CN108949840A - A kind of engineering bacteria and its application in production p-Coumaric Acid - Google Patents

A kind of engineering bacteria and its application in production p-Coumaric Acid Download PDF

Info

Publication number
CN108949840A
CN108949840A CN201810352692.4A CN201810352692A CN108949840A CN 108949840 A CN108949840 A CN 108949840A CN 201810352692 A CN201810352692 A CN 201810352692A CN 108949840 A CN108949840 A CN 108949840A
Authority
CN
China
Prior art keywords
gene
tyrosine
escherichia coli
phenol
lyase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810352692.4A
Other languages
Chinese (zh)
Other versions
CN108949840B (en
Inventor
蔡宇杰
熊天真
蒋静
丁彦蕊
白亚军
郑晓晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuohong Chaoyuan Biotechnology Zhengzhou Co ltd
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201810352692.4A priority Critical patent/CN108949840B/en
Publication of CN108949840A publication Critical patent/CN108949840A/en
Application granted granted Critical
Publication of CN108949840B publication Critical patent/CN108949840B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0065Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01027L-Lactate dehydrogenase (1.1.1.27)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y111/00Oxidoreductases acting on a peroxide as acceptor (1.11)
    • C12Y111/01Peroxidases (1.11.1)
    • C12Y111/01001NADH peroxidase (1.11.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/99Other Carbon-Carbon Lyases (1.4.99)
    • C12Y401/99002Tyrosine phenol-lyase (4.1.99.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y403/00Carbon-nitrogen lyases (4.3)
    • C12Y403/01Ammonia-lyases (4.3.1)
    • C12Y403/01023Tyrosine ammonia-lyase (4.3.1.23)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention discloses a kind of engineering bacteria and its in the application of production p-Coumaric Acid, belong to technical field of bioengineering.The present invention provides can the inexpensive recombinant bacterium for producing p-Coumaric Acid;The recombinant bacterium expresses 4 kinds of enzymes, respectively tyrosine phenol lyase, tyrosine ammonia lyase, l-lactate dehydrogenase, nadh oxidase simultaneously;Further, recombinant bacterium of the invention has also knocked out phenolic substances and has decomposed gene, overexpression Lactate Transport gene, phenol transporter gene, any one or more in coenzyme synthesis related gene.The present invention realizes the efficient production of p-Coumaric Acid, and method process is simple, impurity is few, has important industrial application value.

Description

A kind of engineering bacteria and its application in production p-Coumaric Acid
Technical field
The present invention relates to a kind of engineering bacteria and its in the application of production p-Coumaric Acid, belong to biotechnology neck Domain.
Background technique
P-Coumaric Acid (3- (4- hydroxy phenyl) -2- acrylic acid, para-hydroxycinnamic acid) is wood The main component of matter cellulose.Studies have shown that its formation that can reduce carcinogen nitrosamine, has the effect of anticancer.
It is main at present that p-Coumaric Acid (CN201110337186.6, JP200423154) is synthesized by chemical synthesis, It pollutes larger.Also have and (WO/2017/170549) is obtained by hydrolyzing biomass raw material.
Synthesizing p-Coumaric Acid by bioanalysis at present is most popular direction, is such as converted by tyrosine ammonia lyase Tyrosine generates the method (US20170166936, US20080213846) of p-Coumaric Acid, passes through microorganism conversion cortex cinnamomi Acid production p-Coumaric Acid (US 20030170834), colibacillus engineering are Material synthesis to hydroxyl meat using glucose Cinnamic acid (EP1589112, WO/2002/090523).These methods are all to be improved, to reduce cost and improve product purity.
Summary of the invention
Based on the defect of current various methods, the invention proposes a kind of production method of novel p-Coumaric Acid, And the engineering bacteria of multienzyme coexpression is constructed, realize the efficient production of p-Coumaric Acid.Technology to be solved by this invention Problem is to provide a kind of recombinant bacterium that p-Coumaric Acid can be efficiently produced with cheap substrates, while the invention solves the bacterial strains Building and application the technical issues of.
The first purpose of the invention is to provide can the inexpensive recombinant bacterium for producing p-Coumaric Acid;The recombinant bacterium is same When express 4 kinds of enzymes, respectively tyrosine phenol lyase, tyrosine ammonia lyase, l-lactate dehydrogenase, nadh oxidase.
In one embodiment, the l-lactate dehydrogenase comes from Lactococcus lactis ATCC 19257.
In one embodiment, the amino acid sequence of the l-lactate dehydrogenase is that accession NO is on NCBI WP_003131075.1 sequence.
In one embodiment, the nucleotide sequence of the l-lactate dehydrogenase is accession NO on NCBI are as follows: The sequence of NZ_JXJZ01000017REGION:18532..19509.
In one embodiment, the nadh oxidase comes from Lactococcus lactis ATCC 19257.
In one embodiment, the amino acid sequence of the nadh oxidase is that accession NO is WP_ on NCBI 032950924.1 sequence.
In one embodiment, the nucleotide sequence of the nadh oxidase is accession NO on NCBI are as follows: NZ_ JXJZ01000002REGION:complement(39571..40911)。
In one embodiment, the tyrosine phenol lyase is from Erwinia herbicola ATCC 214344。
In one embodiment, the amino acid sequence of the tyrosine phenol lyase is that accession NO is on NCBI P31011.2。
In one embodiment, what the tyrosine ammonia lyase was comes from Rhodobacter sphaeroides ATCC BAA-808。
In one embodiment, the amino acid sequence of tyrosine ammonia lyase is that accession NO is WP_ on NCBI 011339422.1 sequence.
In one embodiment, the nucleotide sequence of tyrosine ammonia lyase is accession NO on NCBI are as follows: NC_ 007494REGION:complement(668571..670142)。
In one embodiment, the recombinant bacterium, including by encoding tyrosine phenols cracking enzyme, tyrosine ammonia lyase, The gene of nadh oxidase and the enzyme of Pfansteihl dehydrogenation is connected on 2 plasmids, then by recombinant plasmid transformed host's large intestine bar Bacterium obtains recombination engineering.
In one embodiment, the nadh oxidase gene and l-lactate dehydrogenase gene are attached to plasmid Expression, tyrosine ammonia lyase and tyrosine phenol lyase gene are attached to table after plasmid pETDuet-1 after pACYCDue-1 It reaches.
In one embodiment, the host strain is Escherichia coli BL21 (DE3).
In one embodiment, the recombinant bacterium has also knocked out phenolic substances and has decomposed gene.
In one embodiment, the knockout phenolic substances decompose gene be hpaD, mhpB in any one or Two kinds of person combinations.
In one embodiment, the nucleotide sequence that the phenolic substances decomposes gene is accession NO on NCBI Are as follows: NC_012892REGION:complement (4505585..4506436) and NC_012892REGION: 339806..340750。
In one embodiment, the recombinant bacterium also overexpression Lactate Transport gene, phenol transporter gene, coenzyme Any one or more in synthesis related gene.
In one embodiment, the overexpression is by by Escherichia coli BL21 (DE3) genome Increase constitutive promoter before the gene of upper need to strengthen expression.
In one embodiment, the gene of the overexpression is lldP (Lactate Transport gene), hpaX (transport by phenol Gene), it is mhpT (phenol transporter gene), nadA (NAD synthesize gene), any one in pdxJ (phosphoric acid Vitamin B6 synthesizes gene) Kind is a variety of.
In one embodiment, lldP accession NO on NCBI are as follows: NC_012892REGION: 3646638..3648293;HpaX is;NC_012892REGION:complement(4502025..4503401);MhpT is NC_012892REGION:344788..345999;NadA is NC_012892REGION:740487..741530;PdxJ is NC_ 012892REGION:complement(2567591..2568322)。
In one embodiment, the recombinant bacterium is on the basis for the escherichia coli host for having knocked out hpaD and mhpB On, overexpression lldP, hpaX, mhpT, nadA, pdxJ, and at the same time express tyrosine phenol lyase, tyrosine ammonia is split Solve enzyme, l-lactate dehydrogenase and nadh oxidase.
A second object of the present invention is to provide a kind of method for producing p-Coumaric Acid, the method is to utilize this hair Bright recombinant bacterium.
In one embodiment, the production p-Coumaric Acid is to carry out resting cell production.
In one embodiment, in the system of resting cell production, wet cell weight 1-200g/L, phenol is dense Degree is 1-200g/L, and Pfansteihl concentration is 1-200g/L, pH 6.0-9.0, ammonia radical ion concentration 1-30g/L;It is anti-in 15-40 DEG C It answers, time 1-48 hour.Liquid chromatogram measuring p-Coumaric Acid yield after conversion.
Third object of the present invention is to provide recombinant bacteriums of the present invention or the method for the present invention in chemical industry, food, medicine etc. The application in field.
Beneficial effects of the present invention:
The present invention constructs a kind of four novel enzyme co-expression gene engineering bacterias, which can be applied to p-Coumaric Acid Production.The production process is simple and raw material is easy to get, and has good industrial applications prospect.
Specific embodiment
The leitungskern of engineering bacteria of the invention is that 4 kinds of enzymes, respectively tyrosine phenol lyase, junket can be expressed simultaneously Propylhomoserin ammonia lyase, nadh oxidase and l-lactate dehydrogenase.Its principle are as follows:, l-lactate dehydrogenase entirely intracellular in engineering bacteria Pfansteihl dehydrogenation is generated into pyruvic acid and NADH using endobacillary NAD as coenzyme;Tyrosine phenol lyase is catalyzed pyruvic acid, ammonia root Ion, phenol generate l-tyrosine;L-tyrosine then generates p-Coumaric Acid by tyrosine ammonia lyase deamination;NADH oxidation NADH dehydrogenation is realized the regeneration of coenzyme NAD by enzyme.While the related gene on knockout or overexpression genome of E.coli Promote the transhipment of substrate and reduces the decomposition of phenolic substances.
In order to solve the above technical problems, The technical solution adopted by the invention is as follows:
1. bacterial strain according to the present invention and plasmid
Escherichia coli BL21 (DE3), Rhodobacter purchased from American Type Culture Collecti ATCC sphaeroides ATCC BAA-808、Lactococcus lactis ATCC 19257、Erwinia herbicola ATCC 214344.PETDuet-1, pACYCDue-1 plasmid and Escherichia coli BL21 (DE3) purchased from Novagen company. PCasRed, pCRISPR-gDNA are purchased from Zhenjiang Ai Bi dream Biotechnology Co., Ltd.
2. the knockout of related gene and composing type overexpression in Escherichia coli
(1) Escherichia coli phenolic substances decomposes the knockout of gene
Phenolic substances in the present invention is all easily decomposed by the enzyme in Escherichia coli, according to document (Biodegradation Of Aromatic Compounds by Escherichia coli, Microbiol Mol Biol Rev.2001,65 (4): 523-569.), related gene is knocked out, avoids the decomposition of product and substrate.The gene of selection is hpaD and mhpB, on NCBI Accession NO are as follows: NC_012892REGION:complement (4505585..4506436) and NC_012892REGION: 339806..340750。
(2) the composing type overexpression of Escherichia coli lactic acid, phenol transporter gene
, need to be substrate transport to just can be carried out into the cell during resting cell, enhancing Lactate Transport albumen helps In the high concentration for quickly and for a long time maintaining substrate intracellular, be conducive to the progress of reaction.Selecting the relevant gene of Lactate Transport is The upper accession NO of lldP, NCBI are as follows: NC_012892REGION:3646638..3648293.Phenol transports relevant gene It is hpaX and mhpT, the upper accession NO of NCBI are as follows: NC_012892REGION:complement (4502025..4503401) and NC_012892REGION:344788..345999.
(3) Escherichia coli coenzyme synthesizes the composing type overexpression of related important gene
It is needed in nadh oxidase reduction process using NADH as coenzyme, overexpression Escherichia coli NAD route of synthesis Endobacillary NAD level can be improved, to be conducive to the generation of p-Coumaric Acid in key enzyme.The gene of selection has nadA. The upper accession NO of NCBI are as follows: NC_012892REGION:740487..741530.
Phosphoric acid Vitamin B6 (amine) is the coenzyme of tyrosine phenol lyase, the core gene being overexpressed in the coenzyme approach PdxJ is conducive to the synthesis of l-tyrosine.The upper accession NO of NCBI are as follows: NC_012892REGION:complement (2567591..2568322)。
3. the selection of enzyme in four enzyme coupled catalytic reactions
(1) selection of l-lactate dehydrogenase
Pfansteihl is organic acid the most cheap, after dehydrogenation at pyruvic acid added value with higher.At present mainly with Pfansteihl oxydasis Pfansteihl produces pyruvic acid, produces hydrogen peroxide and further oxide acetylacetonate acid in the process and destroys Endobacillary enzyme.It generally tends to synthesize cream by substrate of pyruvic acid with the lactic dehydrogenase that NAD (NADP) is coenzyme Acid, but the hydrogen that lactic dehydrogenase can take off lactic acid when lactic acid excess generates pyruvic acid.The present invention is from Lactococcus L-lactate dehydrogenase gene llldh is obtained in lactis ATCC19257 (amino acid sequence is WP_003131075.1).
(2) selection of tyrosine phenol lyase
Tyrosine phenol lyase (Tyrosine phenol lyase, TPL, E.C.4.1.99.2) also known as β-tyrosine Enzyme, tyrosine phenol lyase can be catalyzed l-tyrosine and β-elimination reaction generation phenol, pyruvic acid and ammonia occur.The reaction is can Inverse, phenol, pyruvic acid and ammonia can give birth to l-tyrosine under tyrosine phenol lyase catalysis.The present invention is from Erwinia Clone obtains tyrosine phenol lyase gene ehtpl respectively in herbicola ATCC 214344, and amino acid sequence is P31011.2。
(3) selection of tyrosine ammonia lyase
Tyrosine, DOPA etc. can be passed through non-oxide deamination by tyrosine ammonia lyase (Tyrosine Ammonia Lyase) Generate corresponding p-Coumaric Acid and p-Coumaric Acid.The present invention has been selected from Rhodobacter The tyrosine ammonia lyase rstal of sphaeroides ATCC BAA-808 (amino acid sequence is WP_011339422.1).
(4) selection of nadh oxidase
Lactic dehydrogenase dehydrogenation from lactic acid generates pyruvic acid NADH.NADH needs to be regenerated by nadh oxidase oxidation NAD, to realize the lasting progress of reaction.Nadh oxidase, which has, produces two kinds of peroxidating Hydrogen of water type and production, produces the NADH of water type Oxidizing ferment will not generate hydrogen peroxide toxicity.The present invention is produced from Lactococcus lactis ATCC 19257 respectively Water type nadh oxidase gene llnox (amino acid sequence is WP_032950924.1), expression product are used for the regeneration of NAD.
4. the building of coexpression system and the culture of cell
Tyrosine ammonia lyase selected above, tyrosine phenol lyase, l-lactate dehydrogenase, nadh oxidase are carried out Four enzymes coexpression.
At present Escherichia coli polygenes coexpression there are many method, (Escherichia coli polygenes coexpression strategy, China are raw Object engineering magazine, 2012,32 (4): 117-122), (synthetic biology technological transformation Escherichia coli are raw using Liu Xianglei by the present invention Produce shikimic acid and resveratrol, 2016, Shanghai Institute of Pharmaceutical Industry, doctoral thesis) the method building, before each gene Comprising T7 promoter and RBS binding site, there is a T7 terminator after each gene.Theoretically speaking because having before each gene T7 and RBS, thus the expression intensity of gene influenced by arrangement order it is little.Using pACYCDue-1 and two kinds of pETDuet-1 Plasmid includes two genes on each plasmid, and by the plasmid built, heat is transduceed in competent escherichia coli cell simultaneously, and It is coated on the solid plate of dual anti-(Kan and Cm), screening obtains positive transformant to get recombination bacillus coli is arrived.Cell Culture: being 2% amount by recombination bacillus coli according to classical recombination bacillus coli culture and inducing expression scheme by volume It is transferred in LB fermentation medium (peptone 10g/L, yeast powder 5g/L, NaCl 10g/L), as cell OD600Reach 0.6-0.8 Afterwards, the IPTG of final concentration of 0.4mM is added, in 20 DEG C of inducing expression culture 8h.After inducing expression, 20 DEG C, 8000rpm, Cell is collected by centrifugation within 20 minutes.
4. resting cell produces p-Coumaric Acid
The system of cell transformation production are as follows: wet cell weight 1-200g/L, phenol concentration 1-200g/L, Pfansteihl concentration For 1-200g/L, pH 6.0-9.0, ammonia radical ion concentration 1-30g/L;It is reacted in 15-40 DEG C, time 1-48 hour.Conversion terminates Liquid chromatogram measuring p-Coumaric Acid yield afterwards.P-Coumaric Acid solubility is lower, need to be completely molten with a large amount of acid solutions It is measured after solution.
5. the detection and analysis of sample
The quantitative analysis of p-Coumaric Acid: conversion fluid uses 200 high performance liquid chromatograph of PerkinElmer Series It tests and analyzes, matches UV detector.Chromatographic condition are as follows: mobile phase is -0.1% formic acid water of methanol (40:60), using Chinese nation Megres C18 chromatographic column (4.6 × 250mm, 5 μm), flow velocity 1ml/min, 30 DEG C of column temperature, 20 μ l of sample volume, Detection wavelength 280nm。
In order to which technical problems, technical solutions and advantages to be solved are more clearly understood, tie below Embodiment is closed, the present invention will be described in detail.It should be noted that specific embodiment described herein is only to explain The present invention is not intended to limit the present invention.
Embodiment 1
According to document Large scale validation of an efficient CRISPR/Cas-based multi gene editing protocol in Escherichia coli.Microbial Cell Factories,2017,16 (1): method described in 68 by Escherichia coli BL21 (DE3) hpaD and mhpB carry out single or double knockout.Its In, the plasmid of gene knockout used in the present invention is pCasRed and pCRISPR-gDNA (hpaD sgRNA) and homology arm (hpaD Donor it) imports on Escherichia coli BL21 (DE3) together, Cas9/sgRNA induces host and sends out in hpaD gene loci HpaD donor is integrated on hpaD gene by raw double-strand break, recombinase Red, realizes the knockout of gene, and sequence verification. HpaD sgRNA, hpaD donor, mhpB sgRNA, mhpBdonor are respectively such as sequence table SEQ ID NO:10, SEQ ID NO: 11, shown in SEQ ID NO:12, SEQ ID NO:13.MhpB is knocked out in the same way.
The solution that pH is 8, phenol or p-Coumaric Acid 2g/L are configured, wet thallus amount 100g/L, 35 DEG C are placed 10 hours After measure concentration.It is shown in reaction system in table 1, the surplus of phenol and p-Coumaric Acid.
1 different strains of table are to the residual concentration after substrate and product decomposition
Bacterial strain Phenol g/L P-Coumaric Acid g/L
Escherichia coli BL21(DE3) 1.1 0.8
Escherichia coli BL21(ΔhpaDΔmhpB,DE3) 1.8 1.9
Escherichia coli BL21(ΔhpaD,DE3) 1.4 1.5
Escherichia coli BL21(ΔmhpB,DE3) 1.5 1.4
Obviously Escherichia coli BL21 (Δ hpaD Δ mhpB, DE3) effect is best, it is named as Escherichia coli HM。
Embodiment 2
Recombination bacillus coli building: first by encoding tyrosine phenols cracking enzyme, tyrosine ammonia lyase, nadh oxidase and The gene of l-lactate dehydrogenase is connected respectively on pETDuet-1 or pACYCDuet-1 plasmid.Obtain two kinds of dual-gene tables altogether Up to recombinant plasmid, two kinds of plasmids are converted into Escherichia coli Escherichia coli HM, it is flat using chloramphenicol and ampicillin Screen is selected to obtain positive transformant to get recombination bacillus coli is arrived.
Derivational expression method: being that 2% amount is transferred to LB fermentation medium (peptone by recombination bacillus coli by volume 10g/L, yeast powder 5g/L, NaCl 10g/L) in, as cell OD600After reaching 0.6-0.8, it is added final concentration of 0.4mM's IPTG, in 20 DEG C of inducing expression culture 8h.After inducing expression, 20 DEG C, 8000rpm, cell is collected by centrifugation within 20 minutes.
Thallus will be collected after the completion of recombination bacillus coli inducing expression, in 100ml reaction volume, wet cell weight 20g/ L, phenol concentration 10g/L, Pfansteihl concentration are 10g/L, pH 8.0, ammonia radical ion concentration 30g/L;It is reacted in 35 DEG C, the time 12 hours.Liquid chromatogram measuring p-Coumaric Acid yield after conversion.
The comparison of the various recombinant bacteriums of table 2
Recombinant bacterium P-Coumaric Acid g/L
Escherichia coli HM/pETDuet-1-ehtpl-llldh+pACYCDuet-1-rstal-llnox 6.7
Escherichia coli HM/pETDuet-1-ehtpl-rstal+pACYCDuet-1-llldh-llnox 6.9
Escherichia coli HM/pETDuet-1-ehtpl-llnox+pACYCDuet-1-rstal-llldh 8.1
Escherichia coli HM/pETDuet-1-rstal-llldh+pACYCDuet-1-ehtpl-llnox 5.0
Escherichia coli HM/pETDuet-1-rstal-llnox+pACYCDuet-1-ehtpl-llldh 6.6
Escherichia coli HM/pETDuet-1-llnox-llldh+pACYCDuet-1-rstal-ehtpl 6.1
Embodiment 3
Using document Large scale validation of an efficient CRISPR/Cas-based multi gene editing protocol in Escherichia coli.Microbial Cell Factories,2017,16 (1): method described in 68 will correspond to the 3- phosphoric acid for increasing Escherichia coli before gene on Escherichia coli HM genome Medium expression intensity constitutive promoter (PG) before glyceraldehyde dehydrogenase gene (gpdA), sequence is as shown in SEQ ID NO:9.
When the lldP that enhances gene is expressed, using Escherichia coli HM genome as template, with primer lldP-FF/ LldP-FR, lldP-gpdA-F/lldP-gpdA-R, lldP-RF/lldP-RR amplify upstream, promoter, downstream sequence, and The expression cassette containing gpdA promoter is fused to by primer of lldP-FF and lldP-RR.Then with plasmid pCasRed, After pCRISPR-gDNA (sgRNA containing lldP) is transferred to Escherichia coli HM together, Cas9/sgRNA induces host and exists Double-strand break occurs for lldP gene loci, before gpdA promoter is integrated into lldP gene by recombinase Red, and sequence verification.
When the hpaX that enhances gene is expressed, using the method for similar lldP expression of enhancing gene, upstream, starting are first amplified Son, downstream sequence, and design primer is fused to the expression cassette containing gpdA promoter.Then with plasmid pCasRed, pCRISPR- After gDNA (sgRNA containing hpaX) is transferred to Escherichia coli HM together, Cas9/sgRNA induces host in hpaX gene Double-strand break occurs for site, before gpdA promoter is integrated into hpaX gene by recombinase Red, and sequence verification
When the mhpT that enhances gene is expressed, using the method for similar lldP expression of enhancing gene, upstream, starting are first amplified Son, downstream sequence, and design primer is fused to the expression cassette containing gpdA promoter.Then with plasmid pCasRed, pCRISPR- After gDNA (sgRNA containing mhpT) is transferred to Escherichia coli HM together, Cas9/sgRNA induces host in mhpT gene Double-strand break occurs for site, before gpdA promoter is integrated into mhpT by recombinase Red, and sequence verification
Following table is the manipulative indexing of Primer and sequence table serial number.
3 Primer of table is compareed with sequence table serial number
Title It is numbered in sequence table
lldP sgRNA SEQ ID NO:1
hpaX sgRNA SEQ ID NO:14
mhpT sgRNA SEQ ID NO:15
lldP-FF SEQ ID NO:3
lldP-FR SEQ ID NO:4
lldP-gpdA-F SEQ ID NO:5
lldP-gpdA-R SEQ ID NO:6
lldP-RF SEQ ID NO:7
lldP-RR SEQ ID NO:8
According to method inducing expression as described in example 2, collects various types of cells and carry out transformation assay, the results are shown in Table 4. Resting cell system in transformation system are as follows: wet cell weight 10g/L, Pfansteihl 200g/L, phenol 10g/L, pH 8.0, temperature are 40 DEG C, 250 revs/min of shaking speed;Transformation time 12 hours.
4 conversion results of table compare
The best Escherichia coli HM (PG-lldP, PG-hpaX, PG-mhpT) of effect is named as Escherichia coli PXT。
Embodiment 4
Escherichia coli will be increased before nadA, pdxJ gene in Escherichia coli PXT according to the method for embodiment 3 Glyceraldehyde 3-phosphate dehydro-genase gene (gpdA) before medium expression intensity constitutive promoter (PG), sequence such as SEQ ID Shown in NO:9.Then plasmid is imported again.
When the nadA that enhances gene is expressed, using the method for lldP expression of enhancing gene similar in embodiment 3, first amplify Trip, promoter, downstream sequence, and design primer are fused to the expression cassette containing gpdA promoter.Then with plasmid pCasRed, After pCRISPR-gDNA (containing nadA-gRNA) is transferred to Escherichia coli PXT together, Cas9/sgRNA induces host and exists Double-strand break occurs for nadA gene loci, before gpdA promoter is integrated into nadA gene by recombinase Red, and sequence verification
When the pdxJ that enhances gene is expressed, using the method for lldP expression of enhancing gene similar in embodiment 3, first amplify Trip, promoter, downstream sequence, and design primer are fused to the expression cassette containing gpdA promoter.Then with plasmid pCasRed, After pCRISPR-gDNA (containing pdxJ-gRNA) is transferred to Escherichia coli PXT together, Cas9/sgRNA induces host and exists Double-strand break occurs for pdxJ gene loci, before gpdA promoter is integrated into pdxJ gene by recombinase Red, and sequence verification
Following table is the manipulative indexing of Primer and sequence table serial number.
5 Primer of table is compareed with sequence table serial number
Title It is numbered in sequence table
nadA sgRNA SEQ ID NO:2
pdxJ sgRNA SEQ ID NO:16
After the completion of genetic modification, co-expression plasmid is imported.According to method inducing expression as described in example 2, collect each Class cell carries out transformation assay, and the results are shown in Table 6.Resting cell system in transformation system are as follows: wet cell weight 20g/L, Pfansteihl 200g/L, phenol 200g/L, pH 9.0, temperature are 30 DEG C, 250 revs/min of shaking speed;Transformation time 24 hours.
6 conversion results of table compare
Best Escherichia coli PXT (PG-nadA, PG-pdxJ) is named as Escherichia coli NJ。
Embodiment 6
According to derivational expression method described in embodiment 2, by Escherichia coli NJ/pETDuet-1-ehtpl- Thallus is collected after the completion of llnox+pACYCDuet-1-rstal-llldh inducing expression, in 100ml reaction system, cell is wet Weight 1g/L, Pfansteihl 1g/L, phenol 1g/L, pH 6.0, temperature are 15 DEG C, 250 revs/min of shaking speed;Transformation time 1 is small When.Measurement result, p-Coumaric Acid concentration are 81mg/L.
Embodiment 7
According to derivational expression method described in embodiment 2, thallus will be collected after the completion of bacterial strain inducing expression in table 7, in 100ml In reaction system, wet cell weight 200g/L, Pfansteihl 200g/L, phenol 200g/L, pH 8.5, temperature is 40 DEG C, shaking speed 250 revs/min;Transformation time 48 hours.Precipitating is all diluted into measurement result after dissolution.
7 conversion results of table compare
Bacterial strain P-Coumaric Acid g/L
Escherichia coli NJ/pETDuet-1-ehtpl-llldh+pACYCDuet-1-rstal-llnox 344.9
Escherichia coli NJ/pETDuet-1-ehtpl-rstal+pACYCDuet-1-llldh-llnox 338.3
Escherichia coli NJ/pETDuet-1-ehtpl-llnox+pACYCDuet-1-rstal-llldh 376.9
Escherichia coli NJ/pETDuet-1-rstal-llldh+pACYCDuet-1-ehtpl-llnox 337.4
Escherichia coli NJ/pETDuet-1-rstal-llnox+pACYCDuet-1-ehtpl-llldh 351.4
Escherichia coli NJ/pETDuet-1-llnox-llldh+pACYCDuet-1-rstal-ehtpl 346.3
The transformation and building of above-described enzyme and its co-expression gene engineering bacteria, the culture medium composition of thallus and culture side Method and Whole Cell Bioconversion are only presently preferred embodiments of the present invention, are not intended to restrict the invention, theoretically speaking its Its bacterium, filamentous fungi, actinomyces, zooblast can carry out the transformation of genome, and for the complete of polygenes coexpression Cell catalysis.All made any modifications, equivalent replacement within principle and spirit of the invention.
Sequence table
<110>Southern Yangtze University
<120>a kind of engineering bacteria and its application in production p-Coumaric Acid
<130> 2018.3.15
<160> 16
<170> PatentIn version 3.3
<210> 1
<211> 20
<212> DNA
<213>artificial sequence
<400> 1
gattgccacc gtccacgagg 20
<210> 2
<211> 20
<212> DNA
<213>artificial sequence
<400> 2
ttaacggcgt cggcttcggg 20
<210> 3
<211> 25
<212> DNA
<213>artificial sequence
<400> 3
aaatacaatc tctgtaggtt cttct 25
<210> 4
<211> 50
<212> DNA
<213>artificial sequence
<400> 4
tcggccactc atcaacatga ttcatgagtc tgttgctcat ctccttgtca 50
<210> 5
<211> 50
<212> DNA
<213>artificial sequence
<400> 5
tgacaaggag atgagcaaca gactcatgaa tcatgttgat gagtggccga 50
<210> 6
<211> 50
<212> DNA
<213>artificial sequence
<400> 6
cgtagttttg ttgccagaga ttcatggttt tctcctgtca ggaacgttcg 50
<210> 7
<211> 50
<212> DNA
<213>artificial sequence
<400> 7
cgaacgttcc tgacaggaga aaaccatgaa tctctggcaa caaaactacg 50
<210> 8
<211> 25
<212> DNA
<213>artificial sequence
<400> 8
taacacctga cccgcagtgt aaccg 25
<210> 9
<211> 1100
<212> DNA
<213> Escherichia coli BL21(DE3)
<400> 9
atgaatcatg ttgatgagtg gccgatcgct acgtgggaag aaaccacgaa actccattgc 60
gcaatacgct gcgataacca gtaaaaagac cagccagtga atgctgattt gtaaccttga 120
atatttattt tccataacat ttcctgcttt aacataattt tccgttaaca taacgggctt 180
ttctcaaaat ttcattaaat attgttcacc cgttttcagg taatgactcc aacttattga 240
tagtgtttta tgttcagata atgcccgatg actttgtcat gcagctccac cgattttgag 300
aacgacagcg acttccgtcc cagccgtgcc aggtgctgcc tcagattcag gttatgccgc 360
tcaattcgct gcgtatatcg cttgctgatt acgtgcagct ttcccttcag gcgggattca 420
tacagcggcc agccatccgt catccatatc accacgtcaa agggtgacag caggctcata 480
agacgcccca gcgtcgccat agtgcgttca ccgaatacgt gcgcaacaac cgtcttccgg 540
agcctgtcat acgcgtaaaa cagccagcgc tggcgcgatt tagccccgac atagccccac 600
tgttcgtcca tttccgcgca gacgatgacg tcactgcccg gctgtatgcg cgaggttacc 660
gactgcggcc tgagtttttt aagtgacgta aaatcgtgtt gaggccaacg cccataatgc 720
gggcagttgc ccggcatcca acgccattca tggccatatc aatgattttc tggtgcgtac 780
cgggttgaga agcggtgtaa gtgaactgca gttgccatgt tttacggcag tgagagcaga 840
gatagcgctg atgtccggcg gtgcttttgc cgttacgcac caccccgtca gtagctgaac 900
aggagggaca gctgatagaa acagaagcca ctggagcacc tcaaaaacac catcatacac 960
taaatcagta agttggcagc atcaccccgt tttcagtacg ttacgtttca ctgtgagaat 1020
ggagattgcc catcccgcca tcctggtcta agcctggaaa ggatcaattt tcatccgaac 1080
gttcctgaca ggagaaaacc 1100
<210> 10
<211> 20
<212> DNA
<213>artificial sequence
<400> 10
tatgcccgtc gatcgcgccc 20
<210> 11
<211> 120
<212> DNA
<213>artificial sequence
<400> 11
ccaagatcac gcacgtaccg tcgatgtatc tctctgaact gccagggaaa aaccacggtt 60
agatcagcaa gcgttgccgg gaaatgggcg tcgataccat tatcgttttc gacacccact 120
<210> 12
<211> 20
<212> DNA
<213>artificial sequence
<400> 12
tcatcgagta cctcttgcgc 20
<210> 13
<211> 120
<212> DNA
<213>artificial sequence
<400> 13
tagcctgata tgcacgctta tcttcactgt ctttcccact cgccgctggt gggatatgtc 60
aatggcgtga ttgccagcgc ccgcgagcgt attgcggctt tctcccctga actggtggtg 120
<210> 14
<211> 20
<212> DNA
<213>artificial sequence
<400> 14
cgaacagaaa gacgatcagg 20
<210> 15
<211> 20
<212> DNA
<213>artificial sequence
<400> 15
gcgggatgaa gatgatgaag 20
<210> 16
<211> 20
<212> DNA
<213>artificial sequence
<400> 16
cgtcgcggtc agtaatgtga 20

Claims (10)

1. a kind of method for producing para hydroxybenzene lactic acid, which is characterized in that the method is given birth to using recombination bacillus coli It produces;Wherein, it is de- to express external source tyrosine phenol lyase, tyrosine ammonia lyase, Pfansteihl simultaneously for the recombination bacillus coli Hydrogen enzyme, nadh oxidase, and knocked out phenolic compound on the basis of host e. coli and decomposed relevant gene.
2. the method according to claim 1, wherein it is any in hpaD, mhpB that the phenols, which decomposes gene, One or two kinds of combination.
3. the method according to claim 1, wherein the recombination bacillus coli also overexpression Lactate Transport Gene, phenol transporter gene, NAD synthesis gene, phosphoric acid Vitamin B6 synthesis gene are one or more kinds of.
4. the method according to claim 1, wherein the gene of the overexpression be lldP, hpaX, mhpT, Any one or more in nadA, pdxJ.
5. method according to claim 4 or 5, which is characterized in that the overexpression is by by host e. coli Increase constitutive promoter before the gene of need to strengthen expression on genome.
6. the method according to claim 1, wherein the tyrosine phenol lyase, tyrosine ammonia lyase, L- Lactic dehydrogenase, nadh oxidase are co-expressed by pETDuet-1 and pACYCDue-1.
7. the method according to claim 1, wherein the host strain is Escherichia coli BL21 (DE3)。
8. the method according to claim 1, wherein the production is to carry out resting cell production;It is described complete In the system of cell transformation production, wet cell weight 1-200g/L, phenol concentration 1-200g/L, Pfansteihl concentration are 1- 200g/L, pH 6.0-9.0, ammonia radical ion concentration 1-30g/L;It is reacted in 15-40 DEG C, time 1-48 hour.
9. any the method for claim 1-8 is in the application of chemical industry, food, medicine and other fields.
10. a kind of recombinant bacterium, which is characterized in that the recombinant bacterium includes: in the escherichia coli host for having knocked out hpaD and mhpB On the basis of, overexpression lldP, hpaX, mhpT, nadA, pdxJ, and at the same time express tyrosine phenol lyase, junket ammonia Sour ammonia lyase, l-lactate dehydrogenase and nadh oxidase.
CN201810352692.4A 2018-04-19 2018-04-19 Engineering bacterium and application thereof in production of p-hydroxycinnamic acid Active CN108949840B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810352692.4A CN108949840B (en) 2018-04-19 2018-04-19 Engineering bacterium and application thereof in production of p-hydroxycinnamic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810352692.4A CN108949840B (en) 2018-04-19 2018-04-19 Engineering bacterium and application thereof in production of p-hydroxycinnamic acid

Publications (2)

Publication Number Publication Date
CN108949840A true CN108949840A (en) 2018-12-07
CN108949840B CN108949840B (en) 2021-10-19

Family

ID=64499119

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810352692.4A Active CN108949840B (en) 2018-04-19 2018-04-19 Engineering bacterium and application thereof in production of p-hydroxycinnamic acid

Country Status (1)

Country Link
CN (1) CN108949840B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938579A (en) * 2019-12-13 2020-03-31 杭州唯铂莱生物科技有限公司 Recombinant tyrosine ammonia lyase strain, tyrosine ammonia lyase and preparation method and application thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651991A (en) * 1979-10-04 1981-05-09 Ajinomoto Co Inc Preparation of l-dihydroxyphenylalanine
US20030170834A1 (en) * 1999-08-06 2003-09-11 Gatenby Anthony A. Bioproduction of para-hydroxycinnamic acid
CN1957087A (en) * 2004-04-21 2007-05-02 荷兰应用科学研究会(Tno) Microbial production of aromatic acids
WO2008008181A2 (en) * 2006-07-11 2008-01-17 E. I. Du Pont De Nemours And Company Method of production of para-hydroxycinnamic acid using a thermostable tal enzyme
CN102046775A (en) * 2008-05-28 2011-05-04 米兰-比科卡大学 Improved yeast strains for organic acid production
CN102220298A (en) * 2011-04-20 2011-10-19 中国科学院微生物研究所 Ferulic acid esterase FaeI as well as coding gene and application thereof
CN102351689A (en) * 2011-10-31 2012-02-15 滨州泓瑞医药科技有限公司 Preparation technique of p-hydroxy-cinnamic acid
WO2014045298A4 (en) * 2012-08-28 2014-07-10 Privi Biotechnologies Private Limited Microbial biotransformation of aromatic acids to their reduced carbon aromatic acids
CN106795486A (en) * 2014-08-21 2017-05-31 公益财团法人地球环境产业技术研究机构 The manufacture method of bar shaped bacteria transformant and the organic compound using the transformant
US20170166936A1 (en) * 2014-07-14 2017-06-15 Danmarks Tekniske Universitet Processes for the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity
WO2017170549A1 (en) * 2016-03-29 2017-10-05 東レ株式会社 Method for producing hydroxycinnamic acid
CN107532184A (en) * 2015-03-10 2018-01-02 格拉茨大学 A kind of method for preparing 4-Vinyl phenol
CN107586752A (en) * 2017-08-04 2018-01-16 江南大学 A kind of engineering bacteria and its application

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651991A (en) * 1979-10-04 1981-05-09 Ajinomoto Co Inc Preparation of l-dihydroxyphenylalanine
US20030170834A1 (en) * 1999-08-06 2003-09-11 Gatenby Anthony A. Bioproduction of para-hydroxycinnamic acid
CN1957087A (en) * 2004-04-21 2007-05-02 荷兰应用科学研究会(Tno) Microbial production of aromatic acids
WO2008008181A2 (en) * 2006-07-11 2008-01-17 E. I. Du Pont De Nemours And Company Method of production of para-hydroxycinnamic acid using a thermostable tal enzyme
CN102046775A (en) * 2008-05-28 2011-05-04 米兰-比科卡大学 Improved yeast strains for organic acid production
CN102220298A (en) * 2011-04-20 2011-10-19 中国科学院微生物研究所 Ferulic acid esterase FaeI as well as coding gene and application thereof
CN102351689A (en) * 2011-10-31 2012-02-15 滨州泓瑞医药科技有限公司 Preparation technique of p-hydroxy-cinnamic acid
WO2014045298A4 (en) * 2012-08-28 2014-07-10 Privi Biotechnologies Private Limited Microbial biotransformation of aromatic acids to their reduced carbon aromatic acids
US20170166936A1 (en) * 2014-07-14 2017-06-15 Danmarks Tekniske Universitet Processes for the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity
CN106795486A (en) * 2014-08-21 2017-05-31 公益财团法人地球环境产业技术研究机构 The manufacture method of bar shaped bacteria transformant and the organic compound using the transformant
CN107532184A (en) * 2015-03-10 2018-01-02 格拉茨大学 A kind of method for preparing 4-Vinyl phenol
WO2017170549A1 (en) * 2016-03-29 2017-10-05 東レ株式会社 Method for producing hydroxycinnamic acid
CN107586752A (en) * 2017-08-04 2018-01-16 江南大学 A kind of engineering bacteria and its application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARYBETH C. MACDONALD 等: "Rhodotorula glutinis Phenylalanine/Tyrosine Ammonia Lyase Enzyme Catalyzed Synthesis of the Methyl Ester of para-Hydroxycinnamic Acid and its Potential Antibacterial Activity", 《FRONT. MICROBIOL.》 *
王磊 等: "对羟基肉桂酸的合成及工艺条件优化", 《化学试剂》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938579A (en) * 2019-12-13 2020-03-31 杭州唯铂莱生物科技有限公司 Recombinant tyrosine ammonia lyase strain, tyrosine ammonia lyase and preparation method and application thereof

Also Published As

Publication number Publication date
CN108949840B (en) 2021-10-19

Similar Documents

Publication Publication Date Title
CA2737428C (en) Bacterium capable of producing lactic acid, and method for producing lactic acid
Bator et al. Killing two birds with one stone–strain engineering facilitates the development of a unique rhamnolipid production process
CN108949652A (en) A kind of engineering bacteria and its caffeinic application of production
CN109295113A (en) A method of producing hydroxytyrosol
CN105051181B (en) The preparation method of the increased recombinant microorganism of the generative capacity of 2,3-butanediol and the 2,3-butanediol using it
CN103703137B (en) The method being manufactured useful chemicals by p-phthalic acid potassium salt
CN109370967A (en) A kind of engineering bacteria and its application in tyrosol production
CN104995298A (en) Method for producing phenol from renewable resources by fermentation
CN106434510A (en) Genetically engineered bacterium for producing L-aspartic acid through fermentation
Wang et al. Ameliorating end-product inhibition to improve cadaverine production in engineered Escherichia coli and its application in the synthesis of bio-based diisocyanates
CN117866867A (en) Caffeic acid production strain, construction method and application thereof
JPWO2010032698A1 (en) Method for producing lactic acid from plant-derived materials and lactic acid-producing bacteria
JPWO2010032698A6 (en) Method for producing lactic acid from plant-derived materials and lactic acid-producing bacteria
CN108949647B (en) Engineering bacterium and application thereof in production of L-tyrosine
CN108949648B (en) A kind of engineering bacteria and its with the application of cheap substrates production danshensu
CN108949657B (en) A kind of engineering bacteria and its application in danshensu and α-ketoglutaric acid coproduction
CN108949649B (en) Engineering bacterium and application thereof in producing levodopa
CN108949840A (en) A kind of engineering bacteria and its application in production p-Coumaric Acid
CN108949650B (en) A kind of production method and engineering bacteria of danshensu
CN108949655B (en) A kind of engineering bacteria and its application in danshensu and pyruvic acid coproduction
CN108949656A (en) A kind of engineering bacteria and its application in production pyruvic acid
CN113481138A (en) Engineering strain, preparation method thereof and method for producing glycollic acid by efficiently utilizing ethylene glycol
CN105593368A (en) Recombinant microorganism having enhanced ability to produce 2,3-butanediol and method for producing 2,3-butanediol using same
CN108949651A (en) A kind of engineering bacteria and its with the application of cheap substrates production para hydroxybenzene lactic acid
CN108949654A (en) A kind of engineering bacteria and its application in production α-ketoglutaric acid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230410

Address after: Floor 20, Unit 2, Building 1, Jinlan West Jingyuan, No. 56, Shinan Road, Science Avenue, High-tech Industrial Development Zone, Zhengzhou City, Henan Province, 450000

Patentee after: Zhuohong Chaoyuan Biotechnology (Zhengzhou) Co.,Ltd.

Address before: No. 1800 Lihu Avenue, Wuxi City, Jiangsu Province

Patentee before: Jiangnan University