CN108915938B - 一种减轻抽水蓄能电站机组和厂房振动的电站运行方法 - Google Patents

一种减轻抽水蓄能电站机组和厂房振动的电站运行方法 Download PDF

Info

Publication number
CN108915938B
CN108915938B CN201810744968.3A CN201810744968A CN108915938B CN 108915938 B CN108915938 B CN 108915938B CN 201810744968 A CN201810744968 A CN 201810744968A CN 108915938 B CN108915938 B CN 108915938B
Authority
CN
China
Prior art keywords
power station
lift
water
pumped storage
pump turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810744968.3A
Other languages
English (en)
Other versions
CN108915938A (zh
Inventor
徐洪泉
王万鹏
廖翠林
李铁友
陆力
赵立策
王武昌
孟龙
易艳林
瞿军
宫衍斌
范小付
梁璐
秦鑫
刘莎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING IWHR TECHNOLOGY CO LTD
China Institute of Water Resources and Hydropower Research
Original Assignee
BEIJING IWHR TECHNOLOGY CO LTD
China Institute of Water Resources and Hydropower Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING IWHR TECHNOLOGY CO LTD, China Institute of Water Resources and Hydropower Research filed Critical BEIJING IWHR TECHNOLOGY CO LTD
Priority to CN201810744968.3A priority Critical patent/CN108915938B/zh
Publication of CN108915938A publication Critical patent/CN108915938A/zh
Application granted granted Critical
Publication of CN108915938B publication Critical patent/CN108915938B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Water Turbines (AREA)
  • Hydraulic Turbines (AREA)

Abstract

本发明涉及一种减轻抽水蓄能电站机组和厂房振动的电站运行方法,其包括对水泵水轮机运行控制调度的以下两个方面优化:1)在电站运行及确定水泵水轮机水泵工况的扬程和导叶开度的协联关系时,使用净扬程而避免使用毛扬程,以保证水泵水轮机水泵工况在真正协联条件下运行;2)对于一管多机的电站,在电站水头低于电站最低水头的1.05倍时,避免一管内多台机组同时运行。

Description

一种减轻抽水蓄能电站机组和厂房振动的电站运行方法
技术领域
本发明涉及一种减轻抽水蓄能电站机组和厂房振动的电站运行方法,属于水力机械和抽水蓄能技术领域。
背景技术
我国的抽水蓄能电站发展很快,目前的装机容量已超过2500万千瓦。根据国家能源局未来电力发展规划,新开工建设4000万千瓦抽水蓄能电站,到2025年达到装机 9000万千瓦。但是,在抽水蓄能电站的运行中,常遇到大幅值、高频率压力脉动,引 起水泵水轮机顶盖、机架和机组其它设备剧烈振动,部分抽水蓄能电站还产生非常强 烈的厂房振动,噪声强烈,个别还因为厂房振动造成厂房结构裂纹,严重威胁到电站 安全及机组稳定运行。根据调查分析,厂房振动严重的抽水蓄能电站绝大多数是由水 力因素引起,其振动主频率往往和水泵水轮机顶盖、下机架等振动的主频率相同,是 水泵水轮机转轮叶片通过频率fr(以下简称“叶频”,fr=Zr·fn,其中fn为转速频率, Zr为水泵水轮机转轮叶片数)的倍频,以2倍频和3倍频居多,公认为由“旋转”的 转轮和“静止”的导叶之间的“动静”相互干扰引起。
很显然,影响抽水蓄能电站运行稳定性的主要因素是水力,减轻机组及厂房振动的方法措施也重点在水泵水轮机。但是,这并不尽然,在电站运行方面仍有许多工作 可做,可改善运行条件,使机组运行更稳定。因此,有必要从电站运行入手,提出改 善运行稳定性的措施和方法,减轻机组和厂房振动。
发明内容
针对上述问题,本发明的目的是提供一种减轻抽水蓄能电站机组和厂房振动的电站运行方法,该方法是在弄清水泵水轮机动静干扰机理及对厂房振动影响的基础上提 出的,能够有效减轻水泵水轮机动静干扰带来的机组和厂房振动等危害。
为实现上述目的,本发明采用以下技术方案:一种减轻抽水蓄能电站机组和厂房振动的电站运行方法,其包括对水泵水轮机运行控制调度的以下两个方面优化:
1)在电站运行及确定水泵水轮机水泵工况的扬程和导叶开度的协联关系时,使用净扬程而避免使用毛扬程,以保证水泵水轮机水泵工况在真正协联条件下运行;
2)对于一管多机的电站,在电站水头低于电站最低水头的1.05倍时,避免一管 内多台机组同时运行。
在第1)方面的优化中,净扬程测量计算方法为:
①在水轮机工况下,在水泵水轮机蜗壳进口和尾水管出口分别设置取压点,并将其分别引至差压传感器高、低压侧,测量两个测点之间的压差p;
②分别测量蜗壳进口和尾水管出口取压点所在断面的面积A1、A2
③在模型试验标定过的尾水管流量压差2个真机测点(测点位置保持和模型几何相似)分别取压接至流量压差传感器的高低压侧,测量该2点压差△pP
④根据模型Winter-konnedy试验测量标定的流量计算指数βM、系数aM及模型转 轮直径DM、真机转轮直径DP计算确定真机的流量计算指数βP和系数aM
βP=βM
aP=aM·(DP/DM)2
⑤计算真机流量QP
Figure BDA0001724110450000021
⑥计算净扬程H:
H=p/(g·ρ)+Qp 2·(1/A1 2-1/A2 2)
式中,g为重力加速度,ρ为水体密度。
本发明由于采取以上技术方案,其具有以下优点:1、本发明是在弄清水泵水轮机转轮叶片和活动导叶之间的动静干扰原理及危害方式的基础上形成的,所提方法措施 均符合这些原理,能解决根本问题。2、本发明提出的减轻抽水蓄能电站机组及厂房振 动的运行措施原理简单,可操作性强,实际有效。
具体实施方式
下面结合实施例对本发明进行详细的描述。
本发明提出了一种减轻抽水蓄能电站机组和厂房振动的电站运行方法,其包括对水泵水轮机运行控制调度的以下两个方面优化:
1)在电站运行及确定水泵水轮机水泵工况的扬程和导叶开度的协联关系时,使用净扬程而避免使用毛扬程,以保证水泵水轮机水泵工况在真正协联条件下运行
水泵水轮机水泵工况的扬程和导叶开度的协联关系是在水泵水轮机模型试验时确 定的,是用流量-扬程曲线的外包络线确定的,以保证每个扬程都对应效率、流量更佳的导叶开度,在确定的扬程下采用协联曲线对应的导叶开度。但是,在真机运行时, 由于流量测量困难,绝大多数电站不测量净扬程,而是通过测量上下游水位确定毛扬 程,再应用毛扬程代替净扬程确定协联关系。而抽水蓄能电站引水管道很长,水头损 失很大,毛扬程远低于实际的净扬程,导致由此确定的所谓协联关系实际上并不协联。 由于实际的不协联,导叶对实际的来流不适应,在导叶进口产生或增大了冲角,使导 叶进口产生脱流或脱流非常严重,涡心产生空化,在横波压力脉动干扰下形成膨胀- 收缩的纵波压力脉动,使机组和厂房振动更加严重。因此,需改毛扬程为净扬程,确 保扬程和导叶开度保持良好的协联关系。推荐的净扬程测量计算方法为:
①在水轮机工况下,在水泵水轮机蜗壳进口和尾水管出口分别设置取压点,并将其分别引至差压传感器高、低压侧,测量两个测点之间的压差p;
②分别测量蜗壳进口和尾水管出口取压点所在断面的面积A1、A2
③在模型试验标定过的尾水管流量压差2个真机测点(测点位置保持和模型几何相似)分别取压接至流量压差传感器的高低压侧,测量该2点压差△pP
④根据模型Winter-konnedy试验测量标定的流量计算指数βM、系数aM及模型转 轮直径DM、真机转轮直径DP计算确定真机的流量计算指数βP和系数aM
βP=βM (1)
aP=aM·(DP/DM)2 (2)
⑤计算真机流量QP
Figure BDA0001724110450000031
⑥计算净扬程H:
H=p/(g·ρ)+Qp 2·(1/A1 2-1/A2 2) (4)
式中,g为重力加速度,ρ为水体密度。
2)对于一管多机(在一条引水管路上安装多台水泵水轮机)的电站,在电站水头低于电站最低水头的1.05倍时,应避免一管内多台机组同时运行。其目的是减小管道 水头损失,发电时增高水头,抽水时降低实际扬程,在增加运行效益的同时降低压力 脉动,以减轻厂房振动。
本发明所提出的减轻抽水蓄能电站机组和厂房振动危害的电站运行方法,是基于我们对国内大量抽水蓄能电站水泵水轮机转轮叶片和活动导叶动静相互干扰及引起的 机组振动、厂房振动实际状况总结发现的3种现象及规律:
(1)我国绝大多数电站因为流量测量困难,多采用毛扬程代替净扬程,而毛扬程和净扬程差别较大,会导致如下结果:在模型试验确定的净扬程-导叶开度协联关系, 转换成真机时变为毛扬程-导叶开度协联关系,该所谓“协联关系”实际不协联。
(2)当抽水蓄能电站下游水库水位比较低时,下游水库有效库容也比较小,发电时水头低,发电量非常有限;而此时水头低,本来就无叶区压力脉动大,再加之尾水 位低,电站空化系数小,导致导叶进口脱流旋涡的涡心压力降低、空化,会产生大幅 值附加压力脉动,造成机组及厂房振动严重。
(3)对于一管多机电站而言,管道内水头损失和总流量有关,一管内单机运行和多机同时运行管道内水头损失差别很大。因此,减少同一管道内同时运行的机组台数, 可减小水头损失,抬高发电运行水头或降低电站实际扬程,在增加电站运行效益的同 时降低无叶区压力脉动,减轻机组及厂房振动。
本发明仅以上述实施例进行说明,各部件的结构、设置位置及其连接都是可以有所变化的。在本发明技术方案的基础上,凡根据本发明原理对个别部件进行的改进或 等同变换,均不应排除在本发明的保护范围之外。

Claims (1)

1.一种减轻抽水蓄能电站机组和厂房振动的电站运行方法,其包括对水泵水轮机运行控制调度的以下两个方面优化:
1)在电站运行及确定水泵水轮机水泵工况的扬程和导叶开度的协联关系时,使用净扬程而避免使用毛扬程,以保证水泵水轮机水泵工况在真正协联条件下运行;
2)对于一管多机的电站,在电站水头低于电站最低水头的1.05倍时,避免一管内多台机组同时运行。
CN201810744968.3A 2018-07-09 2018-07-09 一种减轻抽水蓄能电站机组和厂房振动的电站运行方法 Active CN108915938B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810744968.3A CN108915938B (zh) 2018-07-09 2018-07-09 一种减轻抽水蓄能电站机组和厂房振动的电站运行方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810744968.3A CN108915938B (zh) 2018-07-09 2018-07-09 一种减轻抽水蓄能电站机组和厂房振动的电站运行方法

Publications (2)

Publication Number Publication Date
CN108915938A CN108915938A (zh) 2018-11-30
CN108915938B true CN108915938B (zh) 2020-12-11

Family

ID=64424927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810744968.3A Active CN108915938B (zh) 2018-07-09 2018-07-09 一种减轻抽水蓄能电站机组和厂房振动的电站运行方法

Country Status (1)

Country Link
CN (1) CN108915938B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110162864B (zh) * 2019-05-15 2023-01-10 江苏省水利勘测设计研究院有限公司 低扬程双向运行泵站系统稳定性预测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103306886A (zh) * 2013-05-29 2013-09-18 郑程遥 一种水轮发电机组的全参数调节控制方法
GB2516612A (en) * 2013-04-15 2015-02-04 Hugh Peter Davison Re-cycling generating system
EP2896821A2 (en) * 2012-08-03 2015-07-22 Bunt Planet S.L. Mixed pumped storage plant and method for generating and storing energy
CN106092190A (zh) * 2016-06-02 2016-11-09 国家电网公司 抽水蓄能机组运行稳定性状态劣化预警方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2896821A2 (en) * 2012-08-03 2015-07-22 Bunt Planet S.L. Mixed pumped storage plant and method for generating and storing energy
GB2516612A (en) * 2013-04-15 2015-02-04 Hugh Peter Davison Re-cycling generating system
CN103306886A (zh) * 2013-05-29 2013-09-18 郑程遥 一种水轮发电机组的全参数调节控制方法
CN106092190A (zh) * 2016-06-02 2016-11-09 国家电网公司 抽水蓄能机组运行稳定性状态劣化预警方法及系统

Also Published As

Publication number Publication date
CN108915938A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
Kan et al. Numerical study on the internal flow characteristics of an axial-flow pump under stall conditions
Li et al. Review of positive slopes on pump performance characteristics of pump-turbines
Liu et al. A selected literature review of efficiency improvements in hydraulic turbines
CN102182622B (zh) 一种六工况双向潮汐发电水轮机
Baya et al. Experimental investigations of the unsteady flow in a Francis turbine draft tube cone
CN102011672A (zh) 一种采用新型导叶和转轮叶片型线的混流式水轮机
Tian et al. Optimization of a centrifugal pump used as a turbine impeller by means of an orthogonal test approach
Meng et al. Study on the pressure pulsation inside runner with splitter blades in ultra-high head turbine
Du et al. Study on the effects of runner geometric parameters on the performance of micro Francis turbines used in water supply system of high-rise buildings
CN102720622B (zh) 一种水轮机尾水管涡流发生器
CN107329940A (zh) 立轴混流式水轮机电站空化系数计算方法
CN108915938B (zh) 一种减轻抽水蓄能电站机组和厂房振动的电站运行方法
CN202348525U (zh) 一种轴流转桨式水轮机
CN108416527A (zh) 立轴轴流转桨式水轮机电站空化系数计算方法
Xue et al. Research and optimization of performances of a pump turbine in pump mode
Qin et al. Hydraulic optimisation design of axial flow pump based on blade velocity distribution
Lin et al. Research on the rotor-stator interaction of centrifugal pump based on sinusoidal tubercle volute tongue
CN108915931B (zh) 减轻抽水蓄能电站机组和厂房振动的水泵水轮机设计方法
CN104791172A (zh) 双向分流的混流式水泵水轮机叶片空间位置的确定方法
CN109977356B (zh) 一种混流式水轮机电站空化系数统计计算方法
Wang et al. Effect of baffles in between stages on performance and flow characteristics of a two-stage split case centrifugal pump
CN107829861B (zh) 一种基于梨形线翼型叶片的冲击式水轮机
CN112253490A (zh) 一种用于采集叶片吸力面空化噪声的水听器布置结构及其使用方法
Adamkowski et al. Selected experiences with optimization tests of the Kaplan-type hydraulic turbines
CN105604776B (zh) 一种六工况三叶片转轮双向潮汐发电水轮机

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant