CN108956335A - 沙发坐垫短周期蠕变测试方法及其等效性 - Google Patents

沙发坐垫短周期蠕变测试方法及其等效性 Download PDF

Info

Publication number
CN108956335A
CN108956335A CN201810300720.8A CN201810300720A CN108956335A CN 108956335 A CN108956335 A CN 108956335A CN 201810300720 A CN201810300720 A CN 201810300720A CN 108956335 A CN108956335 A CN 108956335A
Authority
CN
China
Prior art keywords
sofa cushion
double
creep
short cycle
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810300720.8A
Other languages
English (en)
Inventor
刘壮超
潘敬毓
黄泽群
林美莲
黄琼涛
卓才成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Yihua Furniture Co Ltd
Original Assignee
Shandong Yihua Furniture Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Yihua Furniture Co Ltd filed Critical Shandong Yihua Furniture Co Ltd
Priority to CN201810300720.8A priority Critical patent/CN108956335A/zh
Publication of CN108956335A publication Critical patent/CN108956335A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/28Investigating ductility, e.g. suitability of sheet metal for deep-drawing or spinning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • G01N3/34Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces generated by mechanical means, e.g. hammer blows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0032Generation of the force using mechanical means
    • G01N2203/0033Weight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0071Creep
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0226High temperature; Heating means

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明涉及一种沙发坐垫短周期蠕变测试方法,包括以下步骤:利用加压双层钢板使木质仿生加载垫完全落在原始厚度为h0沙发坐垫上表面内,在上层钢板放置配重砝码后,给整个测试体系升温,当温度达到最高温度后,恒温保持1小时;取出沙发坐垫,放置于常温下2~3小时后,测量沙发坐垫的厚度h1,得到沙发坐垫的压缩蠕变量Δh=h0‑h1,根据其等效性预测正常温度和压力水平下的长期蠕变行为。优点:1)用较高温度和压力水平下的短周期蠕变行为等效预测正常温度和压力水平下的长期蠕变行为,通过短周期测试有效评估沙发坐垫的蠕变性能及疲劳强度等,为沙发坐垫的力学性能提供良好的保障;2)实验装置简明,操作简单,实验效率高,等效性好。

Description

沙发坐垫短周期蠕变测试方法及其等效性
技术领域
本发明是一种沙发坐垫短周期蠕变测试方法及其等效性,属于家具生产测试技术领域。
背景技术
目前沙发坐垫静载荷疲劳性能检测的方法,主要是在常温下对坐垫施加载荷,使其重复承载500~1000N的压力,测试周期通常需要1-2个月的时间。测试结束后,通过测量计算坐垫的压缩蠕变量,判断海绵坐垫的抗疲劳性能好坏。这种沙发坐垫载荷疲劳性能检测方法存在测试周期长、检测效率低、测试环境无法把控等缺陷,不利于沙发生产企业或专业检测机构的测试评估。
发明内容
本发明提出的是一种沙发坐垫短周期蠕变测试方法及其等效性,其目的在于提供一种用较高温度和压力水平下的短周期蠕变行为等效预测正常温度和压力水平下的长期蠕变行为的沙发坐垫短周期蠕变测试方法,从而在短时间内有效评估沙发坐垫的蠕变性能及疲劳强度。
本发明的技术解决方案:
沙发坐垫短周期蠕变测试方法,包括以下步骤:
(1)取一块双层钢板,将双层钢板抬起,在下层钢板的下表面固定一个木质仿生加载垫,调整双层钢板,使其保持在水平状态;
(2)测试沙发坐垫的原始厚度h0后,将其放置于底座钢板上,底座钢板内置加压装置,将双层钢板缓慢放下并加压,使得木质仿生加载垫完全落在坐垫上表面内;
(3)在上层钢板上表面的左右两端各放置相同重量的配重砝码,砝码、双层钢板和木质加载垫的总配重为500N~2000N;调整双层压力钢板,使其保持在水平状态;
(4)以1~2℃/min的速度给整个测试体系升温,最高加热温度为60℃~100℃,当温度达到最高温度后,恒温保持1小时;
(5)移走配重砝码,上升双层钢板,将沙发坐垫取出,放置于常温下2~3小时后,测量沙发坐垫的厚度h1,得到沙发坐垫的压缩蠕变量Δh= h0-h1
本发明的有益效果:
1)用较高温度和压力水平下的短周期蠕变行为等效预测正常温度和压力水平下的长期蠕变行为,通过短周期测试有效评估沙发坐垫的蠕变性能及疲劳强度等,为沙发坐垫的力学性能提供良好的保障;
2)实验装置简明,操作简单,实验效率高,等效性好。
具体实施方式
沙发坐垫短周期蠕变测试方法,包括以下步骤:
(1)取一块双层钢板,将双层钢板抬起,在下层钢板的下表面固定一个木质仿生加载垫,调整双层钢板,使其保持在水平状态;
(2)测试沙发坐垫的原始厚度h0后,将其放置于底座钢板上,底座钢板内置加压装置,将双层钢板缓慢放下并加压,使得木质仿生加载垫完全落在坐垫上表面内;
(3)在上层钢板上表面的左右两端各放置相同重量的配重砝码,砝码、双层钢板和木质加载垫的总配重为500N~2000N;调整双层压力钢板,使其保持在水平状态;
(4)以1~2℃/min的速度给整个测试体系升温,最高加热温度为60℃~100℃,当温度达到最高温度后,恒温保持1小时;
(5)移走配重砝码,上升双层钢板,将沙发坐垫取出,放置于常温下2~3小时后,测量沙发坐垫的厚度h1,得到沙发坐垫的压缩蠕变量Δh= h0-h1
可用所述沙发坐垫短周期蠕变测试方法测得的较高温度和压力水平下的短周期蠕变行为来等效预测正常温度和压力水平下的长期蠕变行为,并可据此有效评估沙发坐垫的蠕变性能,其等效对应关系如下表所示:
以上表格中,运用测试方法(1)和测试方法(2)得到的等效关系,通过六元件压缩蠕变本构方程计算得到的等效关系,理论计算和实验结果均得到了验证与统一。压缩蠕变本构方程如下:
式中:
ε:压缩蠕变量
σ 0:承载压力
E1:Maxwell模型里的瞬时弹性模量
E2、E3:Kelvin模型里的延时弹性模量
η 1 、η 2 :Kelvin模型里的粘性系数
η 3 :Maxwell模型里的粘性系数
t:加载时间
实施例1
将规格尺寸为500×500×250mm的三层海绵坐垫放置于加热力学测试装置中,在上层压力钢板上左右各放置相同重量的配重砝码,砝码、双层压力钢板和木质加载垫的总配重为2000N,调整双层压力钢板水平度,使其保持在水平状态。关闭加热力学测试装置门,预设最高加热温度为60℃;接通电源,使加热器发热升温,升温速度控制在1.5℃/min,当温度达到60℃时,恒温保持1小时。关闭电源,打开加热力学测试装置门,移走配重砝码,将沙发坐垫从加热力学测试装置中取出,放置于常温下2小时,测量沙发坐垫的厚度,计算出沙发坐垫压缩前后的厚度之差,即压缩蠕变量。从表1(4)中可查阅,沙发坐垫在加热力学测试装置中承载2000N压力,温度升至60℃后保持1h,冷却养身后的沙发坐垫压缩蠕变量,等效于其常态下疲劳性能测试后的压缩蠕变量(加载压力:500N、加载次数:15000次、加载频率:20~25次/min)。

Claims (2)

1.沙发坐垫短周期蠕变测试方法,其特征是包括以下步骤:
(1)取一块双层钢板,将双层钢板抬起,在双层钢板中的下层钢板的下表面固定一个木质仿生加载垫,调整双层钢板,使其保持在水平状态;
(2)测试沙发坐垫的原始厚度h0后,将其放置于底座钢板上,底座钢板内置加压装置,将双层钢板缓慢放下并加压,使得木质仿生加载垫完全落在坐垫上表面内;
(3)在双层钢板中的上层钢板上表面的左右两端各放置相同重量的配重砝码,砝码、双层钢板和木质加载垫的总配重为500N~2000N;调整双层压力钢板,使其保持在水平状态;
(4)以1~2℃/min的速度给整个测试体系升温,最高温度为60℃~100℃,当温度达到最高温度后,恒温保持1小时;
(5)移走配重砝码,上升双层钢板,将沙发坐垫取出,放置于常温下2~3小时后,测量沙发坐垫的厚度h1,得到沙发坐垫的压缩蠕变量Δh= h0-h1
2.根据权利要求1所述的沙发坐垫短周期蠕变测试方法,其特征是可用所述沙发坐垫短周期蠕变测试方法测得的较高温度和压力水平下的短周期蠕变行为来等效预测正常温度和压力水平下的长期蠕变行为,并可据此有效评估沙发坐垫的蠕变性能,其等效对应关系如下表所示:
其中,通过六元件压缩蠕变本构方程计算得到测试方法(1)和测试方法(2)等效关系;压缩蠕变本构方程如下:
式中:
ε:压缩蠕变量,
σ 0:承载压力,
E1:Maxwell模型里的瞬时弹性模量,
E2、E3:Kelvin模型里的延时弹性模量,
η 1 、η 2 :Kelvin模型里的粘性系数,
η 3 :Maxwell模型里的粘性系数,
t:加载时间。
CN201810300720.8A 2018-04-04 2018-04-04 沙发坐垫短周期蠕变测试方法及其等效性 Pending CN108956335A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810300720.8A CN108956335A (zh) 2018-04-04 2018-04-04 沙发坐垫短周期蠕变测试方法及其等效性

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810300720.8A CN108956335A (zh) 2018-04-04 2018-04-04 沙发坐垫短周期蠕变测试方法及其等效性

Publications (1)

Publication Number Publication Date
CN108956335A true CN108956335A (zh) 2018-12-07

Family

ID=64499568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810300720.8A Pending CN108956335A (zh) 2018-04-04 2018-04-04 沙发坐垫短周期蠕变测试方法及其等效性

Country Status (1)

Country Link
CN (1) CN108956335A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112378686A (zh) * 2020-11-13 2021-02-19 大自然科技股份有限公司 一种床垫支撑稳定性指标的评判方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104237030A (zh) * 2014-09-10 2014-12-24 江阴市产品质量监督检验所 压缩蠕变试验仪
CN104729819A (zh) * 2015-02-04 2015-06-24 南京林业大学 一种家具质检用仿生加载垫制作方法
CN106979865A (zh) * 2015-08-11 2017-07-25 烟台小米机械技术有限公司 沙发耐用性检测装置
CN206891880U (zh) * 2017-04-10 2018-01-16 东莞市联合检测校准技术有限公司 一种海绵疲劳试验仪

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104237030A (zh) * 2014-09-10 2014-12-24 江阴市产品质量监督检验所 压缩蠕变试验仪
CN104729819A (zh) * 2015-02-04 2015-06-24 南京林业大学 一种家具质检用仿生加载垫制作方法
CN106979865A (zh) * 2015-08-11 2017-07-25 烟台小米机械技术有限公司 沙发耐用性检测装置
CN206891880U (zh) * 2017-04-10 2018-01-16 东莞市联合检测校准技术有限公司 一种海绵疲劳试验仪

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CONOR BRIODY 等: "Prediction of compressive creep behaviour in flexible polyurethane foam over long time scales and at elevated temperatures", 《POLYMER TESTING》 *
徐伟: "基于负载状态下沙发座垫力学特性研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112378686A (zh) * 2020-11-13 2021-02-19 大自然科技股份有限公司 一种床垫支撑稳定性指标的评判方法
CN112378686B (zh) * 2020-11-13 2024-03-12 大自然科技股份有限公司 一种床垫支撑稳定性指标的评判方法

Similar Documents

Publication Publication Date Title
Li et al. Assessment of failure criteria and damage evolution methods for composite laminates under low-velocity impact
US11566606B2 (en) Method for quickly predicting fatigue life of wrinkle defect-containing main spar in wind turbine blade
Huang et al. Quantitative correlation between geometric parameters and stress concentration of corrosion pits
Eftekhari et al. Creep-fatigue interaction and thermo-mechanical fatigue behaviors of thermoplastics and their composites
Gornet et al. Rapid determination of the high cycle fatigue limit curve of carbon fiber epoxy matrix composite laminates by thermography methodology: tests and finite element simulations
Jen et al. Effect of the amount of adhesive on the bending fatigue strength of adhesively bonded aluminum honeycomb sandwich beams
CN108956335A (zh) 沙发坐垫短周期蠕变测试方法及其等效性
CN107885930B (zh) 继电器弹性金属材料加速贮存退化失效机理变化判别方法
Mahmoudi et al. On the evaluation of damage-entropy model in cross-ply laminated composites
Kamaya Fatigue crack tolerance design for stainless steel by crack growth analysis
CN108426993A (zh) 一种橡胶密封材料选型方法及系统
Van Turnhout et al. Contribution of postnatal collagen reorientation to depth-dependent mechanical properties of articular cartilage
Tarsha-Kurdi et al. Thermoviscoelastic analysis of residual curing stresses and the influence of autoclave pressure on these stresses in carbon/epoxy laminates
Al-Saoudi et al. Finite element investigation of the fatigue performance of FRP laminates bonded to concrete
Nielsen et al. Crack healing in cross-ply composites observed by dynamic mechanical analysis
Lina et al. FEM analysis of spring-backs in age forming of aluminum alloy plates
Lee et al. Dynamic backcalculation of viscoelastic asphalt properties and master curve construction
CN112199873A (zh) 橡胶动态生热计算方法及装置
CN111062152B (zh) 一种基于耗散能考虑残余应力的焊缝超高周寿命预测方法
Fragiacomo et al. Numerical and experimental thermal-structural behaviour of laminated veneer lumber (LVL) exposed to fire
Yu et al. Fatigue life prediction for the main spar with wrinkle defects of a wind turbine blade
CN108918406A (zh) 一种井内钻具材料腐蚀模拟试验装置
CN110411863A (zh) 一种基于蠕变延性的高温蠕变寿命预测方法
Gornet et al. Rapid determination of the fatigue properties of carbon fiber epoxy matrix composite laminates by self heating tests
CN108106947A (zh) 一种沙发用加热力学蠕变测试装置及制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181207