国家电网公司 利用分布参数实现线路单相接地故障单端测距方法
CN103744001A (zh) * 2014-01-17 2014-04-23 昆明理工大学 一种基于分布参数模型的高压直流接地极线路故障测距的频域方法
CN104931849A (zh) * 2015-05-13 2015-09-23 广西电网有限责任公司河池供电局 一种供电线路弧光接地故障测距方法
RU2608889C1 (ru) * 2015-09-15 2017-01-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский национальный исследовательский технический университет" (ФГБОУ ВО "ИРНИТУ") Способ определения мест повреждения многоцепных воздушных линий электропередачи с учётом наведённого напряжения (варианты)
CN106199333A (zh) * 2016-06-30 2016-12-07 国网江西省电力公司检修分公司 基于分布电容补偿的单端工频量改进分布参数自适应测距方法
CN106383296A (zh) * 2016-11-02 2017-02-08 华北电力大学(保定) 一种基于相量分析的改进阻抗型有源配电网故障测距算法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
帅玲玲 等: "一种基于电容补偿原理的高压输电线路单端测距方法", 《江西电力》 *
林芳雯 等: "基于视在伪阻抗辨识的直流配电电缆单端在线故障定位方法", 《电网技术》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950884A (zh) * 2019-03-14 2019-06-28 天津大学 一种基于控保协同的环形直流微网系统测距式保护方法
CN110161369A (zh) * 2019-04-11 2019-08-23 华北电力大学 一种基于架空线路rl模型的直流电网双极短路故障定位方法
CN114355096A (zh) * 2021-10-18 2022-04-15 上海科技大学 基于分层模型的交直流电缆输配电系统精确故障定位方法
CN114184884A (zh) * 2021-11-23 2022-03-15 昆明理工大学 一种电网故障行波测距方程自动构造方法
CN114184884B (zh) * 2021-11-23 2024-05-24 昆明理工大学 一种电网故障行波测距方程自动构造方法
CN114384376A (zh) * 2022-03-23 2022-04-22 浙江浙能能源服务有限公司 一种直流配电网故障分类定位方法
CN114384376B (zh) * 2022-03-23 2022-06-24 浙江浙能能源服务有限公司 一种直流配电网故障分类定位方法
CN116908622A (zh) * 2023-09-13 2023-10-20 三峡电能有限公司 一种直流配电线路故障离线定位装置及其定位方法
CN116908622B (zh) * 2023-09-13 2023-11-28 三峡电能有限公司 一种直流配电线路故障离线定位装置及其定位方法

Also Published As

Publication number Publication date
CN108957225B (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
CN108957225A (zh) 一种计及电缆分布电容的直流配电线路单端故障测距方法
Suonan et al. A novel fault-location method for HVDC transmission lines
Mohanty et al. An accurate noniterative fault-location technique for low-voltage DC microgrid
CN101551432B (zh) 配电网故障定位方法
Lee et al. Multi-terminal nonhomogeneous transmission line fault location utilizing synchronized data
CN103576053B (zh) 一种基于有限电能质量监测点的电压暂降源定位方法
CN108254657A (zh) 基于暂态能量分析的配电网小电流接地故障区段定位方法
CN106093700B (zh) 一种基于电压行波原理的故障录波装置及测距方法
CN102540017B (zh) 小电流接地故障分区分段在线定位方法
CN104330708B (zh) 一般电网下广域行波信号的故障定位方法
CN108802564B (zh) 配电网t型线参数无关故障测距算法及系统
CN109444657B (zh) 一种配电网高阻接地故障区段定位方法
CN109490706A (zh) 一种多分支输电线路故障定位方法
CN111044843B (zh) 一种基于多源数据的输电线路故障定位方法
CN104297638A (zh) 一种高精度、低成本的配电网故障定位方法
CN109521326A (zh) 一种基于配电线路电压分布曲线的接地故障定位方法
Kim et al. An initial investigation for locating self-clearing faults in distribution systems
WO2023206897A1 (zh) 基于电能多维信息融合的单相接地故障辨识方法及系统
CN110120666A (zh) 一种电压暂降状态估计方法
Zhang et al. Voltage-sag-profiles-based fault location in high-speed railway distribution system
CN105842582B (zh) 基于emtr的柔性直流线路故障测距方法
CN111123027A (zh) 基于wams系统的多端传输线路故障测距方法
CN102768325A (zh) 一种小电流接地系统故障测距方法
Sodin et al. Precise PMU-Based Localization and Classification of Short-Circuit Faults in Power Distribution Systems
CN110058127B (zh) 非有效接地配电网单相接地故障点识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant