CN108911286A - 一种3,4-二氯苯胺废水处理技术 - Google Patents

一种3,4-二氯苯胺废水处理技术 Download PDF

Info

Publication number
CN108911286A
CN108911286A CN201810792564.1A CN201810792564A CN108911286A CN 108911286 A CN108911286 A CN 108911286A CN 201810792564 A CN201810792564 A CN 201810792564A CN 108911286 A CN108911286 A CN 108911286A
Authority
CN
China
Prior art keywords
dca
processing technology
temperature
wastewater processing
afforestation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810792564.1A
Other languages
English (en)
Inventor
张玉吉
张金河
郑均贞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201810792564.1A priority Critical patent/CN108911286A/zh
Publication of CN108911286A publication Critical patent/CN108911286A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4608Treatment of water, waste water, or sewage by electrochemical methods using electrical discharges
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Water Treatments (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种3,4‑二氯苯胺废水处理技术,包括以下步骤:1)园林绿化废弃物预处理;2)超声波微波组合处理;3)制备园林绿化废弃物纤维;4)纤维活化;5)真空浸渍;6)水体处理;7)后处理。本发明的工艺简单,通过园林绿化废弃物和二氧化钛气凝胶制备的处理剂协同介质阻挡放电进行处理3,4‑二氯苯胺废水水体,无需加入大量化学药剂,污染较少,避免了二次污染,可用于解决3,4‑二氯苯胺废水处理问题,有效了减少对人体和环境的危害,具有广阔的市场前景。

Description

一种3,4-二氯苯胺废水处理技术
技术领域
本发明涉及废水处理技术领域,具体是一种3,4-二氯苯胺废水处理技术。
背景技术
3,4-二氯苯胺是一种常用的化工原料,广泛应用于医药、染料、农药中间体中,常常用于合成利谷隆、敌草隆、灭草灵等除草剂及偶氮染料。3,4-二氯苯胺属于苯胺的衍生物,一般通过在苯胺液体中通入适量的液体氯气在一定的温度和压力下在反应锅反应制备而成。3,4-二氯苯胺对中枢神经系统、肝、肾有损害,容易引起头痛,头晕,恶心,呕吐、呼吸困难等症状,同时,由于3,4-二氯苯胺在土壤环境中相对较稳定,流入水体环境中对水生生物的生长、发育和繁殖会构成危害,进而破坏水生态系统。因此,需要对3,4-二氯苯胺废水进行处理,目前常见的3,4-二氯苯胺废水处理方法为化学氧化法,由于需要投加大量的化学药剂,容易造成二次污染。因此,需要设计一种污染较少的3,4-二氯苯胺废水处理技术,用于解决3,4-二氯苯胺废水处理问题。
发明内容
本发明的目的在于提供一种3,4-二氯苯胺废水处理技术,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种3,4-二氯苯胺废水处理技术,其特征在于,它包括以下步骤:
1)园林绿化废弃物预处理:称取适量的园林绿化废弃物进行干燥处理使其含水率小于20%,然后粉碎至40-100目,加入10-18倍重量的浓度为0.01-0.06mol/L的醋酸溶液混合均匀,静置10-20min,得混合料A;
2)超声波微波组合处理:将步骤1)中得到的混合料A送入超声波微波组合反应仪中,在60-80℃条件下处理20-40min,高速离心过滤,用去离子水洗涤8-12次后进行真空干燥,得粉末B;
3)制备园林绿化废弃物纤维:将步骤2)中得到的粉末B粉碎至100-200目后加入0.2-2倍重量的水,引入霉菌进行自然发酵处理,发酵完成后进行负压过滤,然后送入盘磨机进行磨浆处理,磨浆完成后进行低温真空干燥,得园林绿化废弃物纤维;
4)纤维活化:将步骤3)中得到的园林绿化废弃物纤维中加入0.01-0.07倍重量的沥青,混合均匀后进行高温活化,然后粉碎至20-80目,得混合料C;通过高温活化从而改变材料的物化特性,有利于提高对3,4-二氯苯胺废水进行吸附和催化的效率;
5)真空浸渍:将步骤4)中得到的混合料C置于真空罐中,抽真空至0.05MPa,向真空罐内加入二氧化钛气凝胶,继续抽真空10-20min后将真空罐缓慢升压至1.4MPa,稳压10-18min,随后将真空罐内压力降至常压,在常温条件下老化12-24h,得处理剂D;
6)水体处理:将低压电极和外部包覆有介质玻璃的高压电极共同放入待处理的3,4-二氯苯胺废水水体中,加入步骤5)中得到的处理剂D并持续通入空气,通过介质阻挡放电进行处理水体;其中,所述低压电极与水体接触共同形成接地极,所述高压电极与电源相连,且通过介质玻璃与水体隔开,高压电极与介质玻璃之间通入空气形成介质阻挡放电,对水体进行处理;通过园林绿化废弃物和二氧化钛气凝胶制备的处理剂协同介质阻挡放电进行处理3,4-二氯苯胺废水水体,无需加入大量化学药剂,污染较少,避免了二次污染;
7)后处理:将步骤6)中处理后的水体的pH值调节至9-13,然后曝气4h-8h,完成水处理,其中,所述曝气的曝气量为5L/min-7L/min。
作为本发明进一步的方案:步骤2)中,所述超声波微波组合反应仪的处理条件为超声波频率为45kHz,超声功率为25-65W,微波频率为2000MHz,微波功率为25-65W。
作为本发明再进一步的方案:步骤3)中,所述霉菌为黑曲霉、黄曲霉、华根霉、米曲霉、青霉中的一种或多种的组合;所述自然发酵的温度为20-30℃,时间为10-28天。
作为本发明再进一步的方案:步骤4)中,所述高温活化的方法为在真空条件下按照3℃/min的升温速率升温至450℃,保温40-80min,然后通入氢气,按照2℃/min的升温速率升温至850℃,保温1-3h。
作为本发明再进一步的方案:步骤5)中,所述二氧化钛气凝胶与混合料C的体积比为3:1。
作为本发明再进一步的方案:步骤6)中,所述介质阻挡放电的放电功率为50-110W,放电时间为6-10min;所述空气的通入量为2L/min;所述处理剂D的加入量为0.5g/L。
所述的3,4-二氯苯胺废水处理技术在废水处理中的应用。
与现有技术相比,本发明的有益效果是:
本发明的工艺简单,通过园林绿化废弃物和二氧化钛气凝胶制备的处理剂协同介质阻挡放电进行处理3,4-二氯苯胺废水水体,无需加入大量化学药剂,污染较少,避免了二次污染,可用于解决3,4-二氯苯胺废水处理问题,有效了减少对人体和环境的危害,具有广阔的市场前景。
具体实施方式
下面结合具体实施方式对本发明的技术方案作进一步详细地说明。
实施例1
一种3,4-二氯苯胺废水处理技术,其特征在于,它包括以下步骤:
1)园林绿化废弃物预处理:称取适量的园林绿化废弃物进行干燥处理使其含水率为12%,然后粉碎至80目,加入12倍重量的浓度为0.02mol/L的醋酸溶液混合均匀,静置15min,得混合料A;
2)超声波微波组合处理:将步骤1)中得到的混合料A送入超声波微波组合反应仪中,在70℃条件下处理20min,高速离心过滤,用去离子水洗涤10次后进行真空干燥,得粉末B;其中,所述超声波微波组合反应仪的处理条件为超声波频率为45kHz,超声功率为25W,微波频率为2000MHz,微波功率为25W;
3)制备园林绿化废弃物纤维:将步骤2)中得到的粉末B粉碎至150目后加入0.7倍重量的水,引入霉菌进行自然发酵处理,发酵完成后进行负压过滤,然后送入盘磨机进行磨浆处理,磨浆完成后进行低温真空干燥,得园林绿化废弃物纤维;所述霉菌为黑曲霉;所述自然发酵的温度为27℃,时间为18天;
4)纤维活化:将步骤3)中得到的园林绿化废弃物纤维中加入0.02倍重量的沥青,混合均匀后进行高温活化,然后粉碎至60目,得混合料C;通过高温活化从而改变材料的物化特性,使其表面产生纳米级的孔径,增加比表面积,与被吸附物的接触面积大,且可以均匀接触与吸附,使吸附材料得以充分利用,对于吸附小分子物质吸附速率快,吸附速度高,有利于提高对3,4-二氯苯胺废水进行吸附和催化的效率;所述高温活化的方法为在真空条件下按照3℃/min的升温速率升温至450℃,保温60min,然后通入氢气,按照2℃/min的升温速率升温至850℃,保温2h;
5)真空浸渍:将步骤4)中得到的混合料C置于真空罐中,抽真空至0.05MPa,向真空罐内加入二氧化钛气凝胶,继续抽真空15min后将真空罐缓慢升压至1.4MPa,稳压13min,随后将真空罐内压力降至常压,在常温条件下老化17h,得处理剂D;所述二氧化钛气凝胶与混合料C的体积比为3:1;所述二氧化钛气凝胶为以离子液体([C6mim]Br)为辅助采用溶胶凝胶法制备而成,具体参考王宁宁的《改性二氧化钛气凝胶的制备及光催化性能研究》;
6)水体处理:将低压电极和外部包覆有介质玻璃的高压电极共同放入待处理的3,4-二氯苯胺废水水体中,加入步骤5)中得到的处理剂D并持续通入空气,通过介质阻挡放电进行处理水体;其中,所述低压电极与水体接触共同形成接地极,所述高压电极与电源相连,且通过介质玻璃与水体隔开,高压电极与介质玻璃之间通入空气形成介质阻挡放电,对水体进行处理;所述介质阻挡放电的放电功率为80W,放电时间为8min;所述空气的通入量为2L/min;所述处理剂D的加入量为0.5g/L;
7)后处理:将步骤6)中处理后的水体的pH值调节至11,然后曝气6h,完成水处理,其中,所述曝气的曝气量为6L/min。
实施例2
一种3,4-二氯苯胺废水处理技术,其特征在于,它包括以下步骤:
1)园林绿化废弃物预处理:称取适量的园林绿化废弃物进行干燥处理使其含水率为12%,然后粉碎至80目,加入12倍重量的浓度为0.02mol/L的醋酸溶液混合均匀,静置15min,得混合料A;
2)超声波微波组合处理:将步骤1)中得到的混合料A送入超声波微波组合反应仪中,在70℃条件下处理40min,高速离心过滤,用去离子水洗涤10次后进行真空干燥,得粉末B;其中,所述超声波微波组合反应仪的处理条件为超声波频率为45kHz,超声功率为65W,微波频率为2000MHz,微波功率为65W;
3)制备园林绿化废弃物纤维:将步骤2)中得到的粉末B粉碎至150目后加入0.7倍重量的水,引入霉菌进行自然发酵处理,发酵完成后进行负压过滤,然后送入盘磨机进行磨浆处理,磨浆完成后进行低温真空干燥,得园林绿化废弃物纤维;所述霉菌为黑曲霉;所述自然发酵的温度为27℃,时间为18天;
4)纤维活化:将步骤3)中得到的园林绿化废弃物纤维中加入0.02倍重量的沥青,混合均匀后进行高温活化,然后粉碎至60目,得混合料C;通过高温活化从而改变材料的物化特性,使其表面产生纳米级的孔径,增加比表面积,与被吸附物的接触面积大,且可以均匀接触与吸附,使吸附材料得以充分利用,对于吸附小分子物质吸附速率快,吸附速度高,有利于提高对3,4-二氯苯胺废水进行吸附和催化的效率;所述高温活化的方法为在真空条件下按照3℃/min的升温速率升温至450℃,保温60min,然后通入氢气,按照2℃/min的升温速率升温至850℃,保温2h;
5)真空浸渍:将步骤4)中得到的混合料C置于真空罐中,抽真空至0.05MPa,向真空罐内加入二氧化钛气凝胶,继续抽真空15min后将真空罐缓慢升压至1.4MPa,稳压13min,随后将真空罐内压力降至常压,在常温条件下老化17h,得处理剂D;所述二氧化钛气凝胶与混合料C的体积比为3:1;所述二氧化钛气凝胶为以离子液体([C6mim]Br)为辅助采用溶胶凝胶法制备而成,具体参考王宁宁的《改性二氧化钛气凝胶的制备及光催化性能研究》;
6)水体处理:将低压电极和外部包覆有介质玻璃的高压电极共同放入待处理的3,4-二氯苯胺废水水体中,加入步骤5)中得到的处理剂D并持续通入空气,通过介质阻挡放电进行处理水体;其中,所述低压电极与水体接触共同形成接地极,所述高压电极与电源相连,且通过介质玻璃与水体隔开,高压电极与介质玻璃之间通入空气形成介质阻挡放电,对水体进行处理;所述介质阻挡放电的放电功率为80W,放电时间为8min;所述空气的通入量为2L/min;所述处理剂D的加入量为0.5g/L;
7)后处理:将步骤6)中处理后的水体的pH值调节至11,然后曝气6h,完成水处理,其中,所述曝气的曝气量为6L/min。
实施例3
一种3,4-二氯苯胺废水处理技术,其特征在于,它包括以下步骤:
1)园林绿化废弃物预处理:称取适量的园林绿化废弃物进行干燥处理使其含水率为12%,然后粉碎至80目,加入12倍重量的浓度为0.02mol/L的醋酸溶液混合均匀,静置15min,得混合料A;
2)超声波微波组合处理:将步骤1)中得到的混合料A送入超声波微波组合反应仪中,在70℃条件下处理30min,高速离心过滤,用去离子水洗涤10次后进行真空干燥,得粉末B;其中,所述超声波微波组合反应仪的处理条件为超声波频率为45kHz,超声功率为45W,微波频率为2000MHz,微波功率为45W;
3)制备园林绿化废弃物纤维:将步骤2)中得到的粉末B粉碎至150目后加入0.7倍重量的水,引入霉菌进行自然发酵处理,发酵完成后进行负压过滤,然后送入盘磨机进行磨浆处理,磨浆完成后进行低温真空干燥,得园林绿化废弃物纤维;所述霉菌为黑曲霉;所述自然发酵的温度为27℃,时间为18天;
4)纤维活化:将步骤3)中得到的园林绿化废弃物纤维中加入0.02倍重量的沥青,混合均匀后进行高温活化,然后粉碎至60目,得混合料C;通过高温活化从而改变材料的物化特性,使其表面产生纳米级的孔径,增加比表面积,与被吸附物的接触面积大,且可以均匀接触与吸附,使吸附材料得以充分利用,对于吸附小分子物质吸附速率快,吸附速度高,有利于提高对3,4-二氯苯胺废水进行吸附和催化的效率;所述高温活化的方法为在真空条件下按照3℃/min的升温速率升温至450℃,保温60min,然后通入氢气,按照2℃/min的升温速率升温至850℃,保温2h;
5)真空浸渍:将步骤4)中得到的混合料C置于真空罐中,抽真空至0.05MPa,向真空罐内加入二氧化钛气凝胶,继续抽真空15min后将真空罐缓慢升压至1.4MPa,稳压13min,随后将真空罐内压力降至常压,在常温条件下老化17h,得处理剂D;所述二氧化钛气凝胶与混合料C的体积比为3:1;所述二氧化钛气凝胶为以离子液体([C6mim]Br)为辅助采用溶胶凝胶法制备而成,具体参考王宁宁的《改性二氧化钛气凝胶的制备及光催化性能研究》;
6)水体处理:将低压电极和外部包覆有介质玻璃的高压电极共同放入待处理的3,4-二氯苯胺废水水体中,加入步骤5)中得到的处理剂D并持续通入空气,通过介质阻挡放电进行处理水体;其中,所述低压电极与水体接触共同形成接地极,所述高压电极与电源相连,且通过介质玻璃与水体隔开,高压电极与介质玻璃之间通入空气形成介质阻挡放电,对水体进行处理;所述介质阻挡放电的放电功率为80W,放电时间为8min;所述空气的通入量为2L/min;所述处理剂D的加入量为0.5g/L;
7)后处理:将步骤6)中处理后的水体的pH值调节至11,然后曝气6h,完成水处理,其中,所述曝气的曝气量为6L/min。
实施例4
一种3,4-二氯苯胺废水处理技术,其特征在于,它包括以下步骤:
1)园林绿化废弃物预处理:称取适量的园林绿化废弃物进行干燥处理使其含水率为12%,然后粉碎至80目,加入12倍重量的浓度为0.02mol/L的醋酸溶液混合均匀,静置15min,得混合料A;
2)超声波微波组合处理:将步骤1)中得到的混合料A送入超声波微波组合反应仪中,在70℃条件下处理30min,高速离心过滤,用去离子水洗涤10次后进行真空干燥,得粉末B;其中,所述超声波微波组合反应仪的处理条件为超声波频率为45kHz,超声功率为45W,微波频率为2000MHz,微波功率为45W;
3)制备园林绿化废弃物纤维:将步骤2)中得到的粉末B粉碎至150目后加入0.7倍重量的水,引入霉菌进行自然发酵处理,发酵完成后进行负压过滤,然后送入盘磨机进行磨浆处理,磨浆完成后进行低温真空干燥,得园林绿化废弃物纤维;所述霉菌为黑曲霉;所述自然发酵的温度为27℃,时间为18天;
4)纤维活化:将步骤3)中得到的园林绿化废弃物纤维中加入0.02倍重量的沥青,混合均匀后进行高温活化,然后粉碎至60目,得混合料C;通过高温活化从而改变材料的物化特性,使其表面产生纳米级的孔径,增加比表面积,与被吸附物的接触面积大,且可以均匀接触与吸附,使吸附材料得以充分利用,对于吸附小分子物质吸附速率快,吸附速度高,有利于提高对3,4-二氯苯胺废水进行吸附和催化的效率;所述高温活化的方法为在真空条件下按照3℃/min的升温速率升温至450℃,保温60min,然后通入氢气,按照2℃/min的升温速率升温至850℃,保温2h;
5)真空浸渍:将步骤4)中得到的混合料C置于真空罐中,抽真空至0.05MPa,向真空罐内加入二氧化钛气凝胶,继续抽真空15min后将真空罐缓慢升压至1.4MPa,稳压13min,随后将真空罐内压力降至常压,在常温条件下老化17h,得处理剂D;所述二氧化钛气凝胶与混合料C的体积比为3:1;所述二氧化钛气凝胶为以离子液体([C6mim]Br)为辅助采用溶胶凝胶法制备而成,具体参考王宁宁的《改性二氧化钛气凝胶的制备及光催化性能研究》;
6)水体处理:将低压电极和外部包覆有介质玻璃的高压电极共同放入待处理的3,4-二氯苯胺废水水体中,加入步骤5)中得到的处理剂D并持续通入空气,通过介质阻挡放电进行处理水体;其中,所述低压电极与水体接触共同形成接地极,所述高压电极与电源相连,且通过介质玻璃与水体隔开,高压电极与介质玻璃之间通入空气形成介质阻挡放电,对水体进行处理;所述介质阻挡放电的放电功率为50W,放电时间为6min;所述空气的通入量为2L/min;所述处理剂D的加入量为0.5g/L;
7)后处理:将步骤6)中处理后的水体的pH值调节至11,然后曝气6h,完成水处理,其中,所述曝气的曝气量为6L/min。
实施例5
一种3,4-二氯苯胺废水处理技术,其特征在于,它包括以下步骤:
1)园林绿化废弃物预处理:称取适量的园林绿化废弃物进行干燥处理使其含水率为12%,然后粉碎至80目,加入12倍重量的浓度为0.02mol/L的醋酸溶液混合均匀,静置15min,得混合料A;
2)超声波微波组合处理:将步骤1)中得到的混合料A送入超声波微波组合反应仪中,在70℃条件下处理30min,高速离心过滤,用去离子水洗涤10次后进行真空干燥,得粉末B;其中,所述超声波微波组合反应仪的处理条件为超声波频率为45kHz,超声功率为45W,微波频率为2000MHz,微波功率为45W;
3)制备园林绿化废弃物纤维:将步骤2)中得到的粉末B粉碎至150目后加入0.7倍重量的水,引入霉菌进行自然发酵处理,发酵完成后进行负压过滤,然后送入盘磨机进行磨浆处理,磨浆完成后进行低温真空干燥,得园林绿化废弃物纤维;所述霉菌为黑曲霉;所述自然发酵的温度为27℃,时间为18天;
4)纤维活化:将步骤3)中得到的园林绿化废弃物纤维中加入0.02倍重量的沥青,混合均匀后进行高温活化,然后粉碎至60目,得混合料C;通过高温活化从而改变材料的物化特性,使其表面产生纳米级的孔径,增加比表面积,与被吸附物的接触面积大,且可以均匀接触与吸附,使吸附材料得以充分利用,对于吸附小分子物质吸附速率快,吸附速度高,有利于提高对3,4-二氯苯胺废水进行吸附和催化的效率;所述高温活化的方法为在真空条件下按照3℃/min的升温速率升温至450℃,保温60min,然后通入氢气,按照2℃/min的升温速率升温至850℃,保温2h;
5)真空浸渍:将步骤4)中得到的混合料C置于真空罐中,抽真空至0.05MPa,向真空罐内加入二氧化钛气凝胶,继续抽真空15min后将真空罐缓慢升压至1.4MPa,稳压13min,随后将真空罐内压力降至常压,在常温条件下老化17h,得处理剂D;所述二氧化钛气凝胶与混合料C的体积比为3:1;所述二氧化钛气凝胶为以离子液体([C6mim]Br)为辅助采用溶胶凝胶法制备而成,具体参考王宁宁的《改性二氧化钛气凝胶的制备及光催化性能研究》;
6)水体处理:将低压电极和外部包覆有介质玻璃的高压电极共同放入待处理的3,4-二氯苯胺废水水体中,加入步骤5)中得到的处理剂D并持续通入空气,通过介质阻挡放电进行处理水体;其中,所述低压电极与水体接触共同形成接地极,所述高压电极与电源相连,且通过介质玻璃与水体隔开,高压电极与介质玻璃之间通入空气形成介质阻挡放电,对水体进行处理;所述介质阻挡放电的放电功率为110W,放电时间为10min;所述空气的通入量为2L/min;所述处理剂D的加入量为0.5g/L;
7)后处理:将步骤6)中处理后的水体的pH值调节至11,然后曝气6h,完成水处理,其中,所述曝气的曝气量为6L/min。
本发明的工艺简单,通过园林绿化废弃物和二氧化钛气凝胶制备的处理剂协同介质阻挡放电进行处理3,4-二氯苯胺废水水体,无需加入大量化学药剂,污染较少,避免了二次污染,可用于解决3,4-二氯苯胺废水处理问题,有效了减少对人体和环境的危害,具有广阔的市场前景。
上面对本发明的较佳实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域的普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (9)

1.一种3,4-二氯苯胺废水处理技术,其特征在于,它包括以下步骤:
1)称取适量的园林绿化废弃物进行干燥处理,然后粉碎至40-100目,加入10-18倍重量的醋酸溶液混合均匀,静置10-20min,得混合料A;
2)将步骤1)中得到的混合料A送入超声波微波组合反应仪中,在60-80℃条件下处理20-40min,过滤,用去离子水洗涤8-12次后进行真空干燥,得粉末B;
3)将步骤2)中得到的粉末B粉碎至100-200目后加入0.2-2倍重量的水,引入霉菌进行自然发酵处理,发酵完成后进行负压过滤,然后送入盘磨机进行磨浆处理,磨浆完成后进行低温真空干燥,得园林绿化废弃物纤维;
4)将步骤3)中得到的园林绿化废弃物纤维中加入0.01-0.07倍重量的沥青,混合均匀后进行高温活化,然后粉碎至20-80目,得混合料C;
5)将步骤4)中得到的混合料C置于真空罐中,抽真空至0.05MPa,向真空罐内加入二氧化钛气凝胶,继续抽真空10-20min后将真空罐缓慢升压至1.4MPa,稳压10-18min,随后将真空罐内压力降至常压,在常温条件下老化12-24h,得处理剂D,备用;
6)将低压电极和外部包覆有介质玻璃的高压电极共同放入待处理的3,4-二氯苯胺废水水体中,加入步骤5)中得到的处理剂D并持续通入空气,通过介质阻挡放电进行处理水体;
7)将步骤6)中处理后的水体的pH值调节至9-13,然后曝气4h-8h,完成水处理。
2.根据权利要求1所述的3,4-二氯苯胺废水处理技术,其特征在于,步骤2)中,所述超声波微波组合反应仪的处理条件为超声波频率为45kHz,超声功率为25-65W,微波频率为2000MHz,微波功率为25-65W。
3.根据权利要求1所述的3,4-二氯苯胺废水处理技术,其特征在于,步骤3)中,所述霉菌为黑曲霉、黄曲霉、华根霉、米曲霉、青霉中的一种或多种的组合。
4.根据权利要求3所述的3,4-二氯苯胺废水处理技术,其特征在于,步骤3)中,所述自然发酵的温度为20-30℃,时间为10-28天。
5.根据权利要求4所述的3,4-二氯苯胺废水处理技术,其特征在于,步骤4)中,所述高温活化的方法为在真空条件下按照3℃/min的升温速率升温至450℃,保温40-80min,然后通入氢气,按照2℃/min的升温速率升温至850℃,保温1-3h。
6.根据权利要求4所述的3,4-二氯苯胺废水处理技术,其特征在于,步骤5)中,所述二氧化钛气凝胶与混合料C的体积比为3:1。
7.根据权利要求4所述的3,4-二氯苯胺废水处理技术,其特征在于,步骤6)中,所述介质阻挡放电的放电功率为50-110W,放电时间为6-10min。
8.根据权利要求7所述的3,4-二氯苯胺废水处理技术,其特征在于,步骤6)中,所述空气的通入量为2L/min;所述处理剂D的加入量为0.5g/L。
9.一种如权利要求1-8任一所述的3,4-二氯苯胺废水处理技术在废水处理中的应用。
CN201810792564.1A 2018-07-18 2018-07-18 一种3,4-二氯苯胺废水处理技术 Pending CN108911286A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810792564.1A CN108911286A (zh) 2018-07-18 2018-07-18 一种3,4-二氯苯胺废水处理技术

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810792564.1A CN108911286A (zh) 2018-07-18 2018-07-18 一种3,4-二氯苯胺废水处理技术

Publications (1)

Publication Number Publication Date
CN108911286A true CN108911286A (zh) 2018-11-30

Family

ID=64416147

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810792564.1A Pending CN108911286A (zh) 2018-07-18 2018-07-18 一种3,4-二氯苯胺废水处理技术

Country Status (1)

Country Link
CN (1) CN108911286A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258300B1 (en) * 1994-12-19 2001-07-10 Ut-Battelle, Llc Activated carbon fiber composite material and method of making
US20020148779A1 (en) * 2000-06-13 2002-10-17 Shieh Wen K. Methods and apparatus for biological treatment of aqueous waste
KR100797027B1 (ko) * 2006-09-29 2008-01-22 제주대학교 산학협력단 유전체장벽 방전관에서 발생되는 자외선 및 산화성 물질을이용한 폐수처리 장치 및 이를 이용한 폐수처리 방법
CN101559996A (zh) * 2009-05-22 2009-10-21 南京大学 一种处理水中3,4-二氯苯胺的方法
EP2168921A1 (en) * 2008-09-30 2010-03-31 Sanyo Electric Co., Ltd. Water treatment apparatus
CN101786757A (zh) * 2010-03-10 2010-07-28 合肥工业大学 介质阻挡放电等离子体、吸附、光催化协同作用废水处理装置
CN102381705A (zh) * 2011-07-27 2012-03-21 西南科技大学 一种微波热活化煤焦油渣/污泥发酵体生产活性炭的方法
CN102782116A (zh) * 2010-01-20 2012-11-14 希乐克公司 分散原料和加工物料
CN207511986U (zh) * 2017-10-20 2018-06-19 复旦大学 一种低温等离子体结合催化剂和吸附剂的废水处理装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258300B1 (en) * 1994-12-19 2001-07-10 Ut-Battelle, Llc Activated carbon fiber composite material and method of making
US20020148779A1 (en) * 2000-06-13 2002-10-17 Shieh Wen K. Methods and apparatus for biological treatment of aqueous waste
KR100797027B1 (ko) * 2006-09-29 2008-01-22 제주대학교 산학협력단 유전체장벽 방전관에서 발생되는 자외선 및 산화성 물질을이용한 폐수처리 장치 및 이를 이용한 폐수처리 방법
EP2168921A1 (en) * 2008-09-30 2010-03-31 Sanyo Electric Co., Ltd. Water treatment apparatus
CN101559996A (zh) * 2009-05-22 2009-10-21 南京大学 一种处理水中3,4-二氯苯胺的方法
CN102782116A (zh) * 2010-01-20 2012-11-14 希乐克公司 分散原料和加工物料
CN101786757A (zh) * 2010-03-10 2010-07-28 合肥工业大学 介质阻挡放电等离子体、吸附、光催化协同作用废水处理装置
CN102381705A (zh) * 2011-07-27 2012-03-21 西南科技大学 一种微波热活化煤焦油渣/污泥发酵体生产活性炭的方法
CN207511986U (zh) * 2017-10-20 2018-06-19 复旦大学 一种低温等离子体结合催化剂和吸附剂的废水处理装置

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BYEON, JEONG HOON等: "Electroless copper deposition on a pitch-based activated carbon fiber and an application for NO removal", 《SURFACE & COATINGS TECHNOLOGY》 *
严子春: "《水处理实验与技术》", 31 December 2008, 中国环境科学出版社 *
刘亚兰: "活性炭纤维负载二氧化钛光催化剂的制备及性能评价", 《中国优秀硕士学位论文全文数据库-工程科技Ⅰ辑》 *
刘双等: "纤维素气凝胶干燥方法的研究进展", 《纤维素科学与技术》 *
汪多仁: "《绿色净水处理剂》", 30 November 2006, 科学技术文献出版社 *
米歇尔: "《气凝胶手册》", 31 December 2014, 原子能出版社 *
裴继诚: "《植物纤维化学-第四版》", 31 January 2014, 中国轻工业出版社 *

Similar Documents

Publication Publication Date Title
CN107159110A (zh) 一种柚子皮基多级孔碳材料的制备方法及其用途
CN103447027A (zh) 一种改性纳米TiO2/Ag/竹炭复合材料及使用其杀灭医疗污水中微生物的方法
CN112553035A (zh) 一种加速食醋陈化的方法
CN106693925A (zh) 一种饱和自脱落型氨氮废水吸附剂的制备方法
CN108911286A (zh) 一种3,4-二氯苯胺废水处理技术
CN205729185U (zh) 一种家用微纳米臭氧气泡水超声波清洗盆
CN109301270B (zh) 一种高性能钌催化剂的制备方法
CN103966102A (zh) 一种利用尿素厂废水培养莱茵衣藻的培养基及培养方法
CN108996807A (zh) 一种用改性钢渣-沸石吸附降解生活污水中氮磷的方法
CN205575873U (zh) 一种医院污水处理装置
CN106345417A (zh) 一种用于去除废水重金属铅吸附材料的制备方法
CN108940218A (zh) 一种重金属吸附剂-木质素微球的制备方法
CN214360872U (zh) 一种水利水电用灌溉装置
CN111115782B (zh) 一种污水处理絮凝剂及其制备方法
CN212894731U (zh) 一种发酵诺丽果汁饮料用发酵罐
CN106542675A (zh) 一种分散式农村生活污水处理方法
CN107857406A (zh) 一种紫外催化氧化联合超滤的一体式净水装置及其使用方法
CN209573112U (zh) 一种利用紫外线处理小麦粒的装置
CN107057939A (zh) 一种黄酒制作用原料清洗消毒设备
CN102942244B (zh) 一种高密度水产养殖的加氧净化方法和系统
CN206298475U (zh) 一种生产车用尿素紫外线杀菌装置
CN111217417A (zh) 一种利用石墨炔改性磷酸银复合光催化剂处理2-萘酚废水的方法
CN206314429U (zh) 一种多功能鱼塘用增氧机
CN111534457A (zh) 利用超声波减少小白链霉菌发酵过程菌丝体爬壁的方法
CN105753250B (zh) 一种城市生活污水的净化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181130