CN108894777B - 一种分层压裂多层合采油气藏储层物性及裂缝特性参数的确定方法 - Google Patents

一种分层压裂多层合采油气藏储层物性及裂缝特性参数的确定方法 Download PDF

Info

Publication number
CN108894777B
CN108894777B CN201810736999.4A CN201810736999A CN108894777B CN 108894777 B CN108894777 B CN 108894777B CN 201810736999 A CN201810736999 A CN 201810736999A CN 108894777 B CN108894777 B CN 108894777B
Authority
CN
China
Prior art keywords
layer
well
reservoir
interpretation
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810736999.4A
Other languages
English (en)
Other versions
CN108894777A (zh
Inventor
聂仁仕
李边生
王勇
王东旭
卢聪
范传雷
王志超
邓祺
王守峰
欧进晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Oil Field Branch Of Petrochina Co ltd
No1 Gas Production Factory Of Petrochina Changqing Oilfield Co
Southwest Petroleum University
Petrochina Xinjiang Oilfield Co
Original Assignee
Jilin Oil Field Branch Of Petrochina Co ltd
No1 Gas Production Factory Of Petrochina Changqing Oilfield Co
Southwest Petroleum University
Petrochina Xinjiang Oilfield Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Oil Field Branch Of Petrochina Co ltd, No1 Gas Production Factory Of Petrochina Changqing Oilfield Co, Southwest Petroleum University, Petrochina Xinjiang Oilfield Co filed Critical Jilin Oil Field Branch Of Petrochina Co ltd
Priority to CN201810736999.4A priority Critical patent/CN108894777B/zh
Publication of CN108894777A publication Critical patent/CN108894777A/zh
Application granted granted Critical
Publication of CN108894777B publication Critical patent/CN108894777B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开一种分层压裂多层合采油气藏储层物性及裂缝特性参数的确定方法,包括以下步骤:选取分层压裂多层合采井为目标井,收集并整理该井的基本信息,对其开展关井压力恢复测试;根据各小层有效厚度和加砂量乘积所确定的权重系数,再对该井多层合采产量进行小层劈分;选取一款常用的商业试井软件,读取压恢测试据,绘制实测的压力与压力导数双对数曲线;选取压裂井试井解释模型开展各小层的试井拟合解释,求取各小层特性参数。本发明能够准确获取分层压裂多层合采井的各小层储层物性及人工裂缝特性参数,可为油气藏高效开发等提供数据支持。

Description

一种分层压裂多层合采油气藏储层物性及裂缝特性参数的确 定方法
技术领域
本发明涉及石油与天然气开发领域,尤其是一种分层压裂多层合采油气藏储层物性及裂缝特性参数的确定方法。
背景技术
随着国民经济的飞速发展和城镇化程度的不断加速,我国对能源的需求日渐增加。作为能源支柱,石油与天然气行业关系国家的经济命脉,开展石油与天然气勘探开发的相关技术研究意义重大。
近年来,随着石油和天然气开发挖潜的不断深入,非常规油气藏的占比越来越大。我国大多数非常规油气藏具有多层段的特性,特别是一些低渗、特低渗、致密油气藏。非常规油气藏的开发存在着低孔、低渗、平面及纵向非均质性强(即各层段物性差异大)等特点,普遍采用多层段压裂后投入开发,以实现其高效开发。对这类多层段压裂井,准确认识各小层特性对压裂井的产能评价、配产、工作制度等的确定及后期开发调整具有重要意义。
目前主要有两种技术用来解决这类问题:
(1)微地震监测及解释技术:岩石遭到破坏形成裂缝,裂缝产生和扩展时产生一系列向四周传播的微震波,通过对接收到的微震波信号进行处理,在确定微震震源位置的情况下,开展微地震解释,获取裂缝分布的方位、长度、高度、缝型及地应力方向等参数。
微地震监测操作成本高、解释精度差,且无法解释人工裂缝导流能力、裂缝表皮及地层渗透率等特性参数。
(2)分层测试及解释技术:采用丢手方式或整体管柱下入井中,用封隔器将井下各层位封隔,管柱上对应的每一个目的层位安装一套开关器,开关器能够按照预先设定的时序,或根据地面遥控发送编码指令工作,打开或关闭层位的进液通道,实现油井的分层开采和分层测试,同时开关器内置或外挂的压力仪获得各层的压力测试曲线。
分层测试工艺复杂,耗时长,多次开关井,操作成本高。对勘探初期的探井试气井,因地面尚未布置输气管线,对所放气体需采用井口计量后燃烧的方式进行处理,若开展分层测试工艺进行试气,则所放气量远大于多层合采的单次试气放气量,将造成更严重的资源浪费和空气污染。
实践证明,大多数多层段油气藏采用多层合采的方式进行开发,比分层开采更具经济效益。对多层段油气藏的分层压裂合采井,如何有效评价各小层人工裂缝特性参数及各层地层物性参数,面临巨大的技术难题和挑战。本发明创新了一种分层压裂多层合采油气藏各层储层物性及人工裂缝特性参数的求取方法,成功地解决了这一技术难题。
发明内容
本发明主要是克服现有技术中的不足之处,针对低渗、特低渗及非常规致密油气藏的分层压裂多层合采井,开展关井压力恢复测试,提出一种分层压裂多层合采油气藏储层物性及裂缝特性参数的确定方法。
本发明解决上述技术问题所提供的技术方案是:一种分层压裂多层合采油气藏储层物性及裂缝特性参数的确定方法,包括以下步骤:
步骤S10、选取分层压裂多层合采井为目标井,并在井底设置电子压力;
步骤S20、然后对目标井进行关井操作,并进行压力恢复测试;
步骤S30、在关井时间达到预设的关井时间Δt后,取出电子压力计,结束试井测试;
步骤S40、收集并整理目标井的资料,并对资料进行综合分析与处理,获得测试井的基本信息;
步骤S50、对生产井的合采产量q进行劈分,以计算各小层的权重系数Wi和劈分产量qi
步骤S60、读取电子压力计数据,绘制现代试井解释压力与压力导数双对数曲线;
步骤S70、按照第1层到第N层的先后顺序,依次对各小层开展试井拟合解释,并得到各小层解释结果:
步骤S80、对多层合采压恢数据当成单层生产情况进行试井拟合解释,得到单层解释结果:
步骤S90、对步骤S70中得到的各小层解释结果进行加权平均,以对比单层解释结果的效果:
步骤S100、对比步骤S80的单层解释结果和步骤S90中加权平均的结果,求取解释结果之间的绝对差值和相对差值,当相对差值在误差范围内,则各小层解释结果准确。
进一步的技术方案是,所述各小层解释结果、单层解释结果均包括储层物性参数、人工裂缝特性参数、井筒储集系数Cs
进一步的技术方案是,所述步骤S50的具体步骤为:
步骤S501、根据目标井的测井解释结果,记录层段数N及各小层储层厚度hi
步骤S502、根据现场分层压裂施工作业资料,记录各小层施工时的各小层加砂量Qsi
步骤S503、根据各小层有效厚度hi和各小层加砂量Qsi的乘积确定劈分产量所需各小层的权重系数Wi
Figure GDA0001762576470000041
式中:hi为各小层有效厚度,其单位为m;Qsi为各小层加砂量,其单位为m3;Wi为权重系数;N为目标井的层数;
步骤S504、根据各小层权重系数Wi计算各小层劈分产量qi
qi=Wiq
式中:qi为各小层劈分产量,其单位为m3/d;q为合采产量,其单位为m3/d;Wi为权重系数。
进一步的技术方案是,所述步骤S70的具体步骤为:
步骤S701、第1层开展试井解释,以获取第1层的储层物性及人工裂缝特性参数:
步骤S702、将准备好的第1层储层厚度h1、孔隙度φ1、产量q1数据输入试井解释软件;
步骤S703、选取压裂井试井解释模型对实测的压力与压力导数双对数曲线进行试井拟合解释;
步骤S704、得到第1层的解释结果,其包括第1层的渗透率k、表皮S、裂缝表皮Sf、裂缝半长Xf、导流能力FCD、井筒储集系数Cs
步骤S705、利用第i层储层厚度hi、孔隙度φi、产量qi,按上述步骤对第i层开展试井解释,得到第i层的解释结果;
步骤S706、利用第N层基础数据,同样按照上述步骤对第N层开展试井解释,输出第N层的解释结果。
进一步的技术方案是,所述步骤S80的具体步骤为:
步骤S801、求取目标井的储层总厚度H,即各小层有效厚度hi之和:
Figure GDA0001762576470000051
式中:hi为各小层有效厚度,其单位为m;hi为各小层有效厚度,其单位为m;N为目标井的层数;
步骤S802、按各小层有效厚度hi进行加权平均,求取目标井的储层平均孔隙度
Figure GDA0001762576470000052
Figure GDA0001762576470000053
式中:hi为各小层有效厚度,其单位为m;hi为各小层有效厚度,其单位为m;
Figure GDA0001762576470000054
为储层平均孔隙度,φi为各小层孔隙度;N为目标井的层数;
步骤S803、将储层总厚度H、平均孔隙度
Figure GDA0001762576470000055
合采产量q据输入试井解释软件;
步骤S804、选取压裂井试井解释模型对实测的压力与压力导数双对数曲线进行试井拟合解释;
步骤S805、得到单层解释结果,即包括等效渗透率ke、等效表皮Se、等效裂缝表皮Sfe、等效裂缝半长Xfe、等效导流能力FCDe、等效井筒储集系数Cse
进一步的技术方案是,所述步骤S90的具体步骤为:
步骤S901、根据各小层的权重系数Wi对各小层解释结果中的储层物性参数进行加权平均,按下式计算储层渗透率
Figure GDA0001762576470000056
和储层表皮
Figure GDA0001762576470000057
Figure GDA0001762576470000058
式中:ki为各小层有效厚度;Si为各小层表皮;
Figure GDA0001762576470000059
为储层渗透率;
Figure GDA00017625764700000510
为储层表皮;Wi为权重系数;N为目标井的层数;
步骤S902、根据各小层的权重系数Wi对各小层解释结果的人工裂缝特性参数进行加权平均,按下式计算储层裂缝表皮
Figure GDA00017625764700000511
储层裂缝半长
Figure GDA00017625764700000512
储层导流能力
Figure GDA0001762576470000061
Figure GDA0001762576470000062
式中:Sfi为各小层裂缝表皮;
Figure GDA0001762576470000063
为储层裂缝表皮;Xfi为各小层裂缝半长;
Figure GDA0001762576470000064
为储层裂缝半长;
Figure GDA0001762576470000065
为各小层导流能力;
Figure GDA0001762576470000066
为储层导流能力;Wi为权重系数;N为目标井的层数;
步骤S903、对各小层解释结果中的各小层井筒储集系数Csi进行求和,按下式计算Cs
Figure GDA0001762576470000067
式中:Csi为各小层井筒储集系数;N为目标井的层数;Cs为各个小层井筒储集系数之和。
发明的有益效果是:本发明可利用多层合采试油(气)动态测试资料,开展试井解释,准确获取各小层储层物性及人工裂缝特性参数,为压裂效果评价、压裂施工设计、产能预测及油(气)井高效开采等提供数据支持;本发明无需下入封隔器对各小层进行分层测试就能获取各小层储层物性及人工裂缝特性参数的准确,避免了分层测试工艺的复杂性,大量节约了多次开关井的操作成本和测试时间;本发明所需的多层合采整体测试技术可操作性强、成本低,且还可在一定程度上替代微地震监测测试,不仅解决了微地震监测测试的昂贵成本问题,还可避免微地震监测无法解释人工裂缝导流能力、裂缝表皮及地层渗透率等特性参数等问题。本发明适用于各种低渗、特低渗及非常规致密油气藏类型,可有效求取分层压裂多层合采井的各小层储层物性及人工裂缝特性参数。
附图说明
图1是压恢试井解释各小层特性参数的分层压裂多层合采井示意图;
图2是利用LS1井实测压力恢复数据绘制的试井双对数曲线图;
图3是LS1井第1层试井解释双对数拟合结果图;
图4是LS1井第2层试井解释双对数拟合结果图;
图5是LS1井第3层试井解释双对数拟合结果图;
图6是LS1井第4层试井解释双对数拟合结果图;
图7是LS1井第5层试井解释双对数拟合结果图;
图8是LS1井第6层试井解释双对数拟合结果图;
图9是LS1井“笼统”解释的试井双对数拟合结果图。
具体实施方式
下面结合实施例和附图对本发明做更进一步的说明。
如图1所示,本发明的一种分层压裂多层合采油气藏储层物性及裂缝特性参数的确定方法,
步骤S10、在松辽盆地,特选取了某非常规致密气藏的一口分层压裂多层合采直井(LS1井)以开展关井压力恢复测试;
步骤S20、于2017年6月3日将电子压力计下入井底,关井,开展压力恢复测试;
步骤S30、在关井时间达到所设计的关井时间480h后,取出电子压力计,结束试井测试;
步骤S40、收集并整理了LS1井的钻完井、取芯、测井、分层压裂施工作业、流体取样、生产动态等资料,并对资料进行了综合分析与处理,获得测试井的基本信息;
步骤S50、LS1井关井前持续稳定生产了904h,平均产气量q为48297m3/d,按以下子步骤对该井合采产量进行劈分,以计算各小层的产量:
步骤S501、根据该井的测井解释结果,记录该井共有6层,统计出各小层的储层厚度分别为h1=7.4m、h2=3.8m、h3=7.6m、h4=6.2m、h5=2.8m、h6=6.8m;
步骤S502、根据该井现场分层压裂施工作业资料,记录各小层施工时的加砂量分别为QS1=57m3、QS2=50m3、QS3=78m3、QS4=95m3、QS5=60m3、QS6=87m3
步骤S503、根据各小层有效厚度hi和加砂量Qsi的乘积确定劈分产量所需的各小层权重系数Wi
Figure GDA0001762576470000081
经计算,各小层权重系数分别为W1=0.165、W2=0.074、W3=0.232、W4=0.231、W5=0.066、W6=0.232;
步骤S504、根据各小层权重系数Wi计算各小层的劈分产量qi
qi=Wiq,(i=1,2,…N)
经计算,各小层的劈分产量分别为q1=23571m3/d、q2=9706m3/d、q3=31890m3/d、q4=31890m3/d、q5=9706m3/d、q6=31890m3/d;
步骤S60、选取了目前国内外的一款主流商业试井软件(法国的Saphir试井软件),对LS1井测试的电子压力计数据进行了读取,绘制出现代试井解释压力与压力导数双对数曲线(如图2所示),准备试井拟合解释;
步骤S70、按照第1层到第6层的先后顺序,依次开展试井拟合解释:
步骤S701、按以下子步骤对第1层开展试井解释,以获取第1层的储层物性及人工裂缝特性参数:
步骤S7011、将准备好的第1层储层厚度(h1=7.4m)、孔隙度(φ1=8.91%)、产量(q1=23571m3/d)等数据输入Saphir试井解释软件;
步骤S7012、选取直井压裂井试井解释模型对实测的压力与压力导数双对数曲线进行试井拟合解释,拟合图如图3所示;
步骤S7013、通过试井解释拟合,得到了第1层的特性参数:渗透率k1=0.0448mD;表皮S1=-4.25;裂缝表皮Sf1=0;裂缝半长Xf1=44.51m、导流能力FCD1=0.81mD·m;井筒储集系数Cs1=0.43m3/MPa;
步骤S702、利用第2层的储层厚度(h2=3.8m)、孔隙度(φ2=10%)、产量(q2=9706m3/d)等数据,按步骤S701对第2层开展试井解释,拟合图如图4所示,输出解释结果:渗透率k2=0.0342mD;表皮S2=-4.22;裂缝表皮Sf2=0.027;裂缝半长Xf2=41.90m、导流能力FCD2=0.61mD·m;井筒储集系数Cs2=0.175m3/MPa;
步骤S703、利用第3、4、5、6层基础数据,同样按步骤S701对第3、4、5、6层开展试井解释,拟合图分别如图5、图6、图7、图8所示,输出解释结果:k3=0.0541mD、S3=-4.42、Sf3=0.054、裂缝半长Xf3=51.05m、导流能力FCD3=1.24mD.m、井筒储集系数Cs3=0.587m3/MPa;k4=0.0682mD、S4=-4.62、Sf4=0.033、裂缝半长Xf4=62.36m、导流能力FCD4=1.86mD·m、井筒储集系数Cs4=0.578m3/MPa;k5=0.0445mD、S5=-4.38、Sf5=0.043、裂缝半长Xf5=78.47m、导流能力FCD5=0.91mD·m、井筒储集系数Cs5=0.179m3/MPa;k6=0.0684mD、S6=-4.26、Sf6=0、裂缝半长Xf6=41.10m、导流能力FCD6=1.27mD·m、井筒储集系数Cs6=0.574m3/MPa;
步骤S80、对LS1井多层合采的压恢测试数据当成单层生产情况按照以下子步骤进行“笼统”解释,输出的解释结果为等效值,与各小层物性参数及人工裂缝特性参数的平均值等效:
步骤S801、求取LS1井的储层总厚度H,即各小层有效厚度hi之和:
Figure GDA0001762576470000091
经计算,该井的储层总厚度为34.6m;
步骤S802、按LS1井6个小层的有效厚度进行加权平均,求取该井的储层平均孔隙度:
Figure GDA0001762576470000101
经计算,该井6个小层的平均孔隙度为1.74%;
步骤S803、将储层总厚度(H=34.6m)、平均孔隙度
Figure GDA0001762576470000102
合采产量(q=48297m3/d)等数据输入试井解释软件;
步骤S804、选取压裂直井试井解释模型对实测的压力与压力导数双对数曲线进行试井拟合解释,拟合图如图9所示;
步骤S805、通过试井解释拟合,得到了“笼统”解释的特性参数:等效渗透率ke=0.052mD;等效表皮Se=-4.49;等效裂缝表皮Sfe=0.023;裂缝半长Xfe=51.50m、导流能力FCDe=1.13mD.m;等效井筒储集系数Cse=2.52m3/MPa;
步骤S90、对LS1井6个小层解释的储层物性参数和人工裂缝特性参数进行加权平均,以对比笼统解释的效果:
步骤S901、根据该井产量贡献的权重系数Wi对各小层试井解释的物性参数进行加权平均,按下式计算储层渗透率
Figure GDA0001762576470000103
和表皮
Figure GDA0001762576470000104
Figure GDA0001762576470000105
经计算,该井6个小层的加权平均渗透率为0.057mD、加权平均井表皮系数为-4.38;
步骤S902、根据该井产量贡献的权重系数Wi对各小层试井解释的人工裂缝特性参数进行加权平均,按下式计算裂缝表皮
Figure GDA0001762576470000106
裂缝半长
Figure GDA0001762576470000107
导流能力
Figure GDA0001762576470000108
Figure GDA0001762576470000109
经计算,该井6个小层人工裂缝的加权平均裂缝表皮
Figure GDA0001762576470000111
为0.025、平均裂缝半长
Figure GDA0001762576470000112
为51.53m、平均导流能力
Figure GDA0001762576470000113
1.2492mD·m;
步骤S903、对步骤S70所解释的各小层井筒储集系数Csi进行求和,按下式计算
Figure GDA0001762576470000114
Figure GDA0001762576470000115
经计算,该井6个小层的井筒储集系数之和为2.523m3/MPa;
步骤S100、对比步骤S80的笼统解释结果和步骤S90的各参数计算结果,经计算,各参数的绝对差值和相对偏差求取结果为:渗透率的绝对差值和相对偏差分别为0.005mD和8.77%;表皮的绝对差值和相对偏差分别为0.11和2.51%;裂缝表皮的绝对差值和相对偏差分别为0.002和8%;裂缝半长的绝对差值和相对偏差分别为0.03和0.06%;裂缝导流能力的绝对差值和相对偏差分别为0.1192mD·m和9.54%;井储系数的绝对差值和相对偏差分别为0.003m3/MPa和0.12%;各参数的相对偏差最大为9.54%,全在工程允许的误差范围(0-15%)内,因此,LS1井的各小层解释结果中的各个参数准确可靠。
上述实施例为松辽盆地某非常规致密气藏的一口分层压裂6层合采直井(LS1井)于2017年6月3日开展过关井压力恢复测试(其试井双对数曲线见图2)。该井关井测试时间为480h,关井前稳定生产时间为904h,平均产气量为48297m3/d。该井各层试井解释的基础参数如表1所示。
对该井采用本发明所创新的试井解释分析方法,先对该井的总产量进行了劈分,确定了6个小层的产量贡献权重(见表1)和分层产量(见表2),进而通过试井解释获得了6个小层的有效储层物性参数和人工裂缝特性参数。试井解释拟合图见图3~图8,解释结果见表3。同时,对该井的测试数据进行了“笼统”试井解释(见图9),并与各小层分层解释的结果进行了对比,计算了各解释参数的绝对差值和相对偏差(见表3),发现误差均在工程允许的范围内。经对该井的成功实施与解释,验证了本发明所创新的方法切实可行,能够适用于分层压裂多层合采油气藏,具有强的推广价值和广阔的应用前景。
表1 实例井的各层基础参数表
段数 井段(m) 有效厚度(m) 孔隙度(%) 砂量(m<sup>3</sup>) 产量贡献权重
1 4326.4-4334.0 7.4 8.91 57 0.165
2 4202.6-4198.8 3.8 10 50 0.074
3 4120.4-4113.4 7.6 12.3 78 0.232
4 4023.6-4017.6 6.2 9 95 0.231
5 3888-3884 2.8 12.7 60 0.066
6 3809.6-3802.8 6.8 10.7 87 0.232
表2 实例井的产量数据表
Figure GDA0001762576470000121
以上所述,并非对本发明作任何形式上的限制,虽然本发明已通过上述实施例揭示,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些变动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (6)

1.一种分层压裂多层合采油气藏储层物性及裂缝特性参数的确定方法,其特征在于,包括以下步骤:
步骤S10、选取分层压裂多层合采井为目标井,并在井底设置电子压力;
步骤S20、然后对目标井进行关井操作,并进行压力恢复测试;
步骤S30、在关井时间达到预设的关井时间Δt后,取出电子压力计,结束试井测试;
步骤S40、收集并整理目标井的资料,并对资料进行综合分析与处理,获得测试井的基本信息;
步骤S50、对生产井的合采产量q进行劈分,以计算各小层的权重系数Wi和劈分产量qi
步骤S60、读取电子压力计数据,绘制现代试井解释压力与压力导数双对数曲线;
步骤S70、按照第1层到第N层的先后顺序,依次对各小层开展试井拟合解释,并得到各小层解释结果:
步骤S80、对多层合采压恢数据当成单层生产情况进行试井拟合解释,得到单层解释结果:
步骤S90、对步骤S70中得到的各小层解释结果进行加权平均,以对比单层解释结果的效果:
步骤S100、对比步骤S80的单层解释结果和步骤S90中加权平均的结果,求取解释结果之间的绝对差值和相对差值,当相对差值在误差范围内,则各小层解释结果准确。
2.根据权利要求1所述的一种分层压裂多层合采油气藏储层物性及裂缝特性参数的确定方法,其特征在于,所述各小层解释结果、单层解释结果均包括储层物性参数、人工裂缝特性参数、井筒储集系数Cs
3.根据权利要求2所述的一种分层压裂多层合采油气藏储层物性及裂缝特性参数的确定方法,其特征在于,所述步骤S50的具体步骤为:
步骤S501、根据目标井的测井解释结果,记录层段数N及各小层储层厚度hi
步骤S502、根据现场分层压裂施工作业资料,记录各小层施工时的各小层加砂量Qsi
步骤S503、根据各小层有效厚度hi和各小层加砂量Qsi的乘积确定劈分产量所需各小层的权重系数Wi
Figure FDA0003076939210000021
式中:hi为各小层有效厚度,其单位为m;Qsi为各小层加砂量,其单位为m3;Wi为权重系数;N为目标井的层数;
步骤S504、根据各小层权重系数Wi计算各小层劈分产量qi
qi=Wiq
式中:qi为各小层劈分产量,其单位为m3/d;q为合采产量,其单位为m3/d;Wi为权重系数。
4.根据权利要求3所述的一种分层压裂多层合采油气藏储层物性及裂缝特性参数的确定方法,其特征在于,所述步骤S70的具体步骤为:
步骤S701、第1层开展试井解释,以获取第1层的储层物性及人工裂缝特性参数:
步骤S702、将准备好的第1层储层厚度h1、孔隙度φ1、产量q1数据输入试井解释软件;
步骤S703、选取压裂井试井解释模型对实测的压力与压力导数双对数曲线进行试井拟合解释;
步骤S704、得到第1层的解释结果,其包括第1层的渗透率k、表皮S、裂缝表皮Sf、裂缝半长Xf、导流能力FCD、井筒储集系数Cs
步骤S705、利用第i层储层厚度hi、孔隙度φi、产量qi,按上述步骤对第i层开展试井解释,得到第i层的解释结果;
步骤S706、利用第N层基础数据,同样按照上述步骤对第N层开展试井解释,输出第N层的解释结果。
5.根据权利要求3所述的一种分层压裂多层合采油气藏储层物性及裂缝特性参数的确定方法,其特征在于,所述步骤S80的具体步骤为:
步骤S801、求取目标井的储层总厚度H,即各小层有效厚度hi之和:
Figure FDA0003076939210000031
式中:hi为各小层有效厚度,其单位为m;N为目标井的层数;
步骤S802、按各小层有效厚度hi进行加权平均,求取目标井的储层平均孔隙度
Figure FDA0003076939210000032
Figure FDA0003076939210000033
式中:hi为各小层有效厚度,其单位为m;
Figure FDA0003076939210000034
为储层平均孔隙度,φi为各小层孔隙度;N为目标井的层数;
步骤S803、将储层总厚度H、平均孔隙度
Figure FDA0003076939210000035
合采产量q据输入试井解释软件;
步骤S804、选取压裂井试井解释模型对实测的压力与压力导数双对数曲线进行试井拟合解释;
步骤S805、得到单层解释结果,即包括等效渗透率ke、等效表皮Se、等效裂缝表皮Sfe、等效裂缝半长Xfe、等效导流能力FCDe、等效井筒储集系数Cse
6.根据权利要求5所述的一种分层压裂多层合采油气藏储层物性及裂缝特性参数的确定方法,其特征在于,所述步骤S90的具体步骤为:
步骤S901、根据各小层的权重系数Wi对各小层解释结果中的储层物性参数进行加权平均,按下式计算储层渗透率
Figure FDA0003076939210000041
和储层表皮
Figure FDA0003076939210000042
Figure FDA0003076939210000043
式中:ki为各小层渗透率;Si为各小层表皮;
Figure FDA0003076939210000044
为储层渗透率;
Figure FDA0003076939210000045
为储层表皮;Wi为权重系数;N为目标井的层数;
步骤S902、根据各小层的权重系数Wi对各小层解释结果的人工裂缝特性参数进行加权平均,按下式计算储层裂缝表皮
Figure FDA0003076939210000046
储层裂缝半长
Figure FDA0003076939210000047
储层导流能力
Figure FDA0003076939210000048
Figure FDA0003076939210000049
式中:Sfi为各小层裂缝表皮;
Figure FDA00030769392100000410
为储层裂缝表皮;Xfi为各小层裂缝半长;
Figure FDA00030769392100000411
为储层裂缝半长;FCDi为各小层导流能力;
Figure FDA00030769392100000412
为储层导流能力;Wi为权重系数;N为目标井的层数;
步骤S903、对各小层解释结果中的各小层井筒储集系数Csi进行求和,按下式计算Cs
Figure FDA00030769392100000413
式中:Csi为各小层井筒储集系数;N为目标井的层数。
CN201810736999.4A 2018-07-06 2018-07-06 一种分层压裂多层合采油气藏储层物性及裂缝特性参数的确定方法 Expired - Fee Related CN108894777B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810736999.4A CN108894777B (zh) 2018-07-06 2018-07-06 一种分层压裂多层合采油气藏储层物性及裂缝特性参数的确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810736999.4A CN108894777B (zh) 2018-07-06 2018-07-06 一种分层压裂多层合采油气藏储层物性及裂缝特性参数的确定方法

Publications (2)

Publication Number Publication Date
CN108894777A CN108894777A (zh) 2018-11-27
CN108894777B true CN108894777B (zh) 2021-08-31

Family

ID=64348353

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810736999.4A Expired - Fee Related CN108894777B (zh) 2018-07-06 2018-07-06 一种分层压裂多层合采油气藏储层物性及裂缝特性参数的确定方法

Country Status (1)

Country Link
CN (1) CN108894777B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110608036B (zh) * 2019-07-24 2020-06-16 王新海 多层油藏总表皮系数计算方法
CN110374572B (zh) * 2019-08-12 2021-01-05 西南石油大学 非常规油气藏多段压裂水平井各改造段特性参数确定方法
CN110700820A (zh) * 2019-09-20 2020-01-17 东北石油大学 松辽盆地北部致密油储层甜点分类方法
CN110984976B (zh) * 2019-12-20 2023-02-28 陕西延长石油(集团)有限责任公司研究院 多层合采气井产量劈分方法
CN111411946B (zh) * 2020-05-12 2021-11-16 中国石油大学(北京) 一种致密气藏气井开采方式的确定方法及装置
CN113006760B (zh) * 2021-03-17 2022-03-11 西南石油大学 一种致密砂岩气多段压裂水平井产量劈分方法
CN115544909B (zh) * 2022-09-29 2024-01-30 西南石油大学 一种确定顶部打开的大厚油藏储层厚度的等值渗流阻力法
CN117072145A (zh) * 2023-08-23 2023-11-17 中国海洋石油集团有限公司 通过试井曲线确定潜山储层有效厚度的方法
CN117349610B (zh) * 2023-12-04 2024-02-09 西南石油大学 一种基于时间序列模型的压裂作业多时间步压力预测方法
CN117875572B (zh) * 2024-03-12 2024-05-28 四川恒溢石油技术服务有限公司 用于气井储层评价的方法
CN118052146B (zh) * 2024-03-12 2024-09-20 四川恒溢石油技术服务有限公司 用于气井产能劈分的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101042048A (zh) * 2006-03-24 2007-09-26 中国石油天然气股份有限公司 复杂断块河流相储层油水井动用状况劈分系统
CN101798915A (zh) * 2010-04-26 2010-08-11 胡士清 一种利用分段火驱开采提高厚层块状稠油采收率的方法
CN102747991A (zh) * 2011-04-22 2012-10-24 长江大学 一种确定合采井单层产量的方法
CN104963661A (zh) * 2015-07-01 2015-10-07 中国石油天然气股份有限公司 一种凝析气藏产量劈分方法及装置
CN107705215A (zh) * 2017-09-25 2018-02-16 西南石油大学 一种页岩储层重复压裂选井选段方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2539118A1 (en) * 2003-09-16 2005-03-24 Commonwealth Scientific And Industrial Research Organisation Hydraulic fracturing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101042048A (zh) * 2006-03-24 2007-09-26 中国石油天然气股份有限公司 复杂断块河流相储层油水井动用状况劈分系统
CN101798915A (zh) * 2010-04-26 2010-08-11 胡士清 一种利用分段火驱开采提高厚层块状稠油采收率的方法
CN102747991A (zh) * 2011-04-22 2012-10-24 长江大学 一种确定合采井单层产量的方法
CN104963661A (zh) * 2015-07-01 2015-10-07 中国石油天然气股份有限公司 一种凝析气藏产量劈分方法及装置
CN107705215A (zh) * 2017-09-25 2018-02-16 西南石油大学 一种页岩储层重复压裂选井选段方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
多层合采气井产量劈分新方法;顾岱鸿等;《天然气地球科学》;20160731;第27卷(第7期);1326-1351 *

Also Published As

Publication number Publication date
CN108894777A (zh) 2018-11-27

Similar Documents

Publication Publication Date Title
CN108894777B (zh) 一种分层压裂多层合采油气藏储层物性及裂缝特性参数的确定方法
CN109594968B (zh) 一种页岩气多段压裂水平井压后裂缝参数评价方法及系统
CN109441422B (zh) 一种页岩气井间距优化开采方法
CN108009705B (zh) 一种基于支持向量机技术的页岩储层可压性评价方法
CN106869896B (zh) 一种低渗透油气藏直井体积压裂储层改造体积预测方法
CN111648764B (zh) 一种多层气藏井下分布式温度监测产出剖面解释评价方法
CN108518218B (zh) 一种非常规油气藏多段压裂水平井单井动态储量确定方法
CN108732076B (zh) 一种煤层水力压裂渗透率预测方法
CN111577256B (zh) 一种穿层钻孔水力冲孔增透效果定量评价方法
CN108319738A (zh) 一种页岩气井产量预测方法
CN106640021B (zh) 压后放喷参数的计算方法及装置
CN110656915B (zh) 一种页岩气多段压裂水平井多工作制度产能预测方法
CN105931125B (zh) 一种致密油分段多簇体积压裂水平井产量预测方法
CN115267905B (zh) 一种复杂构造区钻井工程中裂缝性井漏预测方法
CN108843303A (zh) 一种基于泥岩蠕变模型的油水井套管损坏预测方法
CN111401669A (zh) 一种基于小波神经网络的页岩油压后返排率预测方法
CN112282743A (zh) 用于对钻井泥岩地层压力进行预测的方法
CN112699554B (zh) 一种基于压裂示踪约束的致密油藏水平井压后分段试井分析方法
CN113803041B (zh) 一种体积压裂设计方法及系统
CN115705454A (zh) 一种基于相场法的裂缝扩展模拟压裂设计优化方法
US10767473B2 (en) Systems and methods for detection of induced micro fractures
CN114169204B (zh) 一种用于海上油气田开发生产的防砂时机确定方法
CN112035993A (zh) 一种底部定压的碳酸盐岩储层测试评价方法
CN112746836B (zh) 基于层间干扰的油井各层产量计算方法
CN115964836A (zh) 陆相页岩水平井分段多簇压裂簇间应力干扰强度计量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210831

CF01 Termination of patent right due to non-payment of annual fee