CN108913732B - Method for heterologous production of monacolin J and application - Google Patents

Method for heterologous production of monacolin J and application Download PDF

Info

Publication number
CN108913732B
CN108913732B CN201810857983.9A CN201810857983A CN108913732B CN 108913732 B CN108913732 B CN 108913732B CN 201810857983 A CN201810857983 A CN 201810857983A CN 108913732 B CN108913732 B CN 108913732B
Authority
CN
China
Prior art keywords
promoter
ethanol
yeast
seq
uta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810857983.9A
Other languages
Chinese (zh)
Other versions
CN108913732A (en
Inventor
蔡孟浩
刘一奇
张元兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN201810857983.9A priority Critical patent/CN108913732B/en
Publication of CN108913732A publication Critical patent/CN108913732A/en
Application granted granted Critical
Publication of CN108913732B publication Critical patent/CN108913732B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0065Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01036Acetoacetyl-CoA reductase (1.1.1.36)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y604/00Ligases forming carbon-carbon bonds (6.4)
    • C12Y604/01Ligases forming carbon-carbon bonds (6.4.1)
    • C12Y604/01002Acetyl-CoA carboxylase (6.4.1.2)

Abstract

The invention relates to transformation and application of pichia pastoris engineering bacteria for heterologous production of monacolin J. In the invention, the yeast engineering strain is optimized and modified by a gene recombination technology to obtain the yeast engineering strain capable of producing monacolin J or a dihydro monacolin L intermediate product thereof. The yield of the target product of the yeast engineering bacteria is obviously increased, and a new way for industrially producing monacolin J and downstream products thereof is provided.

Description

Method for heterologous production of monacolin J and application
Technical Field
The invention belongs to the field of bioengineering; more specifically, the invention relates to the transformation and application of pichia pastoris engineering bacteria for heterogeneously producing monacolin J.
Background
Simvastatin is an artificial semisynthetic drug and is widely used as a hypolipidemic drug because it has an obvious inhibitory effect on cholesterol biosynthesis in the human body. Currently, the industrial production of simvastatin is mainly derived from the biological or chemical transformation of the precursor monacolin J, which is obtained from the hydrolysis of the fermentation product lovastatin of aspergillus terreus. In the production process of simvastatin, monacolin J can be converted into simvastatin in one step through enzyme catalysis, and the process of hydrolyzing lovastatin to obtain monacolin J is hydrolysis by a full chemical method, so that the steps are complex, byproducts are more, and a catalyst needs to be introduced. The monacolin J is heterogeneously synthesized by using the microbial chassis cells in a one-step method, can replace a chemical hydrolysis method, avoids the problems, and provides a new method for the industrial production of monacolin J and simvastatin.
Pichia pastoris (Pichia pastoris) is an excellent microbial underpan cell, has received much attention because it can express a wide range of recombinant proteins, and has been used as a generally recognized safe microorganism to successfully express more than 1000 recombinant proteins. Pichia pastoris can grow rapidly to high density in defined media, with the ability to perform complex post-translational protein modifications to direct correct protein folding. In addition, pichia pastoris is a natural methylotrophic microorganism that can grow to high density with strong methanol metabolization capacity under conditions where methanol is the sole carbon source. Methanol is a byproduct in the coal chemical industry, can be synthesized from natural gas and also can be obtained by reducing carbon dioxide in the air, and compared with common fermentation type sugars, the methanol has stronger reducing power and can provide more driving force for the synthesis of heterologous products. The large amount, low price and renewable characteristics of methanol promote the gradual development of methanol into a good raw material of biochemical derivative products. Meanwhile, pichia pastoris has a mature and matched heterologous expression vector, researches on transformation, screening and scale amplification of pichia pastoris have been carried out for many years, and pichia pastoris can be used as a good chassis cell to synthesize and produce high-value-added biological products.
Disclosure of Invention
The invention aims to provide a method for heterogeneously synthesizing monacolin J by mixed co-culture of recombinant yeast engineering bacteria by taking ethanol as a substrate.
In a first aspect of the invention, there is provided a method for the heterologous production of dihydromonacolin L comprising: (1) providing engineering yeast bacteria, and allowing the engineering yeast bacteria to express exogenous expression cassettes of the following genes: lovB, lovC, lovG, npgA, and driving expression of the transcriptional activator uta with an ethanol inducible promoter; (2) and (2) culturing the yeast engineering bacteria in the step (1) by taking ethanol as a carbon source, a precursor and/or an inducer, thereby generating a product, namely the dihydromonacolin L.
In another aspect of the invention, there is provided a method for heterologous production of monacolin J comprising: (a) providing engineering yeast bacteria, and allowing the engineering yeast bacteria to express exogenous expression cassettes of the following genes: lovB, lovC, lovG, npgA, and driving expression of the transcriptional activator uta with an ethanol inducible promoter; (b) providing engineering yeast bacteria, and allowing the engineering yeast bacteria to express exogenous expression cassettes of the following genes: lovA, cpr, and ethanol inducible promoter to drive expression of transcriptional activator uta; (c) and (b) culturing the mixed bacteria of the engineering yeast bacteria in the step (a) and the step (b) by using ethanol as a carbon source, a precursor and/or an inducer, thereby generating the product monacolin J.
In a preferred embodiment, the engineered yeast strain in (1) or (a) further expresses exogenous alcohol dehydrogenase ADH, acetyl-coa synthetase ACS and acetyl-coa decarboxylase ACC.
In another preferred embodiment, P is used in (1) or (a)AOX1RAs promoters driving the expression of lovB, lovC, lovG, npgA; or
(b) In (1) with PAOX1RAs a promoter to drive expression of lovA, cpr; or
(1) Or in (a) or (b) with PICL1Is an ethanol inducible promoter.
In another preferable example, (c) in the mixed bacteria of the engineering yeast bacteria (a) and (b), the ratio of the bacteria (a) to the bacteria (b) is 1: 0.1-1; preferably 1: 0.2-0.5 (the ratio of the number of two yeast cells in the flora); or, in the step (2) or (c), a yeast basic nitrogen source culture medium added with ethanol (0.2-1%, preferably 0.3-0.8%, more preferably 0.4-0.6%) is used for culturing, and glucose is used as a carbon source for feeding in the early stage of fermentation; after the wet weight of the cells reaches 200-400 g/L (preferably 250-350 g/L; more preferably 280-320 g/L), the carbon source is switched to ethanol for feeding.
In another preferred embodiment, said genes lovB, lovC, lovG, npgA, lovA, cpr are derived from Aspergillus terreus.
In another preferred embodiment, the lovB gene has the nucleotide sequence shown in SEQ ID NO. 1, or a degenerate sequence thereof, or a nucleotide sequence encoding an isofunctional protein which is 70% or more (preferably 80% or more, more preferably 90% or more, more preferably 93% or more, more preferably 95% or more, more preferably 97% or more, e.g., 98% to 99%) identical to the sequence shown in SEQ ID NO. 1.
In another preferred embodiment, the lovC gene has the nucleotide sequence shown in SEQ ID NO. 2, or a degenerate sequence thereof, or a nucleotide sequence encoding an isofunctional protein which is 70% or more (preferably 80% or more, more preferably 90% or more, more preferably 93% or more, more preferably 95% or more, more preferably 97% or more, e.g., 98% to 99%) identical to the sequence shown in SEQ ID NO. 2.
In another preferred embodiment, the lovG gene has the nucleotide sequence shown in SEQ ID NO. 3, or a degenerate sequence thereof, or a nucleotide sequence encoding an isofunctional protein having an identity of more than 70% (preferably more than 80%, more preferably more than 90%, more preferably more than 93%, more preferably more than 95%, more preferably more than 97%, e.g., 98% to 99%) to the sequence shown in SEQ ID NO. 3.
In another preferred embodiment, the npgA gene has the nucleotide sequence shown in SEQ ID NO. 4, or a degenerate sequence thereof, or a nucleotide sequence encoding an isofunctional protein which is 70% or more (preferably 80% or more, more preferably 90% or more, more preferably 93% or more, more preferably 95% or more, more preferably 97% or more, e.g., 98% to 99%) identical to the sequence shown in SEQ ID NO. 4.
In another preferred embodiment, the lovA gene has the nucleotide sequence shown in SEQ ID NO. 5, or a degenerate sequence thereof, or a nucleotide sequence encoding an isofunctional protein which is 70% or more (preferably 80% or more, more preferably 90% or more, more preferably 93% or more, more preferably 95% or more, more preferably 97% or more, e.g., 98% to 99%) identical to the sequence shown in SEQ ID NO. 5.
In another preferred embodiment, the cpr gene has the nucleotide sequence shown in SEQ ID NO. 6, or a degenerate sequence thereof, or a nucleotide sequence encoding an isofunctional protein which is 70% or more (preferably 80% or more, more preferably 90% or more, more preferably 93% or more, more preferably 95% or more, more preferably 97% or more, e.g., 98% to 99%) identical to the sequence shown in SEQ ID NO. 6.
In another preferred embodiment, the uta gene has the nucleotide sequence shown in SEQ ID NO. 7, or a degenerate sequence thereof, or a nucleotide sequence encoding an isofunctional protein which is 70% or more (preferably 80% or more, more preferably 90% or more, still more preferably 93% or more, still more preferably 95% or more, still more preferably 97% or more, e.g., 98% to 99%) identical to the sequence shown in SEQ ID NO. 6.
In another preferred embodiment, the gene encoding alcohol dehydrogenase ADH has the nucleotide sequence shown in SEQ ID NO:20, or a degenerate sequence thereof, or a nucleotide sequence encoding a functional protein which is identical to the nucleotide sequence shown in SEQ ID NO:20 by more than 70% (preferably more than 80%, more preferably more than 90%, more preferably more than 93%, more preferably more than 95%, more preferably more than 97%, for example, 98% to 99%).
In another preferred embodiment, the ACS-encoding gene has the nucleotide sequence shown in SEQ ID NO:21, or a degenerate sequence thereof, or a nucleotide sequence encoding a functional protein which is 70% or more (preferably 80% or more, more preferably 90% or more, more preferably 93% or more, more preferably 95% or more, more preferably 97% or more, e.g., 98% to 99%) identical to the sequence shown in SEQ ID NO: 21.
In another preferred embodiment, the coding gene of acetyl-CoA decarboxylase ACC has the nucleotide sequence shown in SEQ ID NO. 22, or a degenerate sequence thereof, or a nucleotide sequence encoding a functional protein which is 70% or more (preferably 80% or more, more preferably 90% or more, more preferably 93% or more, more preferably 95% or more, more preferably 97% or more, e.g., 98% to 99%) identical to the sequence shown in SEQ ID NO. 22.
In another preferred embodiment, the promoter PAOX1RThe gene sequence of (A) has a nucleotide sequence shown as SEQ ID NO. 8.
In another preferred embodimentPromoter PICL1The gene sequence of (A) has a nucleotide sequence shown in SEQ ID NO. 9.
In another aspect of the present invention, there is provided a yeast engineering bacterium for producing dihydromonacolin L, which comprises an exogenous expression cassette of the following genes: lovB, lovC, lovG, npgA, and transcriptional activator uta; preferably, it further comprises the genes encoding exogenous alcohol dehydrogenase ADH, acetyl-coa synthetase ACS and acetyl-coa decarboxylase ACC.
In another aspect of the present invention, there is provided an engineered yeast strain for producing monacolin J, comprising an exogenous expression cassette for genes of the following group: lovA, cpr, and transcriptional activator uta.
In a preferred embodiment, the yeast engineering bacteria are methanol nutritional yeast; preferably, the methylotrophic yeast comprises pichia pastoris.
In another preferred embodiment, the pichia is pichia GS 115.
In another preferred embodiment, the yeast engineering bacteria are used for producing dihydromonacolin L or monacolin J by using ethanol as a carbon source, a precursor and/or an inducer.
In another aspect of the present invention, a kit for producing monacolin J or an intermediate thereof is provided, wherein the kit comprises the engineered yeast.
In another aspect of the present invention, there is provided a kit for producing monacolin J or an intermediate thereof, said kit comprising a construct comprising expression cassettes for the following genes: lovB, lovC, lovG, npgA, transcriptional activator uta, and/or another construct comprising an expression cassette for the following group of genes: lovA, cpr, transcriptional activator uta.
In another preferred embodiment, the kit further comprises a culture medium containing ethanol as a carbon source, precursor and/or inducer.
Other aspects of the invention will be apparent to those skilled in the art in view of the disclosure herein.
Drawings
FIG. 1, Artificial transcription System PICL1-UTA_PAOX1RAnd control GFP expression intensity in ethanol or methanol conditions.
FIG. 2 is a schematic diagram of the fermentation production of dihydromonacolin L by a Pichia pastoris engineering strain; wherein, DML, dihydromonacolin L; WT, Pichia pastoris wild type strain.
FIG. 3 is a schematic diagram of the production of monacolin J by mixed culture of two strains; wherein MJ, monacolin J; WT, pichia pastoris wild type.
FIG. 4 is a graph showing fermentation yields of monacolin J produced by mixed culture of two strains at different initial inoculation ratios; MJ, monacolin J, among others.
FIG. 5 is a graph showing the fermentation profile of a 5L reactor for producing monacolin J by mixed culture with optimal initial inoculation ratios of two strains; MJ, monacolin J, among others.
Detailed Description
Through intensive research, the inventor optimizes and reforms the yeast engineering strain by a gene recombination technology to obtain the yeast engineering strain capable of producing monacolin J or an intermediate product dihydro monacolin L thereof. The yield of the target product of the yeast engineering bacteria is obviously increased, and a new way for industrially producing monacolin J and downstream products thereof is provided.
Term(s) for
As used herein, the term "expression cassette" or "gene expression cassette" refers to a gene expression system that contains all the necessary elements required for expression of a polypeptide of interest, typically including the following elements: a promoter, a gene sequence encoding a polypeptide, a terminator; in addition, the protein also can selectively comprise a signal peptide coding sequence and the like; these elements are operatively connected.
As used herein, the term "expression construct" refers to a recombinant DNA molecule comprising a desired nucleic acid coding sequence, which may comprise one or more gene expression cassettes. The "construct" is typically contained in an expression vector.
As used herein, the term "exogenous" or "heterologous" refers to the relationship between two or more nucleic acids or protein sequences from different sources, or the relationship between a protein (or nucleic acid) from a different source and a host cell. For example, a nucleic acid is exogenous to a host cell if the combination of the nucleic acid and the host cell is not normally naturally occurring. A particular sequence is "foreign" to the cell or organism into which it is inserted.
Gene and expression system thereof
In the invention, the high-efficiency production of the monacolin J or the intermediate dihydro monacolin L thereof in the yeast engineering bacteria is realized by transforming polygene combination in the yeast engineering bacteria. Genes used for the production of dihydromonacolin L include: lovB, lovC, lovG, npgA; genes used for production of monacolin J include: lovB, lovC, lovG, npgA, lovA, cpr. In a preferred embodiment of the invention, the genes lovB, lovC, lovG, npgA, lovA, cpr from A.terreus have the nucleotide sequences shown in SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, SEQ ID NO 4, SEQ ID NO 5, SEQ ID NO 6, respectively.
In order to optimize the yield of the monacolin J or the intermediate dihydromonacolin L thereof, the inventor carries out further optimization on engineering bacteria and a fermentation medium, and realizes high yield of the dihydromonacolin L or the monacolin J by taking ethanol as a substrate. In a preferred form of the invention, an ethanol inducible promoter (preferably P) is usedICL1) To drive the expression of the transcription activator UTA and simultaneously drive the expression of the monacolin J synthesis related gene. Since UTA has the activity of recruiting RNA polymerase, it is also capable of synthesizing the promoter (e.g., P) of the gene involved in monacolin JAOX1R) Binding, and thus ethanol inducible promoter (preferably P)ICL1) The ethanol induction signal is amplified by the artificial transcription device, so that the purpose of enhancing the expression of the monacolin J synthesis related gene is achieved. In a preferred embodiment of the invention, the promoter PICL1The nucleotide sequence of (A) is shown in SEQ ID NO. 9, the nucleotide sequence of a transcription activator uta is shown in SEQ ID NO. 7, and a promoter PAOX1RThe nucleotide sequence of (A) is shown in SEQ ID NO. 8.
In a preferred embodiment of the present invention, in order to further increase the metabolic flux of ethanol conversion to acetyl-coa and malonyl-coa, the present inventors overexpressed ethanol dehydrogenase ADH, acetyl-coa synthetase ACS and acetyl-coa decarboxylase ACC, further increasing the yield of dihydromonacolin L.
The above-mentioned gene may be naturally occurring, for example, it may be isolated or purified from a plant or microorganism. In addition, the gene can also be artificially prepared, for example, the gene can be obtained according to the conventional genetic engineering recombination technology, or the gene can be obtained by an artificial synthesis method. In a preferred embodiment of the invention adh has the nucleotide sequence shown in SEQ ID NO. 20, acs has the nucleotide sequence shown in SEQ ID NO. 21, and acc has the nucleotide sequence shown in SEQ ID NO. 22.
The nucleotide sequence of the above-mentioned gene may be the same as the sequences shown in SEQ ID NOS: 1 to 9 and 20 to 22, or may be a degenerate variant thereof. As used herein, "degenerate variant" means in the present invention a nucleic acid sequence that encodes a protein having the same function but differs from a sequence selected from the group consisting of SEQ ID NOs 1-9, 20-22.
The genes may include: a coding sequence encoding only the mature polypeptide; the coding sequence for the mature polypeptide and various additional coding sequences; the coding sequence (and optionally additional coding sequences) as well as non-coding sequences for the mature polypeptide.
The invention also relates to variants of said genes, which encode polypeptides which differ in amino acid sequence from their corresponding wild-type polypeptide, being fragments, analogues or derivatives of the wild-type polypeptide. The variant of the polynucleotide may be a naturally occurring allelic variant or a non-naturally occurring variant. These nucleotide variants include substitution variants, deletion variants and insertion variants. As is known in the art, an allelic variant is a substitution of a polynucleotide, which may be a substitution, deletion, or insertion of one or more nucleotides, without substantially altering the function of the polypeptide encoded thereby.
The present invention also relates to polynucleotides which hybridize to the above-described sequences and which have at least 70%, preferably at least 80%, identity between the two sequences, more preferably at least 80%. The present invention particularly relates to polynucleotides which hybridize under stringent conditions to the polynucleotides of the present invention. In the present invention, "stringent conditions" mean: (1) hybridization and elution at lower ionic strength and higher temperature, such as 0.2 XSSC, 0.1% SDS, 60 ℃; or (2) adding denaturant during hybridization, such as 50% (v/v) formamide, 0.1% calf serum/0.1% Ficoll, 42 deg.C, etc.; or (3) hybridization occurs only when the identity between two sequences is at least 90% or more, preferably 95% or more. Also, the polynucleotides that hybridize to the polypeptide encoded by the polynucleotide have the same biological functions and activities as the corresponding wild-type polypeptide.
It is to be understood that while multiple genes of the present invention are preferably obtained from a particular species, their homologous genes (e.g., having greater than 80%, such as 90%, 95%, even 98%, 99% sequence identity) obtained from other species are also within the contemplation of the present invention. Methods and means for aligning sequence identity are also well known in the art, for example BLAST.
The full-length sequence of each gene of the present invention or a fragment thereof can be obtained by a PCR amplification method, a recombination method, or an artificial synthesis method. For PCR amplification, primers can be designed based on the nucleotide sequences disclosed herein, particularly the open reading frame sequences, and the sequences can be amplified. When the sequence is longer, two or more PCR amplifications can be carried out, and then the amplified fragments are spliced together according to the correct sequence.
The invention also relates to a vector comprising said polynucleotide, and a host cell genetically engineered with said vector.
In the present invention, the sequence of each gene may be inserted into a recombinant expression vector. The term "recombinant expression vector" refers to a bacterial plasmid, bacteriophage, yeast plasmid, plant cell virus, mammalian cell virus, or other vector well known in the art. In general, any plasmid or vector can be used as long as it can replicate and is stable in the host. An important feature of expression vectors is that they generally contain an origin of replication, a promoter, a marker gene and translation control elements.
The sequences of the genes can be respectively inserted into recombinant expression vectors, and a plurality of the recombinant expression vectors are co-transferred into host cells; the expression cassettes of multiple genes can also be inserted into the same recombinant expression vector in tandem and transferred into host cells. The recombinant expression vector may further comprise an expression control sequence operably linked to the sequence of the gene to facilitate expression of the protein. It is understood that recombinant expression vectors can be conveniently constructed by those skilled in the art having the benefit of the teachings of the present invention. The obtained recombinant expression vector is also included in the present invention.
In the expression regulation sequence or the expression cassette, an inducible or constitutive promoter can be applied according to different requirements, and the inducible promoter can realize more controllable protein expression and compound production, thereby being beneficial to industrial application.
Vectors containing the appropriate gene sequences and appropriate promoter or control sequences described above may be used to transform appropriate host cells to enable expression of the protein. In the present invention, the host cell is preferably a yeast engineering bacterium, more preferably a methylotrophic yeast cell such as Pichia pastoris.
Synthesis method
The invention provides a Monacolin J heterologous production method taking ethanol as a carbon source, a precursor and an inducer, which verifies that the Pichia pastoris can supply sufficient precursor acetyl coenzyme A by taking ethanol as a substrate by detecting the growth of the Pichia pastoris in the ethanol and determining the flow direction of an ethanol metabolism passage. The transcription regulation genetic circuit in the methanol nutritional yeast cell is artificially modified, so that the transcription strength of an ethanol induction promoter is improved, and the expression of heterologous pathway enzymes is enhanced. The yeast expression system and the fermentation method of the invention enable the heterologous synthesis amount of monacolin J in pichia pastoris to reach 2.2 g/L.
In order to further improve the production of the monacolin J in the pichia pastoris, the invention improves the metabolism flux of the cytoplasmic acetyl coenzyme A in the pichia pastoris by taking ethanol as a substrate, and simultaneously improves the transcription expression of heterologous enzyme genes by constructing an ethanol-induced transcription device through artificial design. On the premise of ensuring sufficient precursors and high-efficiency expression of enzyme, the synthesis of the product monacolin J is promoted.
The dihydromonacolin L is catalyzed and oxidized by an enzyme LovA to synthesize monacolin J, and in order to avoid metabolic pressure caused by introducing excessive exogenous genes into a single cell, the inventor provides a strategy for constructing double-strain co-culture. The inventors also found that the initial mixing ratio of the two strains in the co-culture system affects the growth of the strains and the synthesis of the products to some extent, so the inventors optimized the initial inoculation ratio to obtain a better initial inoculation ratio.
Acetyl coenzyme A is a core intermediate metabolite of cell basic metabolism, is formed by connecting an acetic acid molecule and coenzyme A through a thioester bond, can provide acyl groups for various biochemical reactions in cells, is a substrate for protein acylation, and participates in enzyme transcription and function regulation. Meanwhile, acetyl coenzyme A is also a precursor molecule of a series of bioactive substances, including fatty acid, terpenoid, polyketide and the like. With the intensive research on the synthesis of target compounds by using the concept of microbial factories, people pay more attention to the problem of precursor supply in microbial hosts, and the energy flow of substances generated by carbon source metabolism is promoted to flow to acetyl coenzyme A more by reasonably modifying an acetyl coenzyme A metabolic network, so that the energy flow is used as a substrate of the target compounds to promote the synthesis of final products. Ethanol is a precursor that can be used to increase the supply of acetyl-coa, and the synthesis of acetyl-coa derivatives can be enhanced by the addition of ethanol.
Heterologous pathway construction and metabolic engineering in a single host cell often burdens the growth and metabolism of the host cell, causing a decrease in the amount of synthesized end product. In the invention, by rationally designing a multi-cell co-culture flora system, distributing a complex biosynthesis pathway to independent microbial cells and adjusting the inoculation proportion of each cell, a heterologous pathway can be optimized, the metabolic pressure can be relieved and the product synthesis can be promoted in the flora co-culture system. The synthetic biological element is combined with the traditional molecular operation technology for use, so that a promoter transcription regulation network can be artificially designed and constructed, the transcription strength of the promoter is enhanced, and the expression of heterologous proteins is further improved.
In the present inventionIn the specific example, firstly, a recombinant pichia pastoris strain for synthesizing the dihydromonacolin L by using ethanol as a substrate is constructed. Use of an artificially designed promoter PAOX1RTo drive the expression of the genes lovB, lovC, lovG, npgA, using the promoter PICL1Drives the expression of the transcription activator UTA, and can produce the dihydromonacolin L by using ethanol as a substrate through culture and fermentation. In order to further improve the metabolic flux of converting ethanol into acetyl coenzyme A and malonyl coenzyme A, the invention overexpresses alcohol dehydrogenase ADH, acetyl coenzyme A synthetase ACS and acetyl coenzyme A decarboxylase ACC, and further improves the synthesis of dihydromonacolin L to obtain the high-yield strain P.p/DML of the dihydromonacolin L. The recombinant bacterium P.p/DML can produce dihydromonacolin L through fermentation, and the dihydromonacolin L enters the recombinant bacterium P.p/sAR to be catalyzed and oxidized to synthesize monacolin J. Wherein the recombinant strain comprises a constitutive promoter PGAPExpression cassette for driving expression of transcription activator UTA, and artificially synthesized promoter PAOX1RExpression cassettes driving expression of lovA and cpr.
In a specific embodiment of the invention, the superior fermentation strategy obtained by shake flask horizontal culture was scaled up to a 5L reactor for process scaling up pilot scale to evaluate the large-scale productivity of monacolin J. The co-cultured strains P.p/DML and P.p/sAR were separately cultured to logarithmic growth phase, and mixed inoculation was performed according to the optimum initial inoculation ratio of the shake flask. In the early stage of fermentation, glucose is used as a carbon source to maintain the rapid growth of the strain, and the promoter P is inhibitedICL1Initiate, repress heterologous pathway expression. When the wet weight of the thalli grows to 300g/L, switching a carbon source to ethanol, starting heterologous pathway expression, sampling at intervals of 8h to measure the wet weight of the thalli and the yield of the monacolin J, and finally obtaining the yield of the monacolin J of 2.2g/L in 96 h.
The invention will be further illustrated with reference to the following specific examples. It should be understood that these examples are for illustrative purposes only and are not intended to limit the scope of the present invention. The experimental procedures, for which specific conditions are not noted in the following examples, are generally performed according to conventional conditions such as those described in J. SammBruk et al, molecular cloning protocols, third edition, scientific Press, 2002, or according to the manufacturer's recommendations.
Material
The LLB culture medium is as follows: 1% (w/v) peptone, 0.5% (w/v) yeast powder, 0.5% (w/v) sodium chloride.
YPD medium was: 2% (w/v) peptone, 1% (w/v) yeast powder, 2% (w/v) glucose.
The MGY culture medium is: 0.67% (w/v) Yeast nitrate base (YNB, Yeast basic nitrogen source medium), 1% (w/v) glycerol.
Ethanol fermentation of pichia pastoris production strains, using YNE medium: 1.34% (w/v) yeast basic nitrogen source medium (YNB), 0.5% (v/v) ethanol, ethanol was added every 24 h.
Sterilizing solid and liquid culture medium at 121 deg.C under high pressure for 20min, preparing 50% (w/v) glucose solution, filtering with 0.22 μm sterile filter membrane, and adding corresponding volume of glucose mother liquor in ultra-clean bench according to final concentration.
The use amount of antibiotics is as follows: ampicillin, 50. mu.g/ml; bleomycin, 50 μ g/ml for Escherichia coli culture; 100 mu g/ml is used for culturing pichia pastoris; geneticin, 250. mu.g/ml.
Peptone, yeast powder and malt extract were purchased from beijing bayer died biotechnology limited.
Basic nitrogen source medium YNB was purchased from Sigma.
Glucose, glycerol, methanol, ethanol, ethyl acetate, ammonia water, potassium dihydrogen phosphate, phosphoric acid, sodium chloride, and the like are available from national drug group chemical agents, ltd.
The DNA purification and recovery kit, the plasmid miniextraction kit and the yeast genome extraction kit are purchased from Tiangen Biotechnology (Beijing) Co., Ltd.
PCR primers, gene synthesis, plasmid sequencing and the like are completed by Suzhou Jinzhi Biotechnology GmbH, and PCR high-fidelity enzyme and restriction enzyme are purchased from TaKaRa.
Both the single-fragment seamless cloning kit and the multi-fragment seamless assembly kit were purchased from Nanjing Novozam.
Example 1 construction of a plasmid for heterologous expression of the Monacolin J biosynthesis Gene
1.pZ_UTA_PAOX1RConstruction of the BCGN plasmid
Starting with the Pichia commercial plasmid pPIC ZB (Invitrogen), according to the promoter PAOX1RThe promoter fragment was synthesized, the plasmid pPIC ZB was digested with BglII and XhoI, the original AOX1 promoter fragment was removed by agarose electrophoresis, and the promoter P was isolatedAOX1RCarrying out seamless cloning on the fragment and the plasmid fragment after enzyme digestion, and obtaining the plasmid pZ _ P through monoclonal screening and sequencing verificationAOX1R
UTA fragments are synthesized according to UTA nucleotide sequence, and simultaneously, a primer is designed and a pichia pastoris genome is used as a template for amplification to obtain a promoter PICL1Fragment, mixing uta fragment with P by OverlapPCR techniqueICL1The fragments are ligated in vitro, the ligated PICL1Seamless cloning of the UTA fragment and the cleaved pPIC ZB fragment to obtain the plasmid pZ _ PICL1-UTA。
The gene fragments of lovB (SEQ ID NO:1), lovC (SEQ ID NO:2), lovG (SEQ ID NO:3) and npgA (SEQ ID NO:4) were PCR-amplified and each gene fragment was separately ligated with linearized plasmid pZ _ PAOX1RSeamless cloning is carried out to obtain plasmids pZ _ P respectivelyAOX1R-LovB、pZ_PAOX1R-LovC、pZ_PAOX1RLovG and pZ _ PAOX1R-NpgA。
Plasmid pZ _ P was digested with the endonuclease BamHI aloneAOX1RLovB, design primer pair TT-lacOcACOX-F (SEQ ID NO:10) and BamH-TT-R (SEQ ID NO:11) as plasmid pZ _ PAOX1RUsing LovC as a template, obtaining an expression cassette fragment by PCR amplification, and mixing the fragment with a linearized plasmid pZ _ PAOX1RSeamless cloning of LovB, and obtaining of plasmid pZ _ P by colony PCR verificationAOX1R-BC. By continuing the same procedure, the expression cassette fragments of lovG and npgA can be inserted further on the basis of this plasmid, resulting in plasmid pZ _ PAOX1R-BCGN。
In plasmid pZ _ PICL1On the basis of UTA plasmid, primer pairs TT-pICL 1-F (SEQ ID NO:12) and BamH-TT-R (SEQ ID NO:11) are used for obtaining P through PCR amplificationICL1Driving expression of expression UTAA cassette fragment. The linearized plasmid pZ _ PAOX1RCarrying out seamless cloning transformation on the BCGN and the expression cassette fragment to obtain an expression plasmid pZ _ UTA _ PAOX1R-BCGN。
2.pK_UTA_PAOX1RConstruction of the-sAR plasmid
Plasmid pZ _ P was double digested with XhoI and SalIAOX1R(ii) a Obtaining gene fragments of lovA (SEQ ID NO:5) and cpr (SEQ ID NO:6) by primer PCR amplification, and respectively mixing each gene fragment with linearized plasmid pZ _ PAOX1RCarrying out seamless cloning to obtain a plasmid pZ _ PAOX1R-LovA、pZ_PAOX1R-CPR。
Primer pairs TT-KanaHis-F (SEQ ID NO:13), Amp-KanaHis-R (SEQ ID NO:14), KanaHis-Amp-F (SEQ ID NO:15) and lacOcaOX-Amp-R (SEQ ID NO:16) are designed, and plasmid pPIC3.5K is used as a template for PCR amplification. Simultaneously designing primer pairs Amp-lacOcAOX-F (SEQ ID NO:17) and KanaHis-TTSpe-R (SEQ ID NO:18) to obtain plasmid pZ _ PAOX1RCarrying out PCR amplification by taking LovA as a template to obtain an expression cassette fragment, carrying out multi-fragment seamless cloning on the expression cassette fragment and a linearized plasmid to obtain a plasmid pK _ PAOX1R-LovA。
Plasmid pK _ P linearized with SpeIAOX1RLovA, plasmid pZ _ P using primer pair TT-lacOcAOX-F (SEQ ID NO:10) and KanaHis-TTSpe-R (SEQ ID NO:18)AOX1RThe plasmid pK _ P can be obtained by taking CPR as a template, obtaining a fragment through PCR amplification and carrying out seamless cloning on the fragment and the linearized plasmidAOX1R-sAR. The linearized plasmid pK _ P was digested further with the endonuclease SpeIAOX1RsA, plasmid pZ-P using primers TT-pGAP-F (SEQ ID NO:19) and BamH-TT-R (SEQ ID NO:11)GAP-UTA is used as a template, an expression cassette fragment can be obtained through PCR amplification, the linearized plasmid and the expression cassette fragment are respectively subjected to single-fragment seamless cloning, and a plasmid pK _ UTA _ P can be obtainedAOX1R-sAR。
Example 2, PICL1Promotion of ethanol expression by driving expression of UTA
Plasmid pZ _ P prepared as described aboveAOX1RXho and Sal double digestion linearized plasmid, primer design and amplification of eGFP reporter gene fragment, and obtaining PICL1UTA by seamless Assembly of kitsCloning and screening to obtain plasmid pZ _ PICL1-UTA_PAOX1R-eGFP. At the same time, with PICL1Drive expression of eGFP, PAOX1Driving expression of eGFP as a control. Linearizing the plasmid, electrically transforming a pichia pastoris wild strain, and screening a transformant. And carrying out genotype identification on the obtained monoclonal transformant, and fermenting by using ethanol or methanol as a carbon source.
As shown in FIG. 1, an artificial transcription system P was usedICL1-UTA_PAOX1RGFP expression intensity in ethanol compared to the original PICL1The strength of the promoter is greatly improved and is far higher than that of the original PAOX1Intensity of GFP expression under methanol and ethanol conditions. The artificial transcription device provided by the invention is proved to be capable of remarkably improving the expression level of heterologous proteins.
Example 3 obtaining of Co-culture Strain producing Monacolin J
1. Construction of Dihydromonacolin L producing Strain
Plasmid pZ _ UTA _ P prepared as described aboveAOX1RBCGN, using SpeI single enzyme digestion, after purification and recovery, transforming Pichia wild strain electrically, using bleomycin resistant YPD solid plate to screen transformant. And carrying out genotype identification on the obtained monoclonal transformant, extracting a metabolite in a fermentation liquor after ethanol induction fermentation, and carrying out high performance liquid chromatography analysis to synthesize a recombinant bacterium of the dihydromonacolin L, namely the pichia pastoris strain for producing the dihydromonacolin L, which is named as P.p/DML.
2. Metabolic engineering optimization for improving production of dihydromonacolin L
To further enhance the supply of acetyl-CoA and the synthesis of dihydromonacolin L, alcohol dehydrogenase ADH (SEQ ID NO:20), acetyl-CoA synthetase ACS (SEQ ID NO:21) and acetyl-CoA decarboxylase ACC (SEQ ID NO:22) were further overexpressed on the basis of the dihydromonacolin L-producing strain.
The genome of the saccharomyces cerevisiae is used as a template, and a primer is designed to obtain an ethanol dehydrogenase gene adh and an acetyl coenzyme A synthetase gene acs through PCR amplification. The acetyl coenzyme A decarboxylase acc can be obtained by taking a pichia pastoris genome as a template and designing a primer for PCR amplification. Using the endonucleases BspT104I and KpnIDouble restriction enzyme plasmid pGAPZ alpha, removing signal peptide fragments by DNA gel electrophoresis to obtain linearized plasmids, respectively carrying out seamless cloning on the linearized plasmids and three gene fragments, respectively transforming escherichia coli, and obtaining P by colony PCR verification and sequencing result comparisonGAPPlasmid pZ-P for expression of respective enzyme genesGAP-ADH、pZ-PGAPACS and pZ-PGAP-ACC. Designing a primer pair, and removing the HIS4 gene by PCR amplification by using a pichia pastoris commercial vector pPIC3.5K as a template to obtain a plasmid pKdH from which the HIS4 screening marker gene is removed. Simultaneously with plasmid pZ-PGAPADH and pZ-PGAPACS is taken as a template, and PCR amplification is carried out to obtain the gene expression cassette. The gene expression cassette and the linearized plasmid pKdH are respectively subjected to multi-fragment seamless cloning to obtain the plasmid pKdH-PGAPADH and pKdH-PGAP-ACS. Plasmid pKdH-P was digested with SpeI aloneGAPThe ADH is linearized, the linearized plasmid and the expression cassette fragment are seamlessly cloned and transformed, and the plasmid pKdH-P can be obtained through screeningGAP-ADH+PGAP-ACS. The plasmid is linearized by BlnI, competent cells of pichia pastoris P.p/DML are electrically transformed, a YPD culture medium added with geneticin is used for screening transformants and carrying out genotype verification, and pichia pastoris strains with over-expressed ADH and ACS can be obtained.
Using BamHI and BlnI double digestion plasmid pPIC3.5K, primers were designed and expressed as pZ-PGAPusing-ACC as template, obtaining P by PCR amplificationGAPThe ACC-TT fragment and the ACC-TT fragment are subjected to seamless cloning, and the plasmid pK-P can be obtained through colony PCR screening and verificationGAP-ACC. Linearizing the plasmid, electrically transforming pichia pastoris competent cells which over-express ADH and ACS, screening transformants and genotype verification by using an MGY plate, simultaneously screening single copy integration of each expression plasmid, obtaining an ADH, ACS and ACC over-expressed dihydromonacolin L production strain P.p/DML _ OE, extracting a fermentation product after ethanol induction fermentation of the obtained pichia pastoris transformant, and carrying out quantitative analysis by high performance liquid chromatography, wherein as shown in figure 2, compared with the yield of the dihydromonacolin L of the strain before optimization, the yield of the dihydromonacolin L is increased by 195%, and the optimized strain is named as P.p/DML _ OE (P.p/DML with over expression).
3. Construction of Strain catalyzing Synthesis of Monacolin J from DihydroMonacolin L
Plasmid pK _ UTA _ P was digested with BlnIAOX1RsAR, electrically transforming Pichia pastoris wild strain after purification and recovery, and screening transformants by using geneticin resistant YPD solid plates. The obtained monoclonal transformant was subjected to genotype identification.
The obtained product was transformed into pK _ UTA _ PAOX1R-sAR, co-cultured with strain P.p/DML _ OE for fermentation. Then, the metabolite in the fermentation broth was extracted and analyzed by high performance liquid chromatography, as shown in fig. 3, to determine that the fermentation product was monacolin J.
The above recombinant Pichia pastoris strain for catalyzing the conversion of dihydromonacolin L to monacolin J was named P.p/sAR.
Example 4 Co-cultivation of recombinant strains to produce Monacolin J
1. Determination of optimal initial inoculation ratio of Co-cultured Strain producing Monacolin J
After repeated research, the inventor finds that in the P.p/DML and P.p/sAR double-strain co-culture system, different initial inoculation ratios enable the co-culture system to be in different stable states. Therefore, the present inventors considered that it was necessary to optimize the initial inoculation ratio of the two strains in the co-culture system.
The inventors set the initial inoculation ratios of strain P.p/DML to strain P.p/sAR to 1:0.1, 1:0.2, 1:0.5, 1 in this order; 1, 1:1.5, 1:2, the effect of different inoculation ratios on throughput was observed.
The production amounts of monacolin J in each group are shown in fig. 4, and it can be seen that the production amounts of monacolin J are significantly desirable when the initial inoculation ratios of strain P.p/DML and strain P.p/sAR are 1: 0.2-0.5; whereas at an initial inoculation ratio of 1:0.2, the production of monacolin J reached a maximum of 156 mg/L.
2. High-density fermentation process of recombinant engineering bacteria 5L reactor
The present inventors scaled up a co-culture system with an initial inoculation ratio of 1:0.2 for strain P.p/DML and strain P.p/sAR into a 5L reactor for fermentation pilot scale. Respectively culturing strains P.p/DML and P.p/sAR in a shake flask to logarithmic growth phase, measuring the bacterial concentration, mixing at a ratio of 1:0.2, inoculating into a 5L reactor, controlling the pH to be 4.5, and controlling the dissolved oxygen to be 30-70%. And in the early stage of fermentation, glucose is used as a carbon source for feeding and feeding, the feeding rate of the glucose is controlled from low to high and is gradually increased from 24g/h to 40g/h, and the residual concentration of the glucose in the culture medium is detected, so that the large accumulation of the glucose caused by too fast feeding of the glucose is avoided. And after the cell grows at a high speed until the wet weight of the thalli reaches 300g/L, switching a carbon source to ethanol feeding, wherein the ethanol feeding rate is increased from slow to fast and gradually from 0g/h to 24g/h, monitoring the residual concentration of ethanol in the fermentation liquid during the period to avoid over-high ethanol accumulation, maintaining the feeding rate at 24g/h until the thalli is fermented to 110h after the thalli adapts to the ethanol, and maintaining the pH at 4.5 and the dissolved oxygen at 30-70 percent during the period. The yield during fermentation was determined. As shown in FIG. 5, at 96h of fermentation, the co-cultivation system could produce 2.2g/L of monacolin J.
All documents referred to herein are incorporated by reference into this application as if each were individually incorporated by reference. Furthermore, it should be understood that various changes and modifications of the present invention can be made by those skilled in the art after reading the above teachings of the present invention, and these equivalents also fall within the scope of the present invention as defined by the appended claims.
Sequence listing
<110> university of east China's college of science
<120> method for heterologous production of monacolin J and application thereof
<130> 184446
<160> 22
<170> SIPOSequenceListing 1.0
<210> 1
<211> 9117
<212> DNA
<213> Aspergillus terreus (Aspergillus terreus)
<400> 1
atggctcaat ctatgtatcc taatgagcct attgtcgtgg tcggcagtgg ttgtcgcttc 60
cctggtgacg ccaacacacc ctccaagctc tgggagctac tccagcatcc tcgcgatgtg 120
cagagtcgaa tccccaaaga acgatttgac gtcgacacat tttatcaccc ggacgggaag 180
caccacgggc gaacaaatgc accctacgcc tatgttctcc aagacgatct gggcgccttc 240
gatgcggcct tcttcaatat ccaggctgga gaggccgaga gtatggaccc ccagcaccgg 300
ctgttgctgg agacggtgta cgaggccgta acgaatgctg gaatgcgtat ccaggatctg 360
cagggaactt cgactgctgt ttacgtcggg gtgatgacgc acgactatga gactgtctca 420
acccgcgacc tggagagcat ccccacctac tcggcgacgg gtgtcgcggt cagtgttgcg 480
tccaaccgca tctcgtattt ttttgactgg catggaccaa gtatgacgat cgatacggca 540
tgcagctcgt cgttggttgc cgttcatctg gcggtgcaac agctacggac gggtcaaagc 600
tccatggcaa ttgctgcggg tgcgaatctg attctggggc ccatgacatt cgtccttgaa 660
agcaaattga gcatgctatc cccctcgggt cgatcccgca tgtgggacgc cggagctgac 720
ggctatgcca gaggcgaagc tgtttgctct gtagtgttga agacattgag tcaagccttg 780
cgcgatgggg acacgattga atgtgtcatc cgagaaactg gggtgaatca agatggccga 840
acgaccggaa ttacgatgcc gaaccatagt gctcaggagg cactcatcaa ggctacctac 900
gcccaggctg gccttgacat caccaaggcc gaggacaggt gccaattctt cgaggctcat 960
gggactggta ctccggccgg agatccccag gaggcggagg ccattgcaac agccttcttc 1020
ggccacgagc aggtagcacg cagcgacgga aacgagaggg cccctctgtt cgtgggcagt 1080
gcgaaaactg ttgtcgggca caccgagggc acggccggtc tggctggtct catgaaggcg 1140
tcgttcgctg tccgccatgg ggtaatcccc cccaacctgc tgttcgacaa aatcagcccg 1200
cgagtcgccc cattctataa aaacctgagg attccgacag aagctaccca atggccagct 1260
ctcccacccg gacaaccgcg ccgcgccagt gtcaactcct ttggattcgg cggcacgaat 1320
gcgcatgcca ttattgagga atacatggag ccagagcaaa accagctgcg agtctcgaat 1380
aatgaggact gcccacccat gaccggtgtc ctgagtttac ccttagtcct ctcggcgaag 1440
tcccagcgct ccttaaagat aatgatggag gagatgctgc aattccttga gtctcacccc 1500
gagatacact tgcacgacct cacctggtcc ttactgcgca agcggtcagt tctacccttc 1560
cgccgggcta ttgtcggcca tagtcatgaa accatccgcc gggctttgga ggatgccatc 1620
gaggatggta ttgtgtcgag cgacttcact acggaggtca gaggccagcc atcggtgttg 1680
ggaatcttca ccgggcaggg ggcgcagtgg ccggggatgt taaagaatct gatagaggca 1740
tcgccatatg tgcggaacat agtgagggag ctggacgact ccctgcagag cttgccggaa 1800
aaataccggc cctcgtggac gctactggac cagttcatgc tagaaggaga ggcctccaac 1860
gtccaatatg ctactttctc ccagccatta tgctgcgcgg tgcaaattgt cctggtccgt 1920
ctccttgaag ccgcgagaat acgattcacg gctgttgttg gacatagctc cggcgaaatt 1980
gcttgcgcct ttgctgccgg gctcatcagt gcctcgttgg cgattcggat tgcttactta 2040
cgtggagtcg tctcggcagg gggcgccaga ggcacaccgg gagccatgtt ggccgccggg 2100
atgtcctttg aggaagcaca agagatctgc gagttggatg cctttgaggg ccgcatctgc 2160
gtggctgcca gcaattcccc agacagtgta actttctctg gcgacgcgaa cgcaattgat 2220
cacctgaagg gcatgttgga ggatgagtcc acttttgcga gactgctcaa ggtcgataca 2280
gcgtaccact cgcatcatat gcttccatgt gcagacccat atatgcaagc cctagaagag 2340
tgtggttgtg ctgttgccga tgcaggttcc ccagccggaa gtgtaccctg gtattcgtcc 2400
gtggacgccg agaacaggca aatggcagca agagacgtga ccgccaagta ctggaaagat 2460
aacttagtat ctccggtgct attctcccac gcagtgcagc gggcagtcgt cacgcacaag 2520
gcgctggata tcgggattga agtgggctgt cacccagctc tcaagagccc atgcgtcgcc 2580
accatcaagg atgtcctatc tggggttgac ctggcgtata caggttgctt ggagcgagga 2640
aagaatgatc tcgattcatt ctctcgagca ctggcatatc tctgggaaag gtttggtgcc 2700
tccagtttcg atgcggacga gttcatgcgt gcagtcgcgc ctgatcggcc ctgtatgagt 2760
gtgtcgaagc tcctaccggc ctatccatgg gaccgctctc gtcgctactg ggtggaatcc 2820
cgagcaactc gccaccatct tcgagggccc aagccccatc ttctattagg aaagctctcc 2880
gaatacagca ctccgctaag cttccagtgg ctgaattttg tgcgcccacg agacattgaa 2940
tggcttgatg gacatgcatt gcaaggccag actgtcttcc ctgcggccgg ctatatcgtc 3000
atggcaatgg aagcagcctt aatgattgct ggcacccacg caaagcaggt caagttactg 3060
gagatcttgg atatgagcat tgacaaggcg gtgatatttg acgacgaaga cagcttggtt 3120
gagctcaacc tgacagctga cgtgtctcgc aacgccggcg aagcaggttc aatgaccata 3180
agcttcaaga tcgattcctg tctatcgaag gagggtaacc tatccctatc agccaagggc 3240
caactggccc taacgataga agatgtcaat cccaggacga cttccgctag cgaccagcac 3300
catcttcccc cgccagaaga ggaacatcct catatgaacc gtgtcaacat caatgctttc 3360
taccacgagc tggggttgat ggggtacaac tacagtaagg acttccggcg tctccataac 3420
atgcaacgag cagatcttcg agccagcggc accttagact tcattcctct gatggacgag 3480
ggtaatggct gtcctctcct gctgcatcct gcatcattgg acgtcgcctt ccagactgtc 3540
atcggcgcat actcctcccc aggtgatcgg cgtctacgct gtctgtatgt acccactcac 3600
gttgatcgca tcacacttgt cccatccctt tgcctggcaa cggctgagtc cggatgcgag 3660
aaggttgcct tcaatactat caatacgtac gacaagggag actacttgag cggtgacatt 3720
gtggtgtttg acgcggagca gaccaccctg ttccaggttg aaaatattac ttttaagccc 3780
ttttcacccc cggatgcttc aactgaccat gcgatgtttg cccgatggag ctggggtccg 3840
ttgactccgg actcgctgct ggataacccg gagtattggg ccaccgcgca ggacaaggag 3900
gcgattccta ttatcgaacg catcgtctac ttctatatcc gatcgttcct cagtcagctt 3960
acgctggagg agcgccagca ggcagccttc catttgcaga agcagatcga gtggctcgaa 4020
caagtcctgg ccagcgccaa ggagggtcgt cacctatggt acgaccccgg gtgggagaat 4080
gatactgagg cccagattga gcacctttgt actgctaact cctaccaccc tcatgttcgc 4140
ctggttcagc gagtcggcca acacctgctc cccaccgtac gatcgaacgg caacccattc 4200
gaccttctgg accacgatgg gctcctgacg gagttctata ccaacacact cagcttcgga 4260
cccgcactac actacgcccg ggaattggtg gcgcagatcg cccatcgcta tcagtcaatg 4320
gatattctgg agattggagc agggaccggc ggcgctacca agtacgtgtt ggccacgccc 4380
cagctggggt tcaacagcta cacatacacc gatatctcca ccggattctt cgagcaagcg 4440
cgggagcaat ttgccccctt cgaggaccgg atggtgtttg aacccctcga tatccgccgc 4500
agtcccgccg agcagggctt cgagccgcat gcctatgatc tgatcattgc ctccaatgtg 4560
ctacatgcga cacccgacct agagaaaacc atggctcacg cccgctctct gctcaagcct 4620
ggaggccaga tggttattct ggagattacc cacaaagaac acacacggct cgggtttatc 4680
tttggtctgt tcgccgactg gtgggctggg gtggatgatg gtcgctgcac tgagccgttt 4740
gtctcgttcg accgctggga tgcgatccta aagcgtgtcg ggttttccgg tgtggacagt 4800
cgcaccacgg atcgggacgc aaatctattc ccgacctctg tgtttagtac ccatgcaatt 4860
gacgccaccg tggagtactt agacgcgccg cttgccagca gcggcaccgt caaggactct 4920
taccctccct tggtggtggt aggagggcag accccccaat ctcagcgtct cctgaacgat 4980
ataaaagcga tcatgcctcc tcgtccgctc cagacataca agcgcctcgt ggatttgcta 5040
gacgcggagg agctgccgat gaagtccacg tttgtcatgc tcacggagct ggacgaggaa 5100
ttattcgccg ggctcactga agagaccttc gaggcaacca agctgctgct cacgtacgcc 5160
agcaatacgg tctggctgac agaaaatgcc tgggtccaac atcctcacca ggcgagcacg 5220
atcggcatgc tacgctccat ccgccgggag catcctgact tgggagttca tgttctggac 5280
gtcgacgcgg ttgaaacctt cgatgcaacc ttcctggttg aacaggtgct tcggcttgag 5340
gagcatacgg atgagctggc cagttcaact acatggactc aagaacccga ggtctcctgg 5400
tgtaaaggcc gcccgtggat tcctcgtctg aagcgcgatc tggctcgcaa taaccgaatg 5460
aactcctcgc gccgtcccat atacgagatg atcgattcgt cgcgggctcc cgtggcatta 5520
cagacggctc gggattcatc atcctacttc ttggagtccg ctgaaacctg gtttgtgcct 5580
gagagtgttc agcagatgga aacaaagacg atctatgtcc actttagctg tccccatgcg 5640
cttagggtcg gacagctcgg gtttttctat cttgtgcagg gtcacgtcca ggagggcaat 5700
cgcgaagtgc ccgtcgtggc cttagcagag cgtaacgcat ccattgtgca cgttcgtccc 5760
gattatatat atactgaggc agataacaat ctgtctgagg gtggtggcag ccttatggta 5820
accgtcctcg ccgcggcggt gttggcggag acggtgatca gtaccgccaa gtgcctgggg 5880
gtaactgact caatcctcgt tctgaatccc cccagcatat gtgggcagat gttgctccat 5940
gctggtgaag agatcggtct tcaagttcat ctggccacca cttctggcaa caggagttcg 6000
gtttctgctg gagacgccaa gtcctggcta acattgcatg ctcgcgacac ggactggcac 6060
ctgcgacggg tactgccccg gggtgtccag gctttagtcg acttatcagc cgaccagagc 6120
tgtgaaggtt tgactcagag gatgatgaaa gttctgatgc ctggctgtgc ccattaccgt 6180
gcggcagacc tgttcacaga caccgtttcc actgaattgc atagcggatc gcggcatcaa 6240
gcttcactgc ccgccgcata ttgggagcat gtggtatcct tagcccgcca gggacttcct 6300
agtgtcagcg aggggtggga ggtgatgccg tgcactcaat ttgcagcgca tgccgacaag 6360
acgcgcccgg atctctcgac agttatttcc tggccccggg agtcggacga ggctacgctt 6420
cctaccaggg ttcgctccat tgacgctgag accctctttg cggccgacaa aacatatctc 6480
ctggtcggac tgactggaga tcttggacga tcactaggtc gttggatggt ccagcatggg 6540
gcctgccaca ttgtacttac gagcagaaat ccgcaggtga accccaagtg gctggcgcat 6600
gttgaagaac tgggtggtcg agtcactgtt ctttccatgg acgtgacaag ccaaaactca 6660
gtggaagctg gcctggctaa actcaaggat ctgcatctgc caccagtggg gggtattgcc 6720
tttggccctc tggttctgca ggatgtgatg ctaaataata tggaactgcc aatgatggag 6780
atggtgctca accccaaggt cgaaggcgtc cgcatcctgc acgagaagtt ctccgatccg 6840
accagtagca accctctcga cttcttcgtg atgttctcct cgattgtggc cgtcatgggc 6900
aacccgggtc aggctaacta cagtgcggct aactgctacc ttcaagcgct ggcgcagcag 6960
cgagttgcat ccggattagc agcgtccacc atcgacatcg gtgccgtgta cggcgttggg 7020
ttcgtcactc gggcggagct ggaggaggac tttaatgcaa ttcggttcat gttcgattcg 7080
gttgaggaac atgaactgca tacactgttt gctgaggcag tggtggccgg tcgacgagcc 7140
gtgcaccagc aagagcagca gcggaagttc gcgacagtgc tcgacatggc tgatctggaa 7200
ctgacaaccg gaattccgcc cctggatcca gccctcaaag atcggatcac cttcttcgac 7260
gacccccgca taggcaactt aaaaattccg gagtaccgag gggccaaagc aggcgaaggg 7320
gcagccggct ccaagggctc ggtcaaagaa cagctcttgc aggcgacgaa cctggaccag 7380
gtccgtcaga tcgtcatcga tggactctcc gcgaagctgc aggtgaccct gcagatcccc 7440
gatggggaaa gcgtgcatcc caccatccca ctaatcgatc agggggtgga ctctctgggc 7500
gcggtcaccg tgggaacctg gttctccaag cagctgtacc ttgatttgcc actcctgaaa 7560
gtgcttgggg gtgcttcgat caccgatctc gctaatgagg ctgctgcgcg attgccacct 7620
agctccattc ccctcgtcgc agccaccgac gggggtgcag agagcactga caatacttcc 7680
gagaatgaag tttcgggacg cgaggatact gaccttagtg ccgccgccac catcactgag 7740
ccctcgtctg ccgacgaaga cgatacggag ccgggcgacg aggacgtccc gcgttcccac 7800
catccactgt ctctcgggca agaatactcc tggagaatcc agcagggagc cgaagacccc 7860
accgtcttta acaacaccat tggtatgttc atgaagggct ctattgacct taaacggctg 7920
tacaaggcgt tgagagcggt cttgcgccgc cacgagatct tccgcacggg gtttgccaac 7980
gtggatgaga acgggatggc ccagctggtg tttggtcaaa ccaaaaacaa agtccagacc 8040
atccaagtgt ctgaccgagc cggcgccgaa gagggctacc gacaactggt gcagacacgg 8100
tataaccctg ccgcaggaga caccttgcgg ctggtggact tcttctgggg ccaggacgac 8160
catctgctgg ttgtggctta ccaccgactc gtcggggatg gatctactac agagaacatc 8220
ttcgtcgaag cgggccagct ctacgacggc acgtcgctaa gtccacatgt ccctcagttt 8280
gcggacctgg cggcacggca acgcgcaatg ctcgaggatg ggagaatgga ggaggatctc 8340
gcgtactgga agaaaatgca ttaccgaccg tcctcaattc cagtgctccc actgatgcgg 8400
cccctggtag gtaacagtag caggtccgat actccaaatt tccagcactg tggaccctgg 8460
cagcagcacg aagccgtggc gcgacttgat ccgatggtgg ccttccgcat caaggagcgc 8520
agtcgcaagc acaaggcgac gccgatgcag ttctatctgg cggcgtatca ggtgctgttg 8580
gcgcgcctca ccgacagcac cgatctcacc gtgggcctcg ccgacaccaa ccgtgcgact 8640
gtcgacgaga tggcggccat ggggttcttc gccaacctcc ttcccctgcg cttccgggat 8700
ttccgccccc atataacgtt tggcgagcac cttatcgcca cccgtgacct ggtgcgtgag 8760
gccttgcagc acgcccgcgt gccctacggc gtcctcctcg atcaactggg gctggaggtc 8820
ccggtcccga ccagcaatca acctgcgcct ttgttccagg ccgtcttcga ttacaagcag 8880
ggccaggcgg aaagtggaac gattgggggt gccaagataa ccgaggtgat tgccacgcgc 8940
gagcgcaccc cttacgatgt cgtgctggag atgtcggatg atcccaccaa ggatccgctg 9000
ctcacggcca agttacagag ttcccgctac gaggctcacc accctcaagc cttcttggag 9060
agctacatgt cccttctctc tatgttctcg atgaatcccg ccctgaagct ggcatga 9117
<210> 2
<211> 1092
<212> DNA
<213> Aspergillus terreus (Aspergillus terreus)
<400> 2
atgggcgacc agccattcat tccaccaccg cagcaaacag cgctgacggt aaatgaccat 60
gatgaagtca ccgtctggaa tgccgcaccc tgccccatgc tgccccgcga ccaggtatac 120
gtccgcgtcg aggccgtggc gatcaatccc agtgacacga agatgcgcgg acagtttgcc 180
acgccctggg cgtttctcgg aacggactat gccggcacgg tcgtcgcagt gggttcggac 240
gtgactcata tccaagtggg tgaccgggtc tacggggcac agaacgagat gtgcccacgc 300
accccggatc agggggcatt ctcgcagtac acggtcacgc gaggccgtgt ttgggccaag 360
atccccaagg gcttgtcgtt cgagcaggct gccgcgctac ctgcgggcat cagtaccgct 420
ggattggcga tgaagttgct tgggctgcct ttgccatcgc cttcggcaga ccagccaccc 480
acccactcca agccggtgta tgtgttggtc tatgggggca gtacggccac tgccactgtc 540
actatgcaaa tgctccgcct gtccggatat attccaattg caacatgctc cccccacaat 600
ttcgacctgg ccaaatcgcg cggcgcagag gaggtctttg actatcgggc cccgaatctc 660
gcgcagacga tccgtaccta caccaagaac aatctccgct atgctctcga ctgtatcacc 720
aacgtcgagt ccaccacatt ctgcttcgca gccatcggcc gcgcgggggg gcactacgtc 780
tccctgaacc cgttccctga acacgcggcc acgcgcaaga tggtcacgac cgactggacc 840
ctggggccga ccatctttgg cgagggatca acctggcccg ccccctatgg gcgtcccggc 900
agtgaggaag agcggcagtt cggcgaggat ctgtggcgca tcgcggggca gctcgtcgaa 960
gatggacgcc tcgtccatca tccgttgcgc gtggtgcagg gcggcttcga tcacattaag 1020
caaggcatgg agctcgtccg gaagggagag ctgtcggggg agaaactcgt ggttcggctc 1080
gaggggccgt aa 1092
<210> 3
<211> 771
<212> DNA
<213> Aspergillus terreus (Aspergillus terreus)
<400> 3
atgcgttacc aagcatctcc agcgctggtg aaggcgcctc gagcgcttct ttgcatccat 60
ggggctggct gctctcccgc catcttccgc gtgcaattgt ctaagctccg ggctgcgctg 120
cgcgaaaact ttgaattcgt ctacgtgaca gctccgttcc cttcctctgc agggcctggg 180
attctccccg tcttcgccga cctagggcca tattactcct ggtttgaaag cagcagcgac 240
aacaatcata atggaccctc cgtgagcgaa cgcctcgccg ccgtccacga ccccatccgc 300
cgcaccattg tcgactggca gactcaacac ccccacatcc ctatcgtggg tgctatcggt 360
ttctccgaag gtgccctggt gacgaccttg ctcctctggc agcagcagat gggtcacctg 420
ccctggttgc cccggatgag tgttgcgctg ttgatctgtc cctggtatca agacgaggca 480
agccagtata tgaggaacga agtgatgaag aaccatgacg acgacaacga cagcaaagat 540
accgagtggc aggaggaact ggtcattcgg ataccgacat tacatctgca gggtcgcgat 600
gattttgcgc tcgcaggatc gaagatgctg gtggcgcgcc atttctcccc ccgagaggcg 660
caggtattgg agtttgctgg gcagcatcag tttcccaatc gaccgcgcga cgtgttggag 720
gtcattaatc gttttcgtaa gctgtgtgtg acggcccaga cattggagta g 771
<210> 4
<211> 1035
<212> DNA
<213> Aspergillus terreus (Aspergillus terreus)
<400> 4
atggtgcaag acacatcaag cgcaagcact tcgccaattt taacaagatg gtacatcgac 60
acccgccctc taaccgcctc aacagcagcc cttcctctcc ttgaaaccct ccagcccgct 120
gatcaaatct ccgtccaaaa atactaccat ctgaaggata aacacatgtc tctcgcctct 180
aatctgctca aatacctctt cgtccaccga aactgtcgca tcccctggtc ttcaatcgtg 240
atctctcgaa ccccagatcc gcacagacga ccatgctata ttccaccctc aggctcacag 300
gaagacagct tcaaagacgg atataccggc atcaacgttg agttcaacgt cagccaccaa 360
gcctcaatgg tcgcgatcgc gggaacagct tttactccca atagtggtgg ggacagcaaa 420
ctcaaacccg aagtcggaat tgatattacg tgcgtaaacg agcggcaggg acggaacggg 480
gaagagcgga gcctggaatc gctacgtcaa tatattgata tattctcgga agtgttttcc 540
actgcagaga tggccaatat aaggaggtta gatggagtct catcatcctc actgtctgct 600
gatcgtcttg tggactacgg gtacagactc ttctacactt actgggcgct caaagaggcg 660
tatataaaaa tgactgggga ggccctctta gcaccgtggt tacgggaact ggaattcagt 720
aatgtcgtcg ccccggccgc tgttgcggag agtggggatt cggctgggga tttcggggag 780
ccgtatacgg gtgtcaggac gactttatat aaaaatctcg ttgaggatgt gaggattgaa 840
gttgctgctc tgggcggtga ttacctattt gcaacggctg cgaggggtgg tgggattgga 900
gctagttcta gaccaggagg tggtccagac ggaagtggca tccgaagcca ggatccctgg 960
aggcctttca agaagttaga tatagagcga gatatccagc cctgtgcgac tggggtgtgt 1020
aattgcctat cctaa 1035
<210> 5
<211> 1587
<212> DNA
<213> Aspergillus terreus (Aspergillus terreus)
<400> 5
atgactgtcg acgcgctcac acagccgcac caccttctgt cgctggcttg gaatgacacg 60
cagcaacatg gctcgtggtt tgcgcccttg gtcactacca gtgcggggct actatgcctt 120
cttctttacc tgtgctcgag tggccggaga tctgatctgc cggtgttcaa tccgaaaaca 180
tggtgggaac tgacgaccat gagggccaaa cgggattttg atgcgaatgc accgtcatgg 240
attgagagct ggttctcgca aaatgataag cccattcggt tcatagtcga ctctgggtac 300
tgcaccattc ttccctcctc tatggccgat gagtttcgca agatgaaaga gctctgtatg 360
tacaagttct tgggcacgga ctttcactct catcttcccg gattcgatgg attcaaggaa 420
gtcacgaggg atgcacatct catcaccaag gtggttatga accagttcca gacccaagct 480
cccaagtacg tcaagcctct tgccaatgaa gccagcggga ttatcacgga tatttttggc 540
gacagcaatg aatggcacac agtgcctgtc tataaccagt gtctggactt agtgacccga 600
acagtgactt ttattatggt cgggagcaag ttagcccata atgaggagtg gcttgacatc 660
gccaagcacc acgcggtgac gatggcaatt caagcgcgcc agctgcgcct ctggcccgtc 720
attctgcgcc cccttgtaca ttggctcgag ccccagggag ccaaactccg ggcgcaggtt 780
cgacgagccc ggcaacttct cgatcccatt atccaggagc gacgtgcgga aagagatgcc 840
tgccgggcaa agggcattga gccgcctcgc tacgtagact cgatccagtg gttcgaggat 900
actgccaagg ggaaatggta cgatgcagcc ggggcgcaac tggccatgga ctttgctggt 960
atctacggaa cctccgacct gctgatcggt gggttggtgg acatcgtccg acatccccat 1020
ctccttgagc ccctccgtga tgagatccgg acggtcatcg gccaaggggg ttggacacct 1080
gcctcgctgt acaagctcaa actgctggat agttgtctca aggagtcaca gcgcgtcaag 1140
cccgtcgaat gtgccaccat gcgcagctat gcattgcagg atgtgacttt ctccaatgga 1200
acctttatcc caaaaggaga gctggtggcg gtagctgccg accgcatgag caaccccgag 1260
gtctggccag agccggcaaa atacgatcct taccggtata tgcgcctgcg agaggacccg 1320
gctaaagcgt tcagtgccca actggagaac accaacgggg accacatcgg cttcggttgg 1380
catccacggg cttgccccgg ccggttcttt gcctctaagg agatcaagat gatgttagcc 1440
tacttgctca tacgatacga ctggaaggtg gtccccgacg aaccgttgca gtactaccgc 1500
cattctttca gcgtgcgcat tcatcccacc acgaagctca tgatgcgccg gcgcgacgag 1560
gatatccgcc ttcctggttc actatag 1587
<210> 6
<211> 2088
<212> DNA
<213> Aspergillus terreus (Aspergillus terreus)
<400> 6
atggctcaac tcgacactct cgacctggtg gtcctggtgg tgcttttggt gggtagcgcc 60
gcctacttca ccaagggcac ctactgggcc gttcccaagg acccgtatgc cgcctccggt 120
cccgccatga atggtggcgc caaggcgggc aaatccaggg acatcattga gaaaatggaa 180
gagactggca agaactgtgt gattttctac ggctcgcaga ccggtaccgc cgaggattat 240
gcgtcgcgcc tggccaagga aggctcccag cgtttcggcc tcaagaccat ggtcgcagat 300
ctggaagact acgattatga gaacctggac aagttccccg aggacaaggt tgccttcttc 360
gtcatggcca cctatggtga gggtgaaccc accgacaacg ccgtcgagtt ctaccagttc 420
atctcgggtg aggacgtcgc gttcgagagc ggcgcctctg ccgacgacaa gcccctgtcc 480
tccctcaagt atgtcacttt cggtctcggt aacaacacct atgagcacta tcaggctatg 540
gttcgcaatc tggatgccgc tctcaccaag ctgggtgcgc agcgcattgg agatgctggt 600
gaaggtgatg acggcgctgg caccatggaa gaagatttcc tggcctggaa agagcccatg 660
tggactgccc tgtccgaggc catgaacctt caggagcgcg aagccgtcta tgagccggtg 720
ttctcggtca cggaagatga atccctgtcc cccgaagacg aagccgtcta cctcggtgag 780
ccgaccaagg gtcaccgtga cggcaccccc agtggcccgt attccgctca caaccccttc 840
atcgccccca tcgtcgagtc tcgtgaactg ttcaacgtca aggaccgtaa ttgtctgcac 900
atggagatca gcatcgctgg tagcaacctt tcttaccaga ctggtgatca catcgcgatt 960
tggcccacga acgctggtgc cgaggtggac cggttcctcc aggtgtttgg tcttgagaac 1020
aagcgtcatt ccgtcatcaa catcaagggt atcgatgtga ccgccaaggt tcccattccg 1080
actcccacca cgtatgatgc tgctgttcgc tactatatgg aaattgctgc gcccgtctcc 1140
cgtcagtttg tggctaccct ggctgcgttt gctcccgatg aggagactaa ggcggaaatc 1200
gtgcgtttgg gtagcgacaa ggactacttc cacgagaaaa tcagcaacca gtgcttcacc 1260
atcgctcagg ctcttcagag tgtcacctcc aagcccttct cggctgtccc gttctctctg 1320
cttatcgagg gtctcaataa gctccagccc cgttactact ccatctcttc ctcctccatg 1380
gtccagaagg ataagatcag cattactgcc gtcgtggaat ccactcgctt gcctggtgcc 1440
gcccaccttg tcaagggtgt cacgaccaac tatctccttg ccctgaagca aaagcagaat 1500
ggggatccgt ctcccgaccc tcacggctta acttatacta tcactgggcc ccgtaacaag 1560
tacgacggaa tccacgttcc cgttcacgtc cgccactcca atttcaagct cccctctgat 1620
ccctctcggc ccattatcat ggttggccct ggtaccggtg tggctccctt ccgtggattc 1680
atccaggagc gtgccgcctt ggccgccaag ggtgagaacg tcggtcccac cgtgttgttc 1740
tttggatgcc gcaggcgcga tgaggacttt atgtacgcag atgaattcaa gacctaccag 1800
gaacagcttg gggacaagct tcagatcatt actgcgtttt ctcgtgaaac ttcccagaag 1860
gtgtatgttc agcacagact gcgtgaacac tccgatctgg tgagcagcct cctgaagcag 1920
aaggctaact tttacgtctg cggtgacgcc gccaacatgg cgcgtgaagt caaccttgtg 1980
cttggccaga tcatcgcgca acagcggggt ctcccggctg aacgggccga ggaaatggtg 2040
aagcacatgc gcagcagcgg cagctaccag gaggacgtgt ggtcatga 2088
<210> 7
<211> 3456
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
atgggtgtta agccagttac tttgtatgac gttgctgaat acgctggagt ttcctaccaa 60
actgtctcta gagttgttaa tcaagcttct catgtctccg ctaagactag agagaaggtt 120
gaggctgcta tggctgaatt gaactatatt ccaaatagag ttgctcagca gttggctgga 180
aagcaatctt tgttgattgg agtcgctact tcttctttgg ctttgcatgc tccatctcag 240
attgttgctg ctattaagtc cagagctgac cagttgggag cttctgttgt tgtttctatg 300
gttgagagat ctggagttga ggcttgcaag gctgctgttc ataacttgtt ggctcagaga 360
gtttctggat tgattattaa ttacccattg gacgatcaag acgctattgc cgttgaggcc 420
gcttgtacca acgtcccagc tttgttcttg gacgtttccg atcaaactcc aattaattct 480
attatttttt ctcacgagga tggaactaga ttgggagttg aacacttggt tgctttggga 540
catcaacaga ttgctttgtt ggctggacca ttgtcttccg tttctgctag attgagattg 600
gccggatggc acaagtactt gaccagaaac cagattcaac caattgctga gagagaggga 660
gattggtctg ctatgtctgg attccagcag actatgcaga tgttgaacga aggaattgtc 720
ccaaccgcta tgttggtcgc taatgaccaa atggctttgg gagctatgag agctattact 780
gaatctggat tgagagtcgg agctgacatt tctgttgttg gatatgatga cactgaggat 840
tcttcttgct acattccacc attgactact attaagcaag acttcagatt gttgggacag 900
acttctgttg atagattgtt gcagttgtcc caaggacaag ctgttaaagg aaaccaattg 960
ttgccagttt ctttggttaa gagaaagact actttggctc caaacactca gactgcttcc 1020
ccaagagctt tggctgactc tttgatgcaa ttggctagac aagtctctag attggagtct 1080
ggacaaggtg gcggcggctc tgttaacaac tccatgaagg atttcttagg caagaaaacg 1140
gtggatggag ctgatagtct caatttggcc gtgaatctgc aacaacagca gagttcaaac 1200
acaattgcca atcaatcgct ttcctcaatt ggattggaaa gttttggtta cggctctggt 1260
atcaaaaacg agtttaactt ccaagacttg ataggttcaa actctggcag ttcagatccg 1320
acattttcag tagacgctga cgaggcccaa aaactcgaca tttccaacaa gaacagtcgt 1380
aagagacaga aactaggttt gctgccggtc agcaatgcaa cttcccattt gaacggtttc 1440
aatggaatgt ccaatggaaa gtcacactct ttctcttcac cgtctgggac taatgacgat 1500
gaactaagtg gcttgatgtt caactcacca agcttcaacc ccctcacagt taacgattct 1560
accaacaaca gcaaccacaa tataggtttg tctccgatgt catgcttatt ttctacagtt 1620
caagaagcat ctcaaaaaaa gcatggaaat tccagtagac acttttcata cccatctggg 1680
ccggaggacc tttggttcaa tgagttccaa aaacaggccc tcacagccaa tggagaaaat 1740
gctgtccaac agggagatga tgcttctaag aacaacacag ccattcctaa ggaccagtct 1800
tcgaactcat cgattttcag ttcacgttct agtgcagctt ctagcaactc aggagacgat 1860
attggaagga tgggcccatt ctccaaagga ccagagattg agttcaacta cgattctttt 1920
ttggaatcgt tgaaggcaga gtcaccctct tcttcaaagt acaatctgcc ggaaactttg 1980
aaagagtaca tgacccttag ttcgtctcat ctgaatagtc aacactccga cactttggca 2040
aatggcacta acggtaacta ttctagcacc gtttccaaca acttgagctt aagtttgaac 2100
tccttctctt tctctgacaa gttctcattg agtccaccaa caatcactga cgccgaaaag 2160
ttttcattga tgagaaactt cattgacaac atctcgccat ggtttgacac ttttgacaat 2220
accaaacagt ttggaacaaa aattccagtt ctggccaaaa aatgttcttc attgtactat 2280
gccattctgg ctatatcttc tcgtcaaaga gaaaggataa agaaagagca caatgaaaaa 2340
acattgcaat gctaccaata ctcactacaa cagctcatcc ctactgttca aagctcaaat 2400
aatattgagt acattatcac atgtattctc ctgagtgtgt tccacatcat gtctagtgaa 2460
ccttcaaccc agagggacat cattgtgtca ttggcaaaat acattcaagc atgcaacata 2520
aacggattta catctaatga caaactggaa aagagtattt tctggaacta tgtcaatttg 2580
gatttggcta cttgtgcaat cggtgaagag tcaatggtca ttccttttag ctactgggtt 2640
aaagagacaa ctgactacaa gaccattcaa gatgtgaagc catttttcac caagaagact 2700
agcacgacaa ctgacgatga cttggacgat atgtatgcca tctacatgct gtacattagt 2760
ggtagaatca ttaacctgtt gaactgcaga gatgcgaagc tcaattttga gcccaagtgg 2820
gagtttttgt ggaatgaact caatgaatgg gaattgaaca aacccttgac ctttcaaagt 2880
attgttcagt tcaaggccaa tgacgaatcg cagggcggat caacttttcc aactgttcta 2940
ttctccaact ctcgaagctg ttacagtaac cagctgtatc atatgagcta catcatctta 3000
gtgcagaata aaccacgatt atacaaaatc ccctttacta cagtttctgc ttcaatgtca 3060
tctccatcgg acaacaaagc tgggatgtct gcttccagca cacctgcttc agaccaccac 3120
gcttctggtg atcatttgtc tccaagaagt gtagagccct ctctttcgac aacgttgagc 3180
cctccgccta atgcaaacgg tgcaggtaac aagttccgct ctacgctctg gcatgccaag 3240
cagatctgtg ggatttctat caacaacaac cacaacagca atctagcagc caaagtgaac 3300
tcattgcaac cattgtggca cgctggaaag ctaattagtt ccaagtctga acatacacag 3360
ttgctgaaac tgttgaacaa ccttgagtgt gcaacaggct ggcctatgaa ctggaagggc 3420
aaggagttaa ttgactactg gaatgttgaa gaataa 3456
<210> 8
<211> 214
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
tgtgtggaat tgtgagcgga taacaatttc acacactaac ccctacttga cagcaatata 60
taaacagaag gaagctgccc tgtcttaaac cttttttttt atcatcatta ttagcttact 120
ttcataattg cgactggttc caattgacaa gcttttgatt ttaacgactt ttaacgacaa 180
cttgagaaga tcaaaaaaca actaattatt cgaa 214
<210> 9
<211> 1002
<212> DNA
<213> Pichia pastoris (Pichia pastoris)
<400> 9
tctaacactt tgtatagcac atcgtaccag tttatcaaaa tccaacaagt tttcctctgg 60
gtactgaaat tcgattagta ataaacgggc gcacttggtg atctcctcat cctgttcact 120
agccttcttt tcgcttaact tcatcaacga gatcaactcg agtctgcgag cagagaactg 180
tttccaaaga gtttcatcgc tgaaattcag cttctttcga ataaaatgtg tcactcccac 240
tttattactc gtggtgttat ttgttttcca cgaactagtt gaatcgccat ctttactacc 300
gtcctgggtg acatccggcg aattcgggac aaatgtgctg ttccggtagc ttgtaggaag 360
cggcatccgt agggcaatat acgactatag cttctaaagc gtagtacaat gaaatgttcg 420
aaggaacaac aaacggattt gtttttcgta ggctcaaccc gttgaggtgt aactctttag 480
cgaaagggta agattgattg ttcgaagtag ggcctcaaag ggaaagagaa aaaaaaaata 540
acaccaagag ttacgtaagc atatattttt tacgtaaagc atgattgaat ttcagcagta 600
ttgtttaaca aggctgatgt cgtgtgccaa tcaaaacaaa agagattcgc ataatgccat 660
aattggggtg tgtgggcgcc ccctaaaacg tctttctcat catcatctgc aacccccatc 720
gaacctcatt aaatcacatg acttgtgcga tcctcggtca actcgttccg tgcacccatt 780
ccaccccggg ctgaccaacg caaggttctc cgagagtccg ctaccccaga tttatatcag 840
caaccagtca cctttttccg ggcacgactc tatatgccct ggaaaaccgg agacgatgag 900
cctgactgta aaaggtgaca gaacccccaa ctctggttaa tctcttcaac aaatacttta 960
ttttctttca attcaaagaa cacagtatca agtatatcaa ga 1002
<210> 10
<211> 44
<212> DNA
<213> primers (Primer)
<400> 10
ttaagtgaga ccttcgtttg tgcagatctt gtgtggaatt gtga 44
<210> 11
<211> 40
<212> DNA
<213> primers (Primer)
<400> 11
aagctatggt gtgtggggga tccgcacaaa cgaaggtctc 40
<210> 12
<211> 46
<212> DNA
<213> primers (Primer)
<400> 12
agtgagacct tcgtttgtgc agatcttcat ctaacacttt gtatag 46
<210> 13
<211> 40
<212> DNA
<213> primers (Primer)
<400> 13
cagaagatta agtgagaact agtagttcgt ttgtgcaagc 40
<210> 14
<211> 26
<212> DNA
<213> primers (Primer)
<400> 14
tcagagaaat ttaccatgaa atctcc 26
<210> 15
<211> 26
<212> DNA
<213> primers (Primer)
<400> 15
ggagatttca tggtaaattt ctctga 26
<210> 16
<211> 40
<212> DNA
<213> primers (Primer)
<400> 16
ccacacagag ctccgaataa taactgttat ttttcagtgt 40
<210> 17
<211> 40
<212> DNA
<213> primers (Primer)
<400> 17
taacagttat tattcggagc tctgtgtgga attgtgagcg 40
<210> 18
<211> 46
<212> DNA
<213> primers (Primer)
<400> 18
gcttgcacaa acgaactact agttctcact taatcttctg tactct 46
<210> 19
<211> 45
<212> DNA
<213> primers (Primer)
<400> 19
agtgagacct tcgtttgtgc agatcttttt tgtagaaatg tcttg 45
<210> 20
<211> 1047
<212> DNA
<213> Saccharomyces cerevisiae
<400> 20
atgtctattc cagaaactca aaaagccatt atcttctacg aatccaacgg caagttggag 60
cataaggata tcccagttcc aaagccaaag cccaacgaat tgttaatcaa cgtcaagtac 120
tctggtgtct gccacaccga tttgcacgct tggcatggtg actggccatt gccaactaag 180
ttaccattag ttggtggtca cgaaggtgcc ggtgtcgttg tcggcatggg tgaaaacgtt 240
aagggctgga agatcggtga ctacgccggt atcaaatggt tgaacggttc ttgtatggcc 300
tgtgaatact gtgaattggg taacgaatcc aactgtcctc acgctgactt gtctggttac 360
acccacgacg gttctttcca agaatacgct accgctgacg ctgttcaagc cgctcacatt 420
cctcaaggta ctgacttggc tgaagtcgcg ccaatcttgt gtgctggtat caccgtatac 480
aaggctttga agtctgccaa cttgagagca ggccactggg cggccatttc tggtgctgct 540
ggtggtctag gttctttggc tgttcaatat gctaaggcga tgggttacag agtcttaggt 600
attgatggtg gtccaggaaa ggaagaattg tttacctcgc tcggtggtga agtattcatc 660
gacttcacca aagagaagga cattgttagc gcagtcgtta aggctaccaa cggcggtgcc 720
cacggtatca tcaatgtttc cgtttccgaa gccgctatcg aagcttctac cagatactgt 780
agggcgaacg gtactgttgt cttggttggt ttgccagccg gtgcaaagtg ctcctctgat 840
gtcttcaacc acgttgtcaa gtctatctcc attgtcggct cttacgtggg gaacagagct 900
gataccagag aagccttaga tttctttgcc agaggtctag tcaagtctcc aataaaggta 960
gttggcttat ccagtttacc agaaatttac gaaaagatgg agaagggcca aattgctggt 1020
agatacgttg ttgacacttc taaataa 1047
<210> 21
<211> 2139
<212> DNA
<213> Saccharomyces cerevisiae
<400> 21
atgtcgccct ctgccgtaca atcatcaaaa ctagaagaac agtcaagtga aattgacaag 60
ttgaaagcaa aaatgtccca gtctgccgcc actgcgcagc agaagaagga acatgagtat 120
gaacatttga cttcggtcaa gatcgtgcca caacggccca tctcagatag actgcagccc 180
gcaattgcta cccactattc tccacacttg gacgggttgc aggactatca gcgcttgcac 240
aaggagtcta ttgaagaccc tgctaagttc ttcggttcta aagctaccca atttttaaac 300
tggtctaagc cattcgataa ggtgttcatc ccagacccta aaacgggcag gccctccttc 360
cagaacaatg catggttcct caacggccaa ttaaacgcct gttacaactg tgttgacaga 420
catgccttga agactcctaa caagaaagcc attattttcg aaggtgacga gcctggccaa 480
ggctattcca ttacctacaa ggaactactt gaagaagttt gtcaagtggc acaagtgctg 540
acttactcta tgggcgttcg caagggcgat actgttgccg tgtacatgcc tatggtccca 600
gaagcaatca taaccttgtt ggccatttcc cgtatcggtg ccattcactc cgtagtcttt 660
gccgggtttt cttccaactc cttgagagat cgtatcaacg atggggactc taaagttgtc 720
atcactacag atgaatccaa cagaggtggt aaagtcattg agactaaaag aattgttgat 780
gacgcgctaa gagagacccc aggcgtgaga cacgtcttgg tttatagaaa gaccaacaat 840
ccatctgttg ctttccatgc ccccagagat ttggattggg caacagaaaa gaagaaatac 900
aagacctact atccatgcac acccgttgat tctgaggatc cattattctt gttgtatacg 960
tctggttcta ctggtgcccc caagggtgtt caacattcta ccgcaggtta cttgctggga 1020
gctttgttga ccatgcgcta cacttttgac actcaccaag aagacgtttt cttcacagct 1080
ggagacattg gctggattac aggccacact tatgtggttt atggtccctt actatatggt 1140
tgtgccactt tggtctttga agggactcct gcgtacccaa attactcccg ttattgggat 1200
attattgatg aacacaaagt cacccaattt tatgttgcgc caactgcttt gcgtttgttg 1260
aaaagagctg gtgattccta catcgaaaat cattccttaa aatctttgcg ttgcttgggt 1320
tcggtcggtg agccaattgc tgctgaagtt tgggagtggt actctgaaaa aataggtaaa 1380
aatgaaatcc ccattgtaga cacctactgg caaacagaat ctggttcgca tctggtcacc 1440
ccgctggctg gtggtgttac accaatgaaa ccgggttctg cctcattccc cttcttcggt 1500
attgatgcag ttgttcttga ccctaacact ggtgaagaac ttaacaccag ccacgcagag 1560
ggtgtccttg ccgtcaaagc tgcatggcca tcatttgcaa gaactatttg gaaaaatcat 1620
gataggtatc tagacactta tttgaaccct taccctggct actatttcac tggtgatggt 1680
gctgcaaagg ataaggatgg ttatatctgg attttgggtc gtgtagacga tgtggtgaac 1740
gtctctggtc accgtctgtc taccgctgaa attgaggctg ctattatcga agatccaatt 1800
gtggccgagt gtgctgttgt cggattcaac gatgacttga ctggtcaagc agttgctgca 1860
tttgtggtgt tgaaaaacaa atctagttgg tccaccgcaa cagatgatga attacaagat 1920
atcaagaagc atttggtctt tactgttaga aaagacatcg ggccatttgc cgcaccaaaa 1980
ttgatcattt tagtggatga cttgcccaag acaagatccg gcaaaattat gagacgtatt 2040
ttaagaaaaa tcctagcagg agaaagtgac caactaggcg acgtttctac attgtcaaac 2100
cctggcattg ttagacatcc aattgattcg gtcaagttg 2139
<210> 22
<211> 6648
<212> DNA
<213> Saccharomyces cerevisiae
<400> 22
atgagtagtg ttaaccactc tctccgtcat tcaaagctac cgccgcattt ccttggtctc 60
aactcggttg aagtcgctgc tccctccaag gtcagagact ttgtcaggga ccatggtggc 120
cactcggtca tcacgagagt gctgatcgca aacaacggta tagctgccgt gaaagaaatt 180
cgttccgtca ggaaatgggc gtatgaaacg tttggtaacg atagagccat tcaatttatt 240
gttatggcta ccccagagga tcttgaagct aatgctgaat atattcgaat ggctgaccag 300
tatgtcatgg tcccaggagg aactgcaaac aacaactatg cgaacgtcga cctcattgta 360
gaaatagcag aatctactga tgctcatgct gtttgggctg gttggggttt tgcctccgaa 420
aatccccatt tgcctgagca actggccgct tctcctaaga agattatctt cattggccct 480
ccgggctctg ccatgcgatc tcttggtgac aagatttcct ctactattgt cgcacaacat 540
gctaaagtcc catgtattcc ttggtcagga actggtgtcg atcaggttat aatcgacccc 600
gtaagcaatt tggtttccgt tgatgaagaa acgtacgcca aaggatgctg ttccgatcca 660
caggacggtt tggcaaaagc caaggctatt ggtttccctg tgatgattaa agcttccgaa 720
ggtggtggtg gtaaaggaat tagaaaagtt gacagggagg aagattttct ttctctttat 780
gatcaagctg ctaatgaaat tccaggttcc ccaattttta tcatgaagct tgctggagat 840
gccaggcatt tggaagttca attacttgct gatcaatatg gaaccaacat ctcccttttt 900
ggaagagatt gttccgttca aagaagacac caaaagatca tagaagaggc accagttacc 960
attgccaaac aagacacttt caggcaaatg gaacaagccg ctgtcagact gggtcaattg 1020
gttggatacg tttctgccgg taccgttgag tatctatatt cacacgctga ggacaagttc 1080
tacttcttgg aactgaaccc tcgtcttcaa gttgagcatc caaccacaga aatggccaca 1140
ggtgtcaatc ttccagttgc ccagttgcta attgcaatgg gtattccttt gaatagaatc 1200
agagatatca gggtacttta cggacttgaa ccaaatggcg ctacagaaat tgactttgaa 1260
ttcaaaactg aagaaagctt gaagagtcaa agaaaaccca ttccaaaggg tcacactatt 1320
gcatgtcgta tcacatctga agatcctggt gaaggtttta agccttctgg tggtgctcta 1380
tatgagctaa atttcagatc ttcttctagc gtttggggtt acttcagtgt aggaaacaaa 1440
tcctcaattc attctttcag tgactctcaa tttggtcata tattctcgtt tggcgaaaac 1500
cgtcaaatcg ccagaaaaaa tatggtcgtc gccttgaaag agctttctat tcgtggtgac 1560
tttagaacta caattgagta cttaataaaa ctgttggaaa cagctgattt cgagaacaac 1620
accatcacta ctggttggtt ggacgaactg atctcgaaga agctgactgc tgaaagacct 1680
gatgaaacca cagcaatttt atgtggtgct gaaaaaggtc aaatcccagg caaagaactt 1740
cttcgtacta ttttcccaat tgaatttatt tatgaaggaa agaagtacaa gtttactgtg 1800
gttcaggctg catttgacaa atacaacgtc tttgtcaacg gatgtatgat tactgtaagt 1860
gtaacccatt tgaaggatgg cagtttattg gtagcacttg atggtaaatc ccattctgtc 1920
tattacttgc aggaagaagt cggaaatact aggttgtcgg tggatggtaa atcttgcatt 1980
ttagaagttg agcatgagcc aactgaactt cgtactccat ctccaggtaa acttatcaaa 2040
tatcttgtgg aacacggtga tcacgtcaaa attggacaac cttacgctga agttgaagta 2100
atgaagatgt gtatgccttt ggtcagtcag gagaatggaa ctatcaggtt attgaagcag 2160
ccaggatctt cggttgccgc tggagacatc cttgctattc ttgcattgga tgatcccagc 2220
aaggtgaagc atgctttgcc attcgatggt acaatccctg atatgaaaca gccatttatc 2280
catagcaaca aaccagttta taagttcatt tctcttctct ccgtgctgaa aaacatttta 2340
gcagggtatg ataatcaagt tgtgatgaac gatactctgc agagtctatt ggatgtgttg 2400
aagaaccctg aacttcctta ttcggaatgg aatcattcga tatctgcact tcattcaagg 2460
ttaccaattc atttggacga acaattgacc agtttgattg agagatcgca tcaacgtggt 2520
gcagactttc cagctaagca cttgctcaag cttttggaca aggagcaggc tgttaatcct 2580
gatccacttt tctcccaggt cattgcgcct cttactgctg ttgccaaaag ctacgaacat 2640
ggacttgaag ttcatgaaca caatgtattc gccgatttga tcacccaata ctacgacata 2700
gagagcttgt ttgccgataa aagggaggaa gatgttattt tacagctacg tgatgagaac 2760
aaatcgtccc ttgacaaggt catcgatgtc gtcttgtcac attccagagt tggagctaag 2820
aaccatttaa tcagagctat tctggaaatt tatcaaacta tctgccaaaa tgatctccaa 2880
gctgcaacca ttttgaagaa acctttgaaa aagattgttg agctagattc tagatttaca 2940
gcaaaggttt cgttaaaagc tagagagatt ttgattcaat gttcccttcc ctctatcaaa 3000
gaacgttcag accagctcga gcatatcctt cgatcttcag ttgtacaaac tcagtacgga 3060
gagagcttca atggaaacta caaactgcct aacttggacg ttatacaaga cgtaattgat 3120
tccaagtaca ttgtattcga tgttttgaca caatttgttg ttagcccaaa caagtatata 3180
tttgcagcag cagccgaggt gtatctgcga agagcttaca gggcttactc ggtgagagaa 3240
gttaaacatc atttcgtagg tgattctgct ctcccaattg tggaatggaa gttccaattg 3300
ccgctgttat caacagctgc ttacaattcc gtgcctgaag ctatgagaaa ctcctccagt 3360
aaccgatcct ctatttcaat ggatagagca gttgctgtct ccgatttgac cttcatgatc 3420
aacaagaatg attctcaacc tttgagaaca ggtatcataa ttcccacaaa ccacttagat 3480
gacattgagg agtccttgtc atctgccatt gatgtcttcc ctaaacgtcc acgtaacaat 3540
ggaccagctc ctgacagaac taatgtggct cctgagcaac ctactaacgt atgcaatgtt 3600
ttcattgcca atgtttctgg ctacaacagt gaggctgaga tcgttgacaa gattagcagc 3660
gttctttctg agttgaaaga cgacctcagg gctagtggcg ttcgaagagt tacctttgtc 3720
ttgggagaca aggttggaac ttatccaaaa tactatacct tcaaatttcc agactatttt 3780
gaagacgaga caatccgtca catagagcct gctcttgcgt tccagctgga actaagaaga 3840
ttgtccaatt tcaatattaa acctgttcca actgagaata gaaatattca tgtgtatgag 3900
gcagttgcca aaaatacttc atgcattgac aggagatttt ttactagggg tatcatcaga 3960
acaagcagaa tcagagagga tgtgactatc tctgaatacc ttatcagcga agctaatcgt 4020
cttatgagtg acattttgga cgctcttgag attattgata cctccaacac tgatttgaac 4080
catatattca tcaatttctc tgctgttttc aatgtcacgc cagatgacgt tgaagcagcg 4140
ttcggtggtt tcttagaaag gtttggacgt aggctgtgga gactacgtgt ttctgctgct 4200
gaaatccgta ttatgtgcac ggaccctgag actggtatcc cattcccact tcgtgcttta 4260
attaacaacg tttcaggata cgttgtgaaa tctgaaatgt atcaagaggt gaaaaatgat 4320
catggggaat gggttttcaa aagtcttggt cctacaccag gttcaatgca ccttagacca 4380
atttcaacac catacccaac caaagaatgg cttcaaccaa aacgttacaa agctcatctt 4440
atgggtacta cttacgtgta tgatttccct gaattattcc gtcaagctac gctctcccaa 4500
tggaaaaaat actctcctac tgcgagagtt ccttctgatg tgtttgtggc caatgaattg 4560
atcgtcgatg attcaggtga actaactgaa gtaagcagag aacccggcgc caacgttgtg 4620
ggtatggtgg ccttcaaggt aaccgcaaaa actcctgagt atccacgcgg tcgccatttc 4680
atcataattg ctaatgatat caccttcaag atcggatcct ttggccctca agaagatgaa 4740
tatttcaaca aggccacaca acttgcaaga aaattgggca ttcctcgaat ttatctgtca 4800
gccaactcgg gtgctagaat tggagttgct gaagaacttc ttccattatt caaagtagcc 4860
tggaaggaag aaggtaaacc aagcaaggga tttgaatact tatacctcac atcggaagat 4920
cttactctat tggaaaagtc cggaaagtct aacagcgtta ccactcaaag aatagttgaa 4980
gaaggcgaag aacgccacgt tataactgcc atcattggag ctagtgatgg actgggtgtt 5040
gaatgtctaa gaggttccgg tttgatcgct ggtgctacat ctcgggcgta caaggacatc 5100
ttcactatca cattggtcac ctgtagatct gttggtattg gtgcttactt ggtcagattg 5160
ggtcaacgag ccattcaaat tgaaggacaa ccaataattt tgactggtgc ccctgctatt 5220
aataagttgt tgggtaggga agtgtactct tccaacctgc aacttggtgg tacccagatt 5280
atgtacaaga acggtgtttc acacttaacc gccaatgatg atctcgcagg tgtcgaaaag 5340
attatggatt ggttagctta tgtgcctgct aagagaaaca tgcctgttcc tattttagaa 5400
tcacttcatg acaaatggga cagagatgtg gactataagc ctacaagaaa tgagccgtac 5460
gacgtcagat ggatgatcag tggacgtgaa actcctgatg gtgagttcga atctggattg 5520
tttgactctg ggtccttcac tgaaactttg agtggatggg ctaaaggtgt agtcgtcgga 5580
agagcccgtt taggtggtat tcctatggga gtcattggtg ttgaaactag agtcacagaa 5640
aacctgattc cagctgatcc cgccaatcca gactcaaccg aaatgatgat tcaagaagct 5700
ggtcaagtct ggtaccctaa cagtgccttc aagactgcac aagctatcaa cgatttcaac 5760
aatggtgaac agctaccctt gatgattttg gccaactgga gaggtttctc tggtggtcaa 5820
agagacatgt acaatgaagt tttgaaatac ggttctttca ttgtggatgc tttagtcgac 5880
ttcaagcagc ctatcttcac ttacattcct cccactgctg agttgagagg tggatcttgg 5940
gttgttgtag accctaccat caatgaagac atgatggaaa tgtatgcaga cgtcgaatca 6000
agagcaggtg ttttggaacc agaaggtatg gtaggtatca aataccgtaa ggacaaactc 6060
cttgctacta tggaacgatt ggatgccaaa tatgctgagc ttaaatccaa ggttagcgat 6120
actagtcttt cagaaaagga tgtttccgag atcaagaaac aaattgagca gagagagaag 6180
caattgttgc caatttatgc acaaatctct attcaatttg ctgatcttca tgacagatct 6240
ggtcgtatgt tggccaaggg tgtcattaaa aaggaactgg aatgggttaa ttctcgtcgt 6300
ttcttcttct ggagagtccg tcgtcgtttg aacgaggaat acctcattaa gcgtattacc 6360
gaattcctat ctgcttctgc taccagattg gacaagatct cgaggatcaa ttcttggttg 6420
ccaacatcga ttgatttgga agatgaccag aaggttgcca tttggttgga agaaaaccgt 6480
aaagctcttg acgccaatat caaggagctc agggctgagc atgttagaag aactctggct 6540
actcttgtca gaactgatat ggatactact tccaagagtt tggctgaatt gatcaacctt 6600
cttcctgaaa ccgaaaagga atcaatttta tctaagatca agtcatga 6648

Claims (14)

1. A method for heterologous production of dihydromonacolin L comprising:
(1) providing engineering yeast bacteria, and using a promoter to drive and express the following exogenous genes:lovB,lovC,lovG,npgA(ii) a And driving the expression of the transcription activator by an ethanol inducible promoterutaSaidutaThe nucleotide sequence of (A) is shown as SEQ ID NO. 7; with P AOX1R As a drivelovB,lovC,lovG,npgAPromoter of expression, P AOX1R The nucleotide sequence of (A) is shown as SEQ ID NO. 8; the yeast is pichia pastoris;
(2) and (2) culturing the yeast engineering bacteria in the step (1) by taking ethanol as a carbon source, a precursor and/or an inducer, thereby generating a product, namely the dihydromonacolin L.
2. A method for heterologous production of monacolin J comprising:
(a) providing engineering yeast bacteria, and using a promoter to drive and express the following exogenous genes:lovB,lovC,lovG,npgA(ii) a And driving the expression of the transcription activator by an ethanol inducible promoterutaSaidutaThe nucleotide sequence of (A) is shown as SEQ ID NO. 7; the yeast is pichia pastoris; with P AOX1R As a drivelovB,lovC,lovG,npgAPromoter of expression, P AOX1R The nucleotide sequence of (A) is shown as SEQ ID NO. 8;
(b) providing engineering yeast bacteria, and using a promoter to drive and express the following exogenous genes:lovA,cpr(ii) a And driving the expression of the transcription activator by an ethanol inducible promoteruta
(c) And (b) culturing the mixed bacteria of the engineering yeast bacteria in the step (a) and the step (b) by using ethanol as a carbon source, a precursor and/or an inducer, thereby generating the product monacolin J.
3. The method of claim 1 or 2, wherein the engineered yeast strain of (1) or (a) further expresses exogenous alcohol dehydrogenase ADH, acetyl-coa synthetase ACS and acetyl-coa decarboxylase ACC.
4. The method of claim 1 or 2, wherein in (1) or (a) or (b), P is ICL1 Is an ethanol inducible promoter.
5. The method according to claim 2, wherein the ratio of the bacteria (a) to the bacteria (b) in the mixture of the engineered yeast bacteria (a) and (b) in (c) is 1: 0.1-1.
6. The method according to claim 5, wherein the ratio of the bacteria (a) to the bacteria (b) is 1:0.2 to 0.5.
7. The method of claim 1 or 2, wherein in step (2) or (c), the culture is performed in a yeast basic nitrogen source medium to which ethanol is added, and the feeding is performed using glucose as a carbon source in the early stage of fermentation; and after the wet weight of the thalli reaches 200-400 g/L, switching a carbon source to ethanol for feeding.
8. The yeast engineering bacteria for producing the dihydromonacolin L is characterized by comprising the following exogenous genes driven by a promoter to express:lovB,lovC,lovG,npgAand a transcription activator expressed by an alcohol-inducible promoterutaSaidutaThe nucleotide sequence of (A) is shown as SEQ ID NO. 7; with P AOX1R As a drivelovB,lovC,lovG,npgAPromoter of expression, P AOX1R The nucleotide sequence of (A) is shown as SEQ ID NO. 8; the yeast is pichia pastoris.
9. The engineered yeast strain for producing dihydromonacolin L according to claim 8, further comprising the genes encoding exogenous alcohol dehydrogenase ADH, acetyl-CoA synthetase ACS and acetyl-CoA decarboxylase ACC.
10. The yeast engineering bacteria for producing monacolin J is characterized by comprising the following exogenous genes expressed by a promoter:lovA,cpr(ii) a And a transcriptional activator expressed by an ethanol-inducible promoterutaSaidutaThe nucleotide sequence of (A) is shown as SEQ ID NO. 7; with P AOX1R As a drivelovA,cprPromoter of expression, P AOX1R The nucleotide sequence of (A) is shown as SEQ ID NO. 8; the yeast is pichia pastoris.
11. Use of the engineered yeast strain of any one of claims 8 to 10 for the production of dihydromonacolin L or monacolin J using ethanol as a carbon source, precursor and/or inducer.
12. A kit for producing monacolin J or an intermediate thereof, wherein the kit comprises the engineered yeast strain of any one of claims 8 to 10.
13. A kit for producing monacolin J or an intermediate thereof, comprising a construct comprising a promoter and the following genes:lovBlovClovGnpgAtranscriptional activator expressed by ethanol-inducible promoteruta(ii) a And/or another construct comprising a promoter and a gene of the group consisting of:lovAcpra transcriptional activator uta expressed from an ethanol inducible promoter; the nucleotide sequence of uta is shown as SEQ ID NO. 7; with PAOX1RAs a drivelovB、lovClovG、npgA、lovAcprPromoter of expression, PAOX1RThe nucleotide sequence of (A) is shown as SEQ ID NO. 8.
14. The kit of claim 12 or 13, further comprising a culture medium comprising ethanol as a carbon source, precursor and/or inducer.
CN201810857983.9A 2018-07-31 2018-07-31 Method for heterologous production of monacolin J and application Active CN108913732B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810857983.9A CN108913732B (en) 2018-07-31 2018-07-31 Method for heterologous production of monacolin J and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810857983.9A CN108913732B (en) 2018-07-31 2018-07-31 Method for heterologous production of monacolin J and application

Publications (2)

Publication Number Publication Date
CN108913732A CN108913732A (en) 2018-11-30
CN108913732B true CN108913732B (en) 2022-02-08

Family

ID=64393272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810857983.9A Active CN108913732B (en) 2018-07-31 2018-07-31 Method for heterologous production of monacolin J and application

Country Status (1)

Country Link
CN (1) CN108913732B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322998A (en) * 2021-09-16 2022-11-11 华东理工大学 Construction method and application of artificial transcriber device library

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000037629A2 (en) * 1998-12-18 2000-06-29 Wisconsin Alumni Research Foundation Method of producing antihypercholesterolemic agents
CN1422334A (en) * 2000-03-22 2003-06-04 罗姆和哈斯公司 Ecdysone receptor-based inducible gene expression system
CN102757976A (en) * 2012-07-12 2012-10-31 华东理工大学 Method for eliminating dependence of methanol-induced promoter on single methanol carbon source
CN103827290A (en) * 2011-05-20 2014-05-28 奥尔德生物控股有限责任公司 High-purity production of multi-subunit proteins such as antibodies in transformed microbes such as pichia pastoris
WO2016139279A1 (en) * 2015-03-03 2016-09-09 Sandoz Ag Constitutive yeast LLP promoter-based expression system
CN106701857A (en) * 2015-09-01 2017-05-24 华东理工大学 Construction and application of gene engineering bacterium for producing lovastatin and monacolin J
CN107614516A (en) * 2015-05-11 2018-01-19 非凡食品有限公司 Expression construct and method for genetic engineering transformation methylotrophic yeast
CN107881141A (en) * 2017-12-22 2018-04-06 吕玲 A kind of Monascus Strains culture medium for being used to improve not nanogram forest products amount

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10150968B2 (en) * 2011-08-19 2018-12-11 Alderbio Holdings Llc Multi-copy strategy for high-titer and high-purity production of multi-subunit proteins such as antibodies in transformed microbes such as Pichia pastoris
US20150315621A1 (en) * 2014-04-30 2015-11-05 The Regents Of The University Of California One-pot fermentation process for simvastatin production

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000037629A2 (en) * 1998-12-18 2000-06-29 Wisconsin Alumni Research Foundation Method of producing antihypercholesterolemic agents
CN1422334A (en) * 2000-03-22 2003-06-04 罗姆和哈斯公司 Ecdysone receptor-based inducible gene expression system
CN103827290A (en) * 2011-05-20 2014-05-28 奥尔德生物控股有限责任公司 High-purity production of multi-subunit proteins such as antibodies in transformed microbes such as pichia pastoris
CN102757976A (en) * 2012-07-12 2012-10-31 华东理工大学 Method for eliminating dependence of methanol-induced promoter on single methanol carbon source
WO2016139279A1 (en) * 2015-03-03 2016-09-09 Sandoz Ag Constitutive yeast LLP promoter-based expression system
CN107614516A (en) * 2015-05-11 2018-01-19 非凡食品有限公司 Expression construct and method for genetic engineering transformation methylotrophic yeast
CN106701857A (en) * 2015-09-01 2017-05-24 华东理工大学 Construction and application of gene engineering bacterium for producing lovastatin and monacolin J
CN107881141A (en) * 2017-12-22 2018-04-06 吕玲 A kind of Monascus Strains culture medium for being used to improve not nanogram forest products amount

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Engineered ethanol-driven biosynthetic system for improving production of acetyl-CoA derived drugs in Crabtree-negative yeast;Yiqi Liu等;《Metabolic Engineering》;20190509;第54卷;275-284 *
Engineered monoculture and co-culture of methylotrophic yeast for de novo production of monacolin J and lovastatin from methanol;Yiqi Liu等;《Metabolic Engineering》;20171216;第45卷;189-199 *
Mit1 Transcription Factor Mediates Methanol Signaling and Regulates the Alcohol Oxidase 1 (AOX1) Promoter in Pichia pastoris;XiaolongWang等;《JOURNAL OF BIOLOGICAL CHEMISTRY》;20160318;第291卷(第12期);6245-6261 *
The ICL1 gene of Pichia pastoris, transcriptional regulation and use of its promoter;Javier Menendez等;《Yeast Sequencing Report》;20030904;第20卷(第13期);1097-1108 *
基于甲醇/乙醇底物的洛伐他汀及莫纳可林J异源生物合成;刘一奇;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20180815(第8期);B016-34 *
毕赤酵母AOX1启动子转录调控机制研究;王小龙;《中国博士学位论文全文数据库 基础科学辑》;20160815(第8期);A006-158 *
洛伐他汀合成途径的多细胞异源组装及优化;屠肖虎;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20180815(第8期);B016-179 *

Also Published As

Publication number Publication date
CN108913732A (en) 2018-11-30

Similar Documents

Publication Publication Date Title
CN108949601B (en) Recombinant saccharomyces cerevisiae for producing dammarenediol and protopanoxadiol by using xylose and construction method
CN114480240B (en) Genetic engineering bacterium for producing fucosyllactose and production method thereof
JP4124270B1 (en) Glucose / Mannose / Xylose Parallel Fermentative Bacteria and Method for Producing Bioethanol Using the Same
CN113564193B (en) Microorganism gene expression fate community and construction method and application thereof
CN114058525A (en) High-yield squalene genetic engineering bacterium and construction method and application thereof
CN111088175A (en) Yarrowia lipolytica for producing bisabolene and construction method and application thereof
CN112375723B (en) Engineering bacteria for producing maleic acid and construction method and application thereof
CN108913732B (en) Method for heterologous production of monacolin J and application
CN115058374B (en) Recombinant zymomonas mobilis for synthesizing acetoin by utilizing pyruvic acid as well as construction method and application thereof
CN114806991B (en) Engineering escherichia coli for improving fucosyllactose yield and production method thereof
KR102472270B1 (en) Development of novel methanotroph that co-assimilate methane and xylose, and producing shinorine using itself
CN115873836A (en) Nerolidol synthetase and application thereof
CN108424859B (en) Construction and application of gene engineering bacteria for producing citicoline
CN114672525A (en) Biosynthesis method and application of N-acetyl-5-methoxytryptamine
CN115125180B (en) Recombinant zymomonas mobilis for producing acetoin by double ways and construction method and application thereof
CN114874961B (en) Recombinant zymomonas mobilis for synthesizing acetoin by using acetaldehyde, and construction method and application thereof
CN114717250B (en) Method for improving cordycepin yield by modifying cordycepin based on cofactor metabolic engineering strategy and application
CN115058350B (en) Method for improving S-adenosylmethionine yield by introducing potassium ion transporter
CN114606146B (en) Yeast for producing D-limonene and application thereof
WO2023108505A1 (en) Method for improving sam cofactor supply of saccharomyces cerevisiae, engineered yeast and use thereof
CN117511831A (en) Construction method of ergothioneine-producing escherichia coli
CN115322998A (en) Construction method and application of artificial transcriber device library
CN116751698A (en) Genetically engineered bacterium for producing 7-dehydrocholesterol and construction method and application thereof
CN116769760A (en) Complex enzyme, engineering strain, biological material and application for producing resveratrol
CN117535163A (en) Saccharomyces rouxii engineering bacteria for high yield of D-arabitol, construction method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant