CN108933448A - 一种含光伏电源的中低压配电网协调控制方法和系统 - Google Patents

一种含光伏电源的中低压配电网协调控制方法和系统 Download PDF

Info

Publication number
CN108933448A
CN108933448A CN201810747071.6A CN201810747071A CN108933448A CN 108933448 A CN108933448 A CN 108933448A CN 201810747071 A CN201810747071 A CN 201810747071A CN 108933448 A CN108933448 A CN 108933448A
Authority
CN
China
Prior art keywords
voltage
low
distribution network
power
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810747071.6A
Other languages
English (en)
Other versions
CN108933448B (zh
Inventor
唐巍
李天锐
蔡永翔
张博
王照琪
谢辉
高博
谢毓广
陈凡
徐斌
丁津津
汪玉
王小明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
China Electric Power Research Institute Co Ltd CEPRI
Electric Power Research Institute of State Grid Anhui Electric Power Co Ltd
Original Assignee
China Agricultural University
China Electric Power Research Institute Co Ltd CEPRI
Electric Power Research Institute of State Grid Anhui Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University, China Electric Power Research Institute Co Ltd CEPRI, Electric Power Research Institute of State Grid Anhui Electric Power Co Ltd filed Critical China Agricultural University
Priority to CN201810747071.6A priority Critical patent/CN108933448B/zh
Publication of CN108933448A publication Critical patent/CN108933448A/zh
Application granted granted Critical
Publication of CN108933448B publication Critical patent/CN108933448B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • H02J3/383
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明实施例提供一种含光伏电源的中低压配电网协调控制方法和系统,包括:低压配电网基于电压‑无功下垂控制方法对光伏电源输出的无功功率进行就地控制;若就地控制后无电压越限,则控制结束;若就地控制后电压越限,则将就地消纳后的低压配电网等值为已知功率的中压配电网的负荷节点,通过中压配电网对等值负荷的电压、功率进行最优潮流OPF集中优化,将优化结果在低压配电网中重新校验,重复上述步骤直至低压配电网无电压越限。通过将低压配电网进行等值建立了中压配电网集中优化控制模型,通过二阶锥松弛技术将所提模型转化为可有效求解的二阶锥规划模型。通过中低压配电网协调控制,促进光伏就地与远方消纳,提高配电网的各项运行指标。

Description

一种含光伏电源的中低压配电网协调控制方法和系统
技术领域
本发明涉及配电网运行控制技术领域,更具体地,涉及一种含光 伏电源的中低压配电网协调控制方法和系统。
背景技术
随着煤炭、石油等化石能源的快速消耗以及生态环境的急剧恶化, 能源问题日益成为制约国际社会经济发展的瓶颈。这使得可再生能源 的利用得到重视,其中太阳能以其巨大的储量、清洁环保、安全可靠 等优势必将成为21世纪最主要的能源之一。据统计,2016年全球光伏 新增装机70GW,比2015年增长大约30%。2016年的全球新增装机可 发电九百亿千瓦时,可满足2500万户居民(年均耗电3500千瓦时)的需 求,其中超过70%为屋顶光伏项目。
然而,光伏发电的间歇性特点会对原有配电网的线路潮流、节点 电压、网络损耗等产生影响,会造成反向功率流以及电压上升等现象。 光伏并网后,若光伏功率不能被本地负荷完全消纳会导致剩余功率注 入电网形成逆向潮流,造成馈线电压从配变母线开始逐渐抬高;户用 光伏电源接入低压配电网后,将改变原有低压配电网单电源辐射型结 构,引起电压和潮流分布的改变,对配电网的网络损耗产生负面的影 响。因此,实现光伏资源分散开发及就地利用,中低压配电网的大规 模光伏接入的消纳技术正在成为研究趋势和方向。
针对上述问题,大规模光伏接入后的消纳问题可通过在中低压配 电网(中压配电网:6-10kV;低压配电网:220/380V)安装设备以改 善电压、网损等,例如,有载调压分接头、电容补偿装置、储能以及 光伏逆变器等。但是由于设备响应速度和机械磨损的限制,传统的含 有载调压分接头的变压器和并联电容器很难快速和频繁响应光伏并网 功率的变化;储能投资价格较高,使用寿命较短,并且维护难度较大, 在低压配电网中还无法广泛使用。
发明内容
本发明提供一种克服上述问题或者至少部分地解决上述问题的一 种含光伏电源的中低压配电网协调控制方法和系统。
根据本发明实施例的第一个方面,提供一种含光伏电源的中低压 配电网协调控制方法,包括:
低压配电网基于电压-无功下垂控制方法对光伏电源输出的无功功 率进行就地控制;
若就地控制后无电压越限,则控制结束;若就地控制后电压越限, 则将就地消纳后的低压配电网等值为已知功率的中压配电网的负荷节 点,通过中压配电网对等值负荷的电压、功率进行最优潮流OPF集中 优化,将优化结果在低压配电网中重新校验,重复上述步骤直至低压 配电网无电压越限。
作为优选的,低压配电网基于电压-无功下垂控制方法对光伏电源 输出的无功功率进行就地控制,具体包括:
光伏电源接入低压配电网后,基于电压-无功下垂控制方法,通过 光伏逆变器输出无功功率对低压配电网进行就地控制,抑制电压越限。
作为优选的,低压配电网基于电压-无功下垂控制方法对光伏电源 输出的无功功率进行就地控制后,还包括:
基于历史数据中低压配电网首端电压、功率数据,得到低压配电 网的电压合格范围,以及电压合格范围内对应的功率合格范围。
作为优选的,低压配电网基于电压-无功下垂控制方法对光伏电源 输出的无功功率进行就地控制后,还包括:
判断就地控制后的功率是否在功率合格范围内,若在功率合格范 围内,则判断就地控制后无电压越限,若不在功率合格范围内,则判 断就地控制后电压越限。
作为优选的,将就地消纳后的低压配电网等值为已知功率的中压 配电网的负荷节点,具体包括:
通过变压器将所述电压合格范围折算到中压配电网中并作为约束 条件,将低压配电网等值为已知有功功率P和无功功率Q的等效负荷, 并将该等效负荷转换为只有一个变量P的负荷节点。
作为优选的,通过中压配电网对等值负荷的电压、功率进行最优 潮流OPF集中优化前,还包括:
建立光伏电源接入后的中压配电网网源协调控制模型,以光伏电 源的光伏发电量最大、中低压配电网网络损耗最小为目标建立目标函 数,并建立潮流约束、节点电压上下限约束、PV无功出力约束和储能 装置ESS运行约束、并联电容器SC运行约束、OLTC相邻时段调节挡 位数约束;
基于二阶锥优化方法对所述目标函数、潮流约束、节点电压上下 限约束、PV无功出力约束和储能装置ESS运行约束进行松弛求解,得 到中压配电网网源协调控制模型。
作为优选的,以光伏电源的光伏发电量最大、中低压配电网网络 损耗最小为目标建立目标函数,具体包括:
以光伏电源的光伏发电量最大为第一目标,建立第一目标函数:
式中,为第t个时段第k个光伏所发出的功率;T为时段的个数; NPV为光伏个数;
以中低压配电网网络损耗最小为第二目标,建立第二目标函数:
式中,N为电网的节点数量;c(i)为电网中与节点i相连的节点的 集合;rij为支路ij的电阻;为支路ij电流幅值;
根据所述第一目标函数和所述第二目标函数,得到中压配电网网 源协调控制模型的目标函数:maxF=ω1f12f2;式中,ω1、ω2为权重系 数,ω12=1。
根据本发明实施例的第二个方面,提供一种含光伏电源的中低压 配电网协调控制系统,包括低压配电网控制模块和中压配电网网源协 调控制模块;
所述低压配电网控制模块用于基于电压-无功下垂控制方法对光伏 电源输出的无功功率进行就地控制;
所述中压配电网网源协调控制模块用于在就地控制后仍有电压越 限时,将就地消纳后的低压配电网等值为已知功率的中压配电网的负 荷节点,通过中压配电网对等值负荷的电压、功率进行最优潮流OPF 集中优化,将优化结果在低压配电网中重新校验,重复上述步骤直至 低压配电网无电压越限。
根据本发明实施例的第三个方面,提供一种含光伏电源的中低压 配电网协调控制设备,包括:
至少一个处理器;以及与所述处理器通信连接的至少一个存储器, 其中:
所述存储器存储有可被所述处理器执行的程序指令,所述处理器 调用所述程序指令能够执行如上述的含光伏电源的中低压配电网协调 控制方法。
根据本发明实施例的第四个方面,提供一种非暂态计算机可读存 储介质,所述非暂态计算机可读存储介质存储计算机指令,所述计算 机指令使所述计算机执行如上述的含光伏电源的中低压配电网协调控 制方法。
本发明实施例提出一种含光伏电源的中低压配电网协调控制方法 和系统,首先,低压配电网通过光伏逆变器输出无功功率进行就地控 制,抑制电压越限;其次,若低压配电网控制后电压仍然越限,则将 低压配电网等值为已知功率的中压配电网的负荷节点,通过中压配电 网OPF集中优化,得到等值负荷的电压、功率优化结果;最后,将优 化结果在低压配电网重新校验,若电压依旧出现越限风险,则返回中 压网重新计算,直到低压配电网的电压越限得到有效抑制,从而使电 压合格率以及网损等电网指标得到改善,同时,建立同时考虑PV、ESS、 SC、OLTC等连续、离散控制变量,以光伏发电量最大、网损最小为 目标函数的基于低压配电网等值的中压配电网网源协调控制模型,采 用二阶锥松弛方法将模型做凸化松弛处理,将约束条件中离散的、连 续的且与时间相关的变量转换到二阶锥松弛模型中松弛求解,从而原 问题转化为一个可被有效求解的混合整数二阶锥优化问题,大大降低 了求解难度。
附图说明
图1为根据本发明实施例的含光伏电源的中低压配电网协调控制 方法示意图;
图2为根据本发明实施例的光伏电源接口逆变器的下垂控制原理 示意图;
图3为根据本发明实施例的低压配电网馈线线路示意图;
图4为根据本发明实施例的采用等效负荷将低压配电网等值为负 荷点流程示意图;
图5为根据本发明实施例的含光伏电源的中低压配电网协调控制 设备示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细 描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
如图1所示,图中示出了一种含光伏电源的中低压配电网协调控 制方法,包括:
低压配电网基于电压-无功下垂控制方法对光伏电源输出的无功功 率进行就地控制;
若就地控制后无电压越限,则控制结束;若就地控制后电压越限, 则将就地消纳后的低压配电网等值为已知功率的中压配电网的负荷节 点,通过中压配电网对等值负荷的电压、功率进行最优潮流OPF集中 优化,将优化结果在低压配电网中重新校验,重复上述步骤直至低压 配电网无电压越限。
在本实施例中,通过中低压配电网网源协调,即在现有电源、电 网协同运行的基础上,通过电网调节技术有效控制光伏大规模并网时 的“不友好”特性,光伏电源和已有线路一起参与电网调节,使得电 源朝着具有“友好”调节能力和特性的方向发展,从而有效提高光伏 渗透率,增强电网系统的自主调节能力,改善电网电能指标,减少电 网投资成本,对中低压配电网运行控制有着重要的意义。
在本实施例中,低压配电网基于电压-无功下垂控制方法对光伏电 源输出的无功功率进行就地控制,具体包括:
光伏电源接入低压配电网后,基于电压-无功下垂控制方法,通过 光伏逆变器输出无功功率对低压配电网进行就地控制,抑制电压越限。
具体的,提出了一种基于光伏逆变器的低压配电网就地电压控制 方法,大规模光伏接入后,通过电压-无功下垂控制的就地电压控制方 法,调节逆变器的无功功率,缓解大规模光伏并网造成的电压越限问 题。
具体的,大规模光伏接入低压配电网对网络电压造成的影响明显, 可通过下垂控制限制电压越限现象。下垂控制就是选择与电压-无功下 垂特性曲线(Droop Character)作为低压配电网的控制方式,即通过 Q-V下垂控制来获取稳定的电压,这种控制方法对低压配电网中接入 的大规模光伏输出的无功功率进行控制,无需机组间的通信协调,实 现了分布式光伏即插即用和对等控制的目标,保证了低压配电网的电 压稳定,具有简单可靠的特点。光伏电源接口逆变器的下垂控制原理 如图2所示,它利用光伏电源输出无功功率和电压幅值呈线性关系的 原理进行控制。例如,当光伏电源输出无功功率增加时,分布式电源 的运行点由A点向B点移动。
在电压的下垂控制曲线中,光伏系统的无功功率与局部电网电压 之间的一般关系可定义如下:
V=Vn-m(Qn-Q) (1)
式中,m是斜率因子(V/kVar),V是待控制点电压幅值;Q是待 控制点为保证电压不越限需要光伏逆变器输出的无功功率,光伏逆变 器必须吸收或发出无功功率以缓解电压越限情况;Vn是额定电压值, 其标幺值可取值为Vn=1.0,Qn是额定电压值下光伏逆变器所需发出或吸 收的无功功率,可取值Qn=0。m可计算如下:
式中,Vn为系统标准电压;Qmax为电压下降达到最大允许值Vmin时 光伏电源输出的无功功率。
经过低压配电网控制后,如果电压仍不能限制在允许范围内,此 时需要低压配电网等效为已知功率的负荷节点,通过中压配电网的集 中控制方法,将未能完全消纳的光伏再次进行控制,将网络电压限制 在安全范围内。
在上述实施例的基础上,低压配电网基于电压-无功下垂控制方法 对光伏电源输出的无功功率进行就地控制后,还包括:
基于历史数据中低压配电网首端电压、功率数据,得到低压配电 网的电压合格范围,以及电压合格范围内对应的功率合格范围。基于 大量历史数据,可以得到低压配电网首端电压在电压合格范围内的功 率合格范围。
在上述实施例的基础上,低压配电网基于电压-无功下垂控制方法 对光伏电源输出的无功功率进行就地控制后,还包括:
判断就地控制后的功率是否在功率合格范围内,若在功率合格范 围内,则判断就地控制后无电压越限,若不在功率合格范围内,则判 断就地控制后电压越限。
在上述实施例的基础上,将就地消纳后的低压配电网等值为已知 功率的中压配电网的负荷节点,具体包括:
通过变压器将所述电压合格范围折算到中压配电网中并作为约束 条件,将低压配电网等值为已知有功功率P和无功功率Q的等效负荷, 并将该等效负荷转换为只有一个变量P的负荷节点。
大规模接入光伏电源后,低压配电网通过无功-电压下垂控制就地 消纳光伏,此时配电网可能仍然存在过电压现象,因此需要调动中压 配电网协同消纳,建立以发电量最大和网损最小为目标函数的中低压 协调控制模型。在低压配电网根据电压-无功下垂控制原理实现光伏的 就地控制,抑制大规模光伏接入后的电压越限;若低压控制后的电压 仍然出现越限情况,则将低压配电网等值为中压配电网的一个PQ节 点,在中压配电网通过OPF集中优化,得到等值负荷的电压、功率优 化结果,在低压配电网重新校验。
基于大量历史数据,判断从中压配电网返回的功率是否可以使电 压在合格范围内,若可以,则中低压协调控制模型可以适应大规模光 伏接入,电压越限得到有效控制,电网安全指标得到提升;若返回的 功率使得电压再次超过安全范围,则将此功率作为新的低压网等值负 荷,将电压合格范围作为新的电压约束条件重新返回中压配电网计算, 通过二阶锥优化求解再次得到优化结果。重复上述计算步骤,直到低 压配电网的电压越限得到有效抑制,从而使电网电压合格率、电压波 动率以及网损等电网安全指标得到提升。
具体的,中压配电网的集中优化:选定有载调压分接头(on-load tap changer,OLTC)调节量,并联电容器(shunt capacitor,SC)投切量, 储能功率,逆变器的无功输出作为控制变量,以负荷节点电压为状态 变量,并且将低压配电网等值负荷的电压范围作为中压配电网的约束 条件。利用二阶锥松弛技术对模型进行松弛处理,对中压网进行优化 计算,得到优化变量结果,执行下一步进行判断。
将计算得到的优化变量结果进行校验,根据功率合格范围,判断 得到的低压配电网等值负荷的功率所对应的电压,是否在电压合格范 围内。若在,则表示中低压协同消纳可以很好地控制电压越限,输出 结果;否则,将功率对应的合格的电压范围作为中压配电网新的约束 条件,返回再次通过中压配电网进行集中优化控制。
通过潮流计算可得到各节点低压配电网首端节点电压、功率等数 据,通过大量历史数据分析,在低压下垂控制后得到的功率范围内, 电压是否越限。如果电压越限,则需要将低压配电网等效到中压配电 网再次进行控制,以限制越限电压。通过变压器变比将电压范围折算 到中压配电网作为中压网的约束条件,将低压配电网等值为已知有功 功率P和无功功率Q的负荷节点,最终转换为只有一个变量P的等值 点。
如图3所示,是一条低压配电网馈线线路,图4采用等效负荷将 低压配电网等值为负荷点。通过公式(3)从始端A求得等效负荷点的 电压幅值:
式中,SA=PA+jQA,为流过首端A的视在功率,PA为线路首端A 的有功功率,QA为线路首端A的无功功率;UA为线路首端A的电压幅 值;Z1=R1+jX1为线路首端阻抗,R1线路首端电阻,X1线路首端电抗。
任意节点i的电压为Ui,i为节点,j为与i相连的节点,ij为两节 点之间的支路;前一节点i-1与节点i之间的线路阻抗Zi=Ri+jXi,则任 意两节点之间的电压差ΔUi可以定义为:
式中,Si=Pi+jQi为节点i注入的视在功率,Pi为线路节点i的有功 功率,Qi为节点i的无功功率;Ui为节点i的电压幅值;Ui+1为与节点i相 连的下一节点的电压幅值;Zij=Rij+jXij为支路ij阻抗,Rij支路ij电阻, Xij支路ij电抗。
故任意节点i的电压可表示为:
式中,Zl=Rl+jXl为从首节点A到节点i之间的线路l的阻抗; Sl=Pl+Ql为从首节点A到节点i之间的线路l的总传输功率;Ul是线 路l各节点电压。
任意节点j的有功变化对于电压的影响可以通过公式(6)求得:
对式(6)中偏导数进行分析:
式(7)表明,节点j的有功功率只与本节点有关,而与其他节点 造成的影响较小。将式(7)代入到式(6)中:
式中,是节点i对节点j的电压-有功灵敏度,即节点j单位功 率变化所引起的节点i的电压变化。
同理,可以得到电压-无功灵敏度:
将式(8)和式(9)相比后可得有功/无功对电压作用的量化结果, 若馈线采用统一的线路型号(单位电阻、电抗的数值分别为r0和x0), 可得:
从式(8)和式(9)中可以看出,任意两节点间的电压-有功与电压-无 功耦合关系的强弱与馈线的电阻和电抗数值直接相关,电阻数值越大, 电压-有功的耦合关系就越强;电抗数值越大,电压-无功的耦合关系就 越强,反之亦然。从式(10)中可以看出,电压-有功与电压-无功耦合强 弱之比即等于线路的单位电阻与电抗之比。
任意节点i的电压变化与全网的节点功率变化之间的关系可以表 示为:
为了将低压配电网等值为一个负荷点,将图4中等值点K和首节 点A之间的电压差值设置为0,即令式(12)中ΔUi=0,如式(12) 所示:
式中,SA=PA+QA为流过首端A的功率。通过式(5)可以将无功 功率Q用有功功率P表示,以减少变量个数简化计算。因此,低压网 等值负荷可简化为:
在上述实施例的基础上,通过中压配电网对等值负荷的电压、功 率进行最优潮流OPF集中优化前,还包括:
建立光伏电源接入后的中压配电网网源协调控制模型,以光伏电 源的光伏发电量最大、中低压配电网网络损耗最小为目标建立目标函 数,并建立潮流约束、节点电压上下限约束、PV无功出力约束和储能 装置ESS运行约束、并联电容器SC运行约束、OLTC相邻时段调节挡 位数约束;
基于二阶锥优化方法对所述目标函数、潮流约束、节点电压上下 限约束、PV无功出力约束和储能装置ESS运行约束进行松弛求解,得 到中压配电网网源协调控制模型。
具体的,以光伏电源的光伏发电量最大、中低压配电网网络损耗 最小为目标建立目标函数,具体包括:
以光伏电源的光伏发电量最大为第一目标,建立第一目标函数:
式中,为第t个时段第k个光伏所发出的功率;T为时段的个数; NPV为光伏个数;在中压配电网控制中,电压消纳能力取决于光伏发电 量,因此,定义整个辐射网络的光伏发电量最大为目标函数,目标函 数越大表示光伏发电量越多。
以中低压配电网网络损耗最小为第二目标,建立第二目标函数:
式中,N为电网的节点数量;c(i)为电网中与节点i相连的节点的 集合;rij为支路ij的电阻;为支路ij电流幅值。
根据所述第一目标函数和所述第二目标函数,得到中压配电网网 源协调控制模型的目标函数:maxF=ω1f12f2;式中,ω1、ω2为权重系 数,ω12=1。
具体的,在上述实施例的基础上,约束条件包括潮流约束、节点 电压上下限约束、PV无功出力约束和储能装置ESS运行约束、并联电 容器SC运行约束、OLTC相邻时段调节挡位数约束。
(a)潮流约束:
对于电网中节点j,有:
对于电网中支路ij,有:
式中,集合u(j)为电网中以j为末端节点的支路的首端节点集合; 集合v(j)为电网中以j为首端节点的支路的末端节点集合;为电压幅 值;为支路ij首端三相有功功率,为支路ij首端三相无功功率;分别为节点j的有功功率和无功功率净注入值; 分别为节点j上所连接的PV有功功率、ESS放电功率、ESS充电功率、负荷有功功率;分别为节点j上所连 接的PV无功功率、并联电容器SC的离散补偿功率、负荷无功功率; rij、xij分别为计及三相线路自阻抗和互阻抗的支路电阻和电抗。
(b)节点电压上下限约束
式中,Vi min,t为节点i电压下限,Vi max,t为节点i电压上限,是 由低压配电网等值后得到的安全电压范围。
(c)PV无功出力约束
式中,分别为PV的有功功率和无功功率;为t时 刻节点i上所连接的PV的有功出力最大值;为功率因数角。
(d)储能装置ESS运行约束
1)ESS电量限制
式中,为t时刻第i节点上所连接的ESS的电量;分别为相应的ESS的充电功率和放电功率;ηcharge和ηdischarge分别为充放 电效率;Δt为时间间隔;为保证在新的周期内ESS具有相同的调节性 能,ESS的本周期初始和下一周期的初始相等。
2)充放电状态限制
式中,为ESS充放电状态,为0-1变量,即表示 任一时刻ESS只能处于充电、放电、不充不放3种状态之一,而不存 在既充电又放电的物理不可行现象。
3)功率极限
式中,分别为ESS的充放电功率 上下限。
(e)并联电容器SC运行约束
受到生产制造技术和设备使用寿命的限制,在一个调度周期内SC 的操作次数有严格限制,且每一次投切都是成组操作,即SC的运行应 该满足如下约束特性:
式中,为第i节点上所连接的SC在t时刻的实际投运补偿功 率;Qi,SC,step为每一个补偿功率;为优化投运SC个数;整数为 每个电容器的最大补偿个数;为0-1变量。则表示在一 天T个周期内SC的动作次数限制为满足其实际运行要求。
(f)OLTC相邻时段调节挡位数约束
式中,分别表示OLTC档位增大和减小的调节变化 标识,为0-1变量,若则OLTC档位增大,且档位值在第t 时段比t-1时段档位值大,同理,若则OLTC档位减小,且 档位值在第t时段比t-1时段档位值大;是表示档位s变比标识的 0-1变量;SRj为OLTC档位最大变化范围;为T时段内OLTC 档位最大允许调节次数。
二阶锥优化(Second Order Cone Programming SOCP)问题可以追溯 到十七世纪的Ferrmat-Weber问题,在实际应用中,许多数学问题都可 以转化成SOCP问题来进行求解,线性规划(Linear Programming,LP) 和凸二次规划(Convex Quadratic Programming,CQP)问题可看作是 SOCP的特例,可以统一在SOCP的框架下。作为优化领域的一个分支,SOCP在与鲁棒相关的控制、组合优化以及金融等领域有着广泛的应 用。
SOCP问题的标准模型如下:
式中,变量x∈RN;系数常量b∈RM,c∈RN,AM×N∈RM×N;C为如式(27) 和式(28)所示的二阶锥或旋转二阶锥。
二阶锥:
旋转二阶锥:
SOCP问题中的m个约束和目标函数与决策变量x都是线性关系, 而x则取自于锥K,因此又可称为线性锥优化。SOCP将变量间的复杂 联系隐含于锥内,而在表面上却有一个非常好的线性表现。二阶锥规 划本质上是一种凸规划问题,具有计算的高效性和解的最优性。对于 一些简单的锥,可以通过设计多项式时间的算法来解决,而描述困难 问题的复杂的锥,则可以由简单的锥优化算法来求其近似解。目前, 使用现有的SOCP算法包能够容易地获得最优解,并且能够在多项式 时间内求解。
根据SCOP特点,将目标函数和约束条件作SCOP松弛,定义:
并将式(5)、式(7)和式(8)中的电压、 电流幅值二次项都用替换,得:
将式(23)做一步松弛得到:
再做一步等价变形,将式(23)化为标准二阶锥形式:
经过变形,原始模型的中压配电网控制问题变为:
建立同时考虑PV、ESS、SC、OLTC等连续、离散控制变量,以 光伏发电量最大、网损最小为目标函数的基于低压配电网等值的中压 配电网网源协调控制模型,考虑一天24小时各个时间段的耦合关系, 该动态问题较时间无耦合的静态问题拥有大量变量,因此采用二阶锥 松弛技术将模型做凸化松弛处理,将约束条件中离散的、连续的且与 时间相关的变量转换到二阶锥松弛模型中松弛求解,从而原问题转化 为一个可被有效求解的混合整数二阶锥优化问题,大大降低了求解难 度。
本实施例中还提供一种含光伏电源的中低压配电网协调控制系 统,包括低压配电网控制模块和中压配电网网源协调控制模块;
所述低压配电网控制模块用于基于电压-无功下垂控制方法对光伏 电源输出的无功功率进行就地控制;
所述中压配电网网源协调控制模块用于在就地控制后仍有电压越 限时,将就地消纳后的低压配电网等值为已知功率的中压配电网的负 荷节点,通过中压配电网对等值负荷的电压、功率进行最优潮流OPF 集中优化,将优化结果在低压配电网中重新校验,重复上述步骤直至 低压配电网无电压越限。
图5是示出本申请实施例的含光伏电源的中低压配电网协调控制 设备的结构框图。
参照图5,所述含光伏电源的中低压配电网协调控制设备,包括: 处理器(processor)810、存储器(memory)830、通信接口(Communications Interface)820和总线840;
其中,
所述处理器810、存储器830、通信接口820通过所述总线840完 成相互间的通信;
所述通信接口820用于该测试设备与显示装置的通信设备之间的 信息传输;
所述处理器810用于调用所述存储器830中的程序指令,以执行 上述各方法实施例所提供的含光伏电源的中低压配电网协调控制方 法,例如包括:
低压配电网基于电压-无功下垂控制方法对光伏电源输出的无功功 率进行就地控制;
若就地控制后无电压越限,则控制结束;若就地控制后电压越限, 则将就地消纳后的低压配电网等值为已知功率的中压配电网的负荷节 点,通过中压配电网对等值负荷的电压、功率进行最优潮流OPF集中 优化,将优化结果在低压配电网中重新校验,重复上述步骤直至低压 配电网无电压越限。
本实施例公开一种计算机程序产品,所述计算机程序产品包括存 储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包 括程序指令,当所述程序指令被计算机执行时,计算机能够执行如上 述的含光伏电源的中低压配电网协调控制方法,例如包括:
低压配电网基于电压-无功下垂控制方法对光伏电源输出的无功功 率进行就地控制;
若就地控制后无电压越限,则控制结束;若就地控制后电压越限, 则将就地消纳后的低压配电网等值为已知功率的中压配电网的负荷节 点,通过中压配电网对等值负荷的电压、功率进行最优潮流OPF集中 优化,将优化结果在低压配电网中重新校验,重复上述步骤直至低压 配电网无电压越限。
本实施例中还提供了一种非暂态计算机可读存储介质,所述非暂 态计算机可读存储介质存储计算机指令,所述计算机指令使所述计算 机执行如上述的含光伏电源的中低压配电网协调控制方法,例如包括:
低压配电网基于电压-无功下垂控制方法对光伏电源输出的无功功 率进行就地控制;
若就地控制后无电压越限,则控制结束;若就地控制后电压越限, 则将就地消纳后的低压配电网等值为已知功率的中压配电网的负荷节 点,通过中压配电网对等值负荷的电压、功率进行最优潮流OPF集中 优化,将优化结果在低压配电网中重新校验,重复上述步骤直至低压 配电网无电压越限。
综上所述,本发明实施例提出了一种含光伏电源的中低压配电网 协调控制方法和系统,首先,低压配电网通过光伏逆变器输出无功功 率进行就地控制,抑制电压越限;其次,若低压配电网控制后电压仍 然越限,则将低压配电网等值为已知功率的中压配电网的负荷节点, 通过中压配电网OPF集中优化,得到等值负荷的电压、功率优化结果; 最后,将优化结果在低压配电网重新校验,若电压依旧出现越限风险, 则返回中压网重新计算,直到低压配电网的电压越限得到有效抑制, 从而使电压合格率以及网损等电网指标得到改善,同时,建立同时考 虑PV、ESS、SC、OLTC等连续、离散控制变量,以光伏发电量最大、 网损最小为目标函数的基于低压配电网等值的中压配电网网源协调控 制模型,采用二阶锥松弛方法将模型做凸化松弛处理,将约束条件中 离散的、连续的且与时间相关的变量转换到二阶锥松弛模型中松弛求 解,从而原问题转化为一个可被有效求解的混合整数二阶锥优化问题, 大大降低了求解难度。
以上所描述的显示装置的测试设备等实施例仅仅是示意性的,其 中所述作为分离部件说明的单元可以是或者也可以不是物理上分开 的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位 于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需 要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域 普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然 也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现 有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软 件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光 盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所 述的方法。
最后应说明的是:以上各实施例仅用以说明本发明的实施例的技术 方案,而非对其限制;尽管参照前述各实施例对本发明的实施例进行 了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述 各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术 特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本 质脱离本发明的实施例各实施例技术方案的范围。

Claims (10)

1.一种含光伏电源的中低压配电网协调控制方法,其特征在于,包括:
低压配电网基于电压-无功下垂控制方法对光伏电源输出的无功功率进行就地控制;
若就地控制后无电压越限,则控制结束;若就地控制后电压越限,则将就地消纳后的低压配电网等值为已知功率的中压配电网的负荷节点,通过中压配电网对等值负荷的电压、功率进行最优潮流OPF集中优化,将优化结果在低压配电网中重新校验,重复上述步骤直至低压配电网无电压越限。
2.根据权利要求1所述的含光伏电源的中低压配电网协调控制方法,其特征在于,低压配电网基于电压-无功下垂控制方法对光伏电源输出的无功功率进行就地控制,具体包括:
光伏电源接入低压配电网后,基于电压-无功下垂控制方法,通过光伏逆变器输出无功功率对低压配电网进行就地控制,抑制电压越限。
3.根据权利要求1所述的含光伏电源的中低压配电网协调控制方法,其特征在于,低压配电网基于电压-无功下垂控制方法对光伏电源输出的无功功率进行就地控制后,还包括:
基于历史数据中低压配电网首端电压、功率数据,得到低压配电网的电压合格范围,以及电压合格范围内对应的功率合格范围。
4.根据权利要求3所述的含光伏电源的中低压配电网协调控制方法,其特征在于,低压配电网基于电压-无功下垂控制方法对光伏电源输出的无功功率进行就地控制后,还包括:
判断就地控制后的功率是否在功率合格范围内,若在功率合格范围内,则判断就地控制后无电压越限,若不在功率合格范围内,则判断就地控制后电压越限。
5.根据权利要求3所述的含光伏电源的中低压配电网协调控制方法,其特征在于,将就地消纳后的低压配电网等值为已知功率的中压配电网的负荷节点,具体包括:
通过变压器将所述电压合格范围折算到中压配电网中并作为约束条件,将低压配电网等值为已知有功功率P和无功功率Q的等效负荷,并将该等效负荷转换为只有一个变量P的负荷节点。
6.根据权利要求1所述的含光伏电源的中低压配电网协调控制方法,其特征在于,通过中压配电网对等值负荷的电压、功率进行最优潮流OPF集中优化前,还包括:
建立光伏电源接入后的中压配电网网源协调控制模型,以光伏电源的光伏发电量最大、中低压配电网网络损耗最小为目标建立目标函数,并建立潮流约束、节点电压上下限约束、PV无功出力约束和储能装置ESS运行约束、并联电容器SC运行约束、OLTC相邻时段调节挡位数约束;
基于二阶锥优化方法对所述目标函数、潮流约束、节点电压上下限约束、PV无功出力约束和储能装置ESS运行约束进行松弛求解,得到中压配电网网源协调控制模型。
7.根据权利要求6所述的含光伏电源的中低压配电网协调控制方法,其特征在于,以光伏电源的光伏发电量最大、中低压配电网网络损耗最小为目标建立目标函数,具体包括:
以光伏电源的光伏发电量最大为第一目标,建立第一目标函数:
式中,为第t个时段第ik个光伏所发出的功率;T为时段的个数;NPV为光伏个数;
以中低压配电网网络损耗最小为第二目标,建立第二目标函数:
式中,N为电网的节点数量;c(i)为电网中与节点i相连的节点的集合;rij为支路ij的电阻;为支路ij电流幅值;
根据所述第一目标函数和所述第二目标函数,得到中压配电网网源协调控制模型的目标函数:maxF=ω1f12f2;式中,ω1、ω2为权重系数,ω12=1。
8.一种含光伏电源的中低压配电网协调控制系统,其特征在于,包括低压配电网控制模块和中压配电网网源协调控制模块;
所述低压配电网控制模块用于基于电压-无功下垂控制方法对光伏电源输出的无功功率进行就地控制;
所述中压配电网网源协调控制模块用于在就地控制后仍有电压越限时,将就地消纳后的低压配电网等值为已知功率的中压配电网的负荷节点,通过中压配电网对等值负荷的电压、功率进行最优潮流OPF集中优化,将优化结果在低压配电网中重新校验,重复上述步骤直至低压配电网无电压越限。
9.一种含光伏电源的中低压配电网协调控制设备,其特征在于,包括:
至少一个处理器;以及
与所述处理器通信连接的至少一个存储器,其中:
所述存储器存储有可被所述处理器执行的程序指令,所述处理器调用所述程序指令能够执行如权利要求1至7任一所述的方法。
10.一种非暂态计算机可读存储介质,其特征在于,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令使所述计算机执行如权利要求1至7任一所述的方法。
CN201810747071.6A 2018-07-09 2018-07-09 一种含光伏电源的中低压配电网协调控制方法和系统 Active CN108933448B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810747071.6A CN108933448B (zh) 2018-07-09 2018-07-09 一种含光伏电源的中低压配电网协调控制方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810747071.6A CN108933448B (zh) 2018-07-09 2018-07-09 一种含光伏电源的中低压配电网协调控制方法和系统

Publications (2)

Publication Number Publication Date
CN108933448A true CN108933448A (zh) 2018-12-04
CN108933448B CN108933448B (zh) 2020-10-09

Family

ID=64448005

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810747071.6A Active CN108933448B (zh) 2018-07-09 2018-07-09 一种含光伏电源的中低压配电网协调控制方法和系统

Country Status (1)

Country Link
CN (1) CN108933448B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146818A (zh) * 2020-01-20 2020-05-12 云南电网有限责任公司电力科学研究院 一种配电网中压-低压资源协调控制方法
CN111641217A (zh) * 2020-06-11 2020-09-08 国网山东省电力公司电力科学研究院 一种风电场内无功电压控制方法及系统
CN112583020A (zh) * 2020-12-22 2021-03-30 国网江苏省电力有限公司苏州供电分公司 低压配电网的两阶段式电压控制方法
CN116365526A (zh) * 2023-02-28 2023-06-30 国网江苏省电力有限公司电力科学研究院 多级电压互动控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106130028A (zh) * 2016-08-16 2016-11-16 中国电力科学研究院 一种基于交直流主动配电网电压无功协调控制方法
CN107025520A (zh) * 2017-04-05 2017-08-08 广东电网有限责任公司东莞供电局 配电网新能源消纳能力确定的双层二阶锥规划方法与系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106130028A (zh) * 2016-08-16 2016-11-16 中国电力科学研究院 一种基于交直流主动配电网电压无功协调控制方法
CN107025520A (zh) * 2017-04-05 2017-08-08 广东电网有限责任公司东莞供电局 配电网新能源消纳能力确定的双层二阶锥规划方法与系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146818A (zh) * 2020-01-20 2020-05-12 云南电网有限责任公司电力科学研究院 一种配电网中压-低压资源协调控制方法
CN111146818B (zh) * 2020-01-20 2023-08-11 云南电网有限责任公司电力科学研究院 一种配电网中压-低压资源协调控制方法
CN111641217A (zh) * 2020-06-11 2020-09-08 国网山东省电力公司电力科学研究院 一种风电场内无功电压控制方法及系统
CN112583020A (zh) * 2020-12-22 2021-03-30 国网江苏省电力有限公司苏州供电分公司 低压配电网的两阶段式电压控制方法
CN116365526A (zh) * 2023-02-28 2023-06-30 国网江苏省电力有限公司电力科学研究院 多级电压互动控制方法

Also Published As

Publication number Publication date
CN108933448B (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
CN108933448A (zh) 一种含光伏电源的中低压配电网协调控制方法和系统
CN109687510B (zh) 一种计及不确定性的配电网多时间尺度优化运行方法
CN110690732B (zh) 一种光伏无功分区计价的配电网无功优化方法
Ranamuka et al. Flexible AC power flow control in distribution systems by coordinated control of distributed solar-PV and battery energy storage units
CN107947175B (zh) 一种基于分布式网络控制的微电网经济调度方法
CN109409705B (zh) 一种区域综合能源系统的多目标优化调度方法
CN109659973B (zh) 一种基于改进型直流潮流算法的分布式电源规划方法
Murray et al. Voltage control in future electrical distribution networks
CN110808597A (zh) 主动配电网中考虑三相不平衡的分布式电源规划方法
CN106058858B (zh) 一种配电网优化方法与装置
CN107565576B (zh) 一种多主动管理手段相协调的主动配电网无功电压优化方法
CN105162144B (zh) 一种配电网电压无功优化的线性逼近求解方法
CN111490542B (zh) 一种多端柔性多状态开关的选址定容方法
CN104269847A (zh) 一种柔性环网控制系统运行及潮流优化方法
KR102133897B1 (ko) 실시간 계측 기반 전압 및 무효전력 제어 방법 및 그 프로그램
Peprah et al. Evaluation of reactive power support in solar PV prosumer grid
CN108306334A (zh) 基于粒子群优化算法的风电场内部无功优化策略
CN116961008A (zh) 计及电力弹簧与负荷需求响应的微电网容量双层优化方法
CN115588991A (zh) 一种三相不平衡配电网最优潮流模型建立方法
CN206060207U (zh) 一种基于智能变压器的无功功率控制装置
Muhtadi et al. Renewable energy based microgrid: Role of the architecture in grid enhancement towards sustainable energy
CN104836242A (zh) 地区电网无功优化方法
CN113013884A (zh) 一种用于含高渗透率光伏配电系统的三段式无功电压控制方法
Zhang et al. Demand Response Featured Dynamic Voltage Regulation of Active Distribution Network
CN108667057A (zh) 一种针对高功率密度分布式光伏接入配电网多目标电能治理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant