CN108891103A - 一种轴承用导电自润滑复合板及其制备方法 - Google Patents

一种轴承用导电自润滑复合板及其制备方法 Download PDF

Info

Publication number
CN108891103A
CN108891103A CN201810959873.3A CN201810959873A CN108891103A CN 108891103 A CN108891103 A CN 108891103A CN 201810959873 A CN201810959873 A CN 201810959873A CN 108891103 A CN108891103 A CN 108891103A
Authority
CN
China
Prior art keywords
self
composite plate
lubricating
metal
weight ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810959873.3A
Other languages
English (en)
Inventor
张蓉平
孙志华
陆忠泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHEJIANG CHANGSHENG SLIDING BEARING CO Ltd
Zhejiang Changsheng Sliding Bearings Co Ltd
Original Assignee
ZHEJIANG CHANGSHENG SLIDING BEARING CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHEJIANG CHANGSHENG SLIDING BEARING CO Ltd filed Critical ZHEJIANG CHANGSHENG SLIDING BEARING CO Ltd
Priority to CN201810959873.3A priority Critical patent/CN108891103A/zh
Publication of CN108891103A publication Critical patent/CN108891103A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/10Interconnection of layers at least one layer having inter-reactive properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • C08J2323/28Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment by reaction with halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种轴承用导电自润滑复合板及其制备工艺,该轴承用导电自润滑复合板包括一个金属基层,一层导电自润滑膜,以及粘合层。所述金属基层上开设有多个均匀分布的凹陷结构,所述凹陷结构的深度0.02mm~0.10mm,凹陷结构的面积占所述金属基层的面积的30%~50%,所述粘合层的厚度为0.01mm~0.05mm。所述导电自润滑膜的厚度为0.1mm~0.5mm。所述聚合物选自氟聚合物中的一种或几种且其重量比为70%~80%,炭黑的重量比为4%~5%,所述碳纳米管的重量比为1%~2%,所述碳纤维的重量比为15%~20%,所述固体润滑剂的重量比为0~9%,所述碳纳米管的长度为3μm~5μm。本轴承用导电自润滑复合板具有导电的功能,符合电泳工艺的要求,进而该轴承用导电自润滑复合板可以满足汽车工业的要求,特别是汽车涂装领域。

Description

一种轴承用导电自润滑复合板及其制备方法
技术领域
本发明属于滑动轴承技术领域,特别是一种使用在滑动轴承上的轴承用导电自润滑复合板及其制备方法。
背景技术
具有层结构(包括金属支承体材料及施加于其上的中间层和滑动层)的免维护滑动轴承早已通过多种形式为本领域技术人员所习知,并应用于多个技术领域,例如汽车工程领域。
但是目前随着汽车工业的发展,其集成度也越来越高,那些应用于汽车车门铰链、座椅铰链、前后盖铰链等低速中等载荷场合中的自润滑轴承,除了手感要求舒适,无噪声的要求外,还要求其具有导电性能的要求。该导电性能的要求原自汽车工业的要求。因为先进的汽车涂装特别是轿车涂装技术和设备在我国得以快速应用。为了满足客户对汽车涂装组件表面处理工艺即电泳涂装的需求,对汽车铰链部位的铰链轴承专门提出了导电性能的要求,因此对该应用的自润滑轴承的功能层的要求则至少包括扭矩恒定,有弹性,自润滑与具有导电性能。
发明内容
有鉴于此,本发明提供了一种具有很好的力学性能,抗蠕变性能,以及更低的电阻值的轴承用导电自润滑复合板及其制备方法,以满足上述要求。
一种轴承用导电自润滑复合板,其使用于电泳工艺中,其包括一个金属基层,一层设置在所述金属基层上的导电自润滑膜,以及用于粘合所述金属基层与导电自润滑膜的粘合层。所述金属基层上开设有多个均匀分布的凹陷结构,所述凹陷结构的深度0.02mm~0.10mm,凹陷结构的面积占所述金属基层的面积的30%~50%,所述粘合层的厚度为0.01mm~0.05mm。所述导电自润滑膜的厚度为0.1mm~0.5mm。所述导电自润滑膜通过所述凹陷结构与所述金属基层电导通。所述导电自润滑膜主要由氟聚合物、炭黑、碳纳米管,碳纤维,以及固体润滑剂组成。所述聚合物选自氟聚合物中的一种或几种且其重量比为70%~80%,炭黑的重量比为4%~5%,所述碳纳米管的重量比为1%~2%,所述碳纤维的重量比为15%~20%,所述固体润滑剂的重量比为0~9%,所述碳纳米管的长度为3μm~5μm。
进一步地,所述导电自润滑膜的厚度为0.15mm-0.25mm。
进一步地,所述聚合物选自聚四氟乙烯、氟化的乙烯-丙烯、聚偏二氟乙烯、聚氯三氟乙烯、乙烯氯三氟乙烯、全氟烷氧基聚合物、以及它们的组合。
进一步地,所述氟聚合物为全氟烷氧基乙烯,改性四氟乙烯-六氟丙烯,改性全氟烷氧基乙烯,乙烯-四氟乙烯,四氟乙烯-全氟,改性聚四氟乙烯,聚偏氟乙烯,乙烯-氯三氟乙烯。
进一步地,所述固体润滑剂选自玻璃纤维、碳纤维、硅、石墨、聚醚醚酮、二硫化钼、芳香族聚酯、碳颗粒、青铜、氟聚合物、热塑性填充剂、矿物填充剂、以及它们的任何组合。
进一步地,所述氟聚合物至少占所述导电自润滑膜的重量的72%、78%、或80%。
一种轴承用导电自润滑复合板的制备方法,其包括如下步骤:
S21:提供一个金属基层,并在该金属基层上开设多个均匀分布的凹陷结构,所述凹陷结构的深度为0.02mm~0.10mm,凹陷结构的面积占所述金属基层的面积的30%~50%;
S22:提供粘合层,并使该粘合层平铺设置在所述具有凹陷结构的金属基层上,所述粘合层的厚度0.01mm~0.05mm;
S23:提供导电自润滑膜,所述导电自润滑膜主要由氟聚合物、炭黑、碳纳米管,碳纤维,以及固体润滑剂组成,所述聚合物选自氟聚合物中的一种或几种且其重量比为70%~80%,炭黑的重量比为4%~5%,所述碳纳米管的重量比为1%~2%,所述碳纤维的重量比为15%~20%,所述固体润滑剂的重量比为0~9%,所述碳纳米管的长度为3μm~5μm,所述导电自润滑膜覆盖在所述粘合层上;
S24:将所述叠加在一起的金属基层、粘合层、以及导电自润滑膜置入温控箱中,该温控箱的温度的复合温度为270℃~300℃;
S25:提供复合压力至所述导电自润滑膜上,该复合压力为2MPa~10MPa以将所述导电自润滑膜与所述金属基层电导通以制得所述轴承用导电自润滑复合板。
进一步地,所述粘合层由氟聚合物制成,所述氟聚合物选自乙烯-四氟乙烯共聚物,氟化乙烯丙烯共聚物,乙烯氟化乙烯-丙烯三聚物,聚氯三氟乙烯,乙烯氯三氯乙烯,或者它们的任意组合。
进一步地,所述凹陷结构为网格状,所述网格的深度为深度0.02-0.05mm。
进一步地,所述凹陷结构为圆坑状,所述圆坑的深度为深度0.05-0.10mm。
与现有技术相比,本发明所提供的轴承用导电自润滑复合板中的导电自润滑膜使用了炭黑与碳纳米管,且其混合使用,降低了整体材料的成本,有利于推广使用,而该通过设定所述炭黑、碳纳米管、以及碳纤维的比例,微观上在该导电自润滑膜中形成了良好的导电网络,使得在宏观上该导电自润滑膜的电阻值小于103欧姆平方厘米,从而可以达到电泳工艺的要求,同时,由于所述凹陷结构的存在,而所述粘合层的厚度为0.01mm~0.05mm,使得在复合压力为2MPa~10MPa时可以通过所述凹陷结构将所述粘合层刺破从而使所述导电自润滑膜与金属基层电导通,同时所述粘合层的其他部分还起到了粘合的作用,从而使得该整块轴承用导电自润滑复合板具有导电的功能,符合电泳工艺的要求,进而该轴承用导电自润滑复合板可以满足汽车工业的要求,特别是汽车涂装领域。
附图说明
图1为本发明提供的轴承用导电自润滑复合板的分解结构示意图。
图2为图1的轴承用导电自润滑复合板在A处的局部放大图。
图3为图1的轴承用导电自润滑复合板所具有导电自润滑膜的结构示意图。
图4为图1的轴承用导电自润滑复合板所具有的导电自润滑膜的制备方法流程图。
图5为图1的轴承用导电自润滑复合板的制备方法流程图。
具体实施方式
以下对本发明的具体实施例进行进一步详细说明。应当理解的是,此处对本发明实施例的说明并不用于限定本发明的保护范围。
如图1所示,其为本发明提供的轴承用导电自润滑复合板的结构示意图。所述轴承用导电自润滑复合板包括一个金属基层10,一层设置在所述金属基层10上的导电自润滑膜11,以及用于粘合所述金属基层10与导电自润滑膜11的粘合层12。可以想到的是,所述轴承用导电自润滑复合板还可以包括其他的一些功能模块,如使用在汽车领域时该轴承用导电自润滑复合板圈曲成圆筒将,其外侧还应当设置有组装结构,如卡接环等,其应当为本领域技术人员所习知的技术,在此不再一一详细说明。
请一并结合图2,所述金属基层10用于承载所述导电自润滑膜11,同时也用于设置其他的一些安装结构,如轴承外圈等。所述金属基层10可以由低碳钢、铝、铝合金,铜,铜合金,或者是其他种类的金属及其合金制成,在本实施例中,所述金属基层10由低碳钢制成。所述金属基层10上开设有多个均匀分布的凹陷结构101。所述凹陷结构101可以为网格状。所述网格状的凹陷结构101可以包括多条相互交叉的V形槽或U形槽,或者是通过车床车出的截面为方形的槽。所述凹陷结构101还可以为圆形坑或其它形状的坑。所述V形槽或U形槽,以及圆形坑都可以使用网纹辊压制而成或者是通过表面激光处理而成。所述凹陷结构101的深度可以为0.02mm~0.10mm,具体地,当所述凹陷结构101为网格状时,其深度可以为0.02~0.05mm,当所述凹陷结构101为圆形坑时,其深度可以为0.05mm~0.10mm。所述凹陷结构101的面积占所述金属基层10的面积的30%~50%,其不能太少,太少会影响导电自润滑膜11与金属基层10之间的导电性,而太多,又会影响导电自润滑膜11与金属基层10之间的粘合牢度。因此,基于所述导电自润滑膜11的材料及厚度以及所述粘合层12的厚度,所述凹陷结构的面积点所述金属基层10的面积的厚度应当为30%~50%。
如图3所示,所述导电自润滑膜11主要由氟聚合物111、炭黑112、碳纳米管113,碳纤维114,以及固体润滑剂115组成。可以想到的是,根据实际的性能要求,所述导电自润滑膜11还可以包括其他材料,如填料等。
所述氟聚合物111为含氟的聚合物,其可以选自该含氟的聚合物中的一种或几种。该含氟的聚合物可以为聚四氟乙烯(PTFE)、氟化的乙烯-丙烯(FEP)、聚偏二氟乙烯(PVDF)、聚氯三氟乙烯(PCTFE)、乙烯氯三氟乙烯(ECTFE)、全氟烷氧基聚合物(PFA)、或者它们的任何组合。所述含氟的聚合物还可以为全氟烷氧基乙烯,改性四氟乙烯-六氟丙烯,改性全氟烷氧基乙烯,乙烯-四氟乙烯,四氟乙烯-全氟,改性聚四氟乙烯,聚偏氟乙烯,乙烯-氯三氟乙烯中的一种或几种。在选用上述的材料的任意一种或几种的组合时,该氟聚合物111的重量比为70%~80%。优选地,所述氟聚合物111至少占所述导电自润滑膜的重量的72%、78%、或80%,且所述氟聚合物111为聚四氟乙烯(PTFE)。
所述炭黑112为一般是指碳单质微粒,其在碳元素燃烧不充分,就会脱离分子,形成炭黑112。在炭黑112中,碳原子的排列方式类似于石墨,组成六角形平面,通常3~5个这样的层面组成一个微晶,由于炭黑112微晶的每个石墨层面中,碳原子的排列是有序的,而相邻层面间碳原子的排列又是无序的,所以又叫准石墨晶体。理论上认为,炭黑112填充量越大,处于分散状态的炭黑粒子或炭黑粒子集合体的密度也越大,粒子间的平均距离越小,相互接触的几率越高,炭黑粒子或炭黑粒子集合体形成的导电通路也越多。不同极性的高聚物与炭黑112组成共混体系的极性越大,炭黑112临界体积分数就越大,意味着体系的导电性下降,因为炭黑112表面含有很强的极性基团,基体极性大,作用增强,这时强度增加,却妨碍导电粒子自身的凝集,以致导电性差。但是在多组分基体树脂与炭黑112组成的共混体系中,由于不同基体的极性不同,填充炭黑112会产生偏析现象,这时导电性能取决于炭黑粒子在偏析相中的浓度和分布状态,还取决于偏析相高聚物所占比例。因此,一种混合物仅仅有炭黑112,其导电性也是很差的,即其电阻值会很高,难以达到电泳工艺的要求。因此,为了达到符合要求的导电性,炭黑112的重量比为4%~5%。优选地,所述炭黑112的含量为4.5wt%。
所述碳纳米管113可以看成是由单层或多层石墨片围绕中心轴按一定的螺旋角卷曲而成的无缝纳米级管,具有无缝中空的管状结构,其管体由六边形碳原子网格围成,两端则通常可视作两个半球形的大富勒烯分子。单壁碳纳米管的直径较细,一般为几纳米到十几个纳米。碳纳米管113具有良好的导电性能,由于碳纳米管113的结构与石墨的片层结构相同,所以具有很好的电学性能。理论预测其导电性能取决于其管径和管壁的螺旋角。当CNTs的管径大于6nm时,导电性能下降;当管径小于6nm时,CNTs可以被看成具有良好导电性能的一维量子导线。为了达到符合要求的导电性,同时符合材料的力学性能与抗蠕变性能,所述碳纳米管113的重量比为1%~2%。优选地,所述碳纳米管12的含量为1.5wt%。所述碳纳米管113的长度应当为3μm~5μm,以提高其导电均匀性。因为碳纳米管113的长度可以达到厘米线,太长的话,在混合过程中会降低其分散的均匀性,从而会降低其导电的均匀性,进而会降低其在电泳工艺中的电泳效果,即电泳厚度不一的瑕疵。
所述碳纤维114为是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。它是由片状石墨微晶等有机纤维沿纤维轴向方向堆砌而成,经碳化及石墨化处理而得到的微晶石墨材料。碳纤维114“外柔内刚”,质量比金属铝轻,但强度却高于钢铁,并且具有耐腐蚀、高模量的特性。碳纤维13还有很多的性能,如密度低、比性能高,无蠕变,非氧化环境下耐超高温,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小且具有各向异性,耐腐蚀性好,X射线透过性好。良好的导电导热性能、电磁屏蔽性好。为了使该导电自润滑膜具有良好的导电性能,同时具有符合材料的力学性能与抗蠕变性能,所述碳纤维114的重量比为15%~20%。优选地,所述碳纤维114的含量为18wt%。
所述固体润滑剂115选自玻璃纤维、硅、石墨、聚醚醚酮、二硫化钼、芳香族聚酯、碳颗粒、青铜、热塑性填充剂、矿物填充剂、以及它们的任何组合。所述固体润滑剂的作用在于减小摩擦,在本实施例中,所述固体润滑剂115为二硫化钼,其重量比为0~9%。
图4为所述导电自润滑膜11的制备方法的流程图。所述导电自润滑膜11的制备方法包括如下步骤:
S1:提供炭黑112与碳纳米管113,该炭黑112的重量比为4%~5%,碳纳米管113的重量比为1%~2%,将该炭黑112与该碳纳米管113使用超声波分散法分散在液体介质中;
S2:提供碳纤维114、固体润滑剂115、以及氟聚合物111,该碳纤维114的重量比15%~20%,所述固体润滑剂115的重量比为0~9%,所述氟聚合物111的重量比为70%~80%,并在低温条件下将所述碳纤维114、固体润滑剂与所述氟聚合物111均匀地混合在一起形成氟聚合物混合物;
S3:将预分散好的炭黑112与碳纳米管113的溶液喷洒到该氟聚合物混合物上;
S4:将所述氟聚合物混合物在模具中进行高压制坯,并形成圆筒状坯料;
S5:将所述氟聚合物混合物的圆筒状坯料放烘箱中烧结48至144小时;
S6:将冷却后的所述氟聚合物混合物的圆筒状坯料进行车削,即控制进刀量以获得所需厚度的导电自润滑膜。
在步骤S1中,所述液体介质可以为乙二醇溶液,在本实施例中所述乙二醇的固体含量为15-25%wt。
在步骤S2中,所述温度应当控制在19℃以下,优选的是10℃
在步骤S3中,在喷洒所述炭黑112与碳纳米管113的溶液时,还应当搅拌所述氟聚合物混合物,以使该坯料混合均匀。
在步骤S6中,通过车削,可以制造出厚度为0.1mm~0.5mm的导电自润滑膜。优选地,所述导电自润滑膜的厚度为0.15mm~0.25mm。在本实施例中,所述轴承用导电用自润滑膜的厚度为0.2mm。
所述粘合层12由氟聚合物制成,所述氟聚合物选自乙烯-四氟乙烯共聚物,氟化乙烯丙烯共聚物,乙烯氟化乙烯-丙烯三聚物,聚氯三氟乙烯,乙烯氯三氯乙烯,或者它们的任意组合。在使用时,该粘合层12通过一个加热辊来将粘合胶料涂覆在所述金属基层10上,达到平整的目的。
如图5所示,为所述轴承用导电自润滑复合板的制备方法流程图。所述轴承用导电自润滑复合板的制备方法包括如下步骤:
S21:提供一个金属基层10,并在该金属基层10上开设多个均匀分布的凹陷结构101,所述凹陷结构101的深度为0.02mm~0.10mm,凹陷结构101的面积占所述金属基层的面积的30%~50%;
S22:提供粘合层12,并使该粘合层12平铺设置在所述具有凹陷结构101的金属基层10上,所述粘合层12的厚度0.01mm~0.05mm;
S23:提供导电自润滑膜11,所述导电自润滑膜11主要由氟聚合物111、炭黑112、碳纳米管113,碳纤维114,以及固体润滑剂115组成,所述聚合物111选自氟聚合物中的一种或几种且其重量比为70%~80%,炭黑112的重量比为4%~5%,所述碳纳米管113的重量比为1%~2%,所述碳纤维114的重量比为15%~20%,所述固体润滑剂115的重量比为0~9%,所述碳纳米管的长度为3μm~5μm,所述导电自润滑膜11覆盖在所述粘合层12上;
S24:将所述叠加在一起的金属基层10、粘合层12、以及导电自润滑膜11置入温控箱中,该温控箱的温度的复合温度为270℃~300℃;
S25:提供复合压力至所述导电自润滑膜111上,该复合压力为2MPa~10MPa以将所述导电自润滑膜11与所述金属基层10电导通以制得所述轴承用导电自润滑复合板。
在步骤S22中,所述粘合层12由氟聚合物制成。所述氟聚合物选自乙烯-四氟乙烯共聚物,氟化乙烯丙烯共聚物,乙烯氟化乙烯-丙烯三聚物,聚氯三氟乙烯,乙烯氯三氯乙烯,或者它们的任意组合。
在步骤S21中,所述凹陷结构101可以为网格状,所述网格的深度为深度0.02-0.05mm。所述凹陷结构101还可以为圆坑状,所述圆坑的深度为深度0.05-0.10mm。在本实施例中,所述凹陷结构101为网格状,且该网格状的每一条槽为V形槽,深度为0.03mm。
与现有技术相比,本发明所提供的轴承用导电自润滑复合板中的导电自润滑膜11使用了炭黑112与碳纳米管113,且其混合使用,降低了整体材料的成本,有利于推广使用,而该通过设定所述炭黑112、碳纳米管113、以及碳纤维114的比例,微观上在该导电自润滑膜中形成了良好的导电网络,使得在宏观上该导电自润滑膜的电阻值小于103欧姆平方厘米,从而可以达到电泳工艺的要求,同时,由于所述凹陷结构101的存在,而所述粘合层12的厚度为0.01mm~0.05mm,使得在复合压力为2MPa~10MPa时可以通过所述凹陷结构101将所述粘合层12刺破从而使所述导电自润滑膜11与金属基层10电导通,同时所述粘合层12的其他部分还起到了粘合的作用,从而使得该整块轴承用导电自润滑复合板具有导电的功能,符合电泳工艺的要求,进而该轴承用导电自润滑复合板可以满足汽车工业的要求,特别是汽车涂装领域。
以上仅为本发明的较佳实施例,并不用于局限本发明的保护范围,任何在本发明精神内的修改、等同替换或改进等,都涵盖在本发明的权利要求范围内。

Claims (10)

1.一种轴承用导电自润滑复合板,其使用于电泳工艺中,其特征在于:所述轴承用导电自润滑复合板包括一个金属基层,一层设置在所述金属基层上的导电自润滑膜,以及用于粘合所述金属基层与导电自润滑膜的粘合层,所述金属基层上开设有多个均匀分布的凹陷结构,所述凹陷结构的深度0.02mm~0.10mm,凹陷结构的面积占所述金属基层的面积的30%~50%,所述粘合层的厚度为0.01mm~0.05mm,所述导电自润滑膜的厚度为0.1mm~0.5mm,所述导电自润滑膜通过所述凹陷结构与所述金属基层电导通,所述导电自润滑膜主要由氟聚合物、炭黑、碳纳米管,碳纤维,以及固体润滑剂组成,所述聚合物选自氟聚合物中的一种或几种且其重量比为70%~80%,炭黑的重量比为4%~5%,所述碳纳米管的重量比为1%~2%,所述碳纤维的重量比为15%~20%,所述固体润滑剂的重量比为0~9%,所述碳纳米管的长度为3μm~5μm。
2.如权利要求1所述的导电自润滑复合板,其特征在于:所述导电自润滑膜的厚度为0.15-0.25mm。
3.如权利要求1所述的导电自润滑复合板,其特征在于:所述聚合物选自聚四氟乙烯、氟化的乙烯-丙烯、聚偏二氟乙烯、聚氯三氟乙烯、乙烯氯三氟乙烯、全氟烷氧基聚合物、以及它们的组合。
4.如权利要求1所述的导电自润滑复合板,其特征在于:所述氟聚合物为全氟烷氧基乙烯,改性四氟乙烯-六氟丙烯,改性全氟烷氧基乙烯,乙烯-四氟乙烯,四氟乙烯-全氟,改性聚四氟乙烯,聚偏氟乙烯,乙烯-氯三氟乙烯。
5.如权利要求1所述的导电自润滑复合板,其特征在于:所述固体润滑剂选自玻璃纤维、碳纤维、硅、石墨、聚醚醚酮、二硫化钼、芳香族聚酯、碳颗粒、青铜、氟聚合物、热塑性填充剂、矿物填充剂、以及它们的任何组合。
6.如权利要求1所述的导电自润滑复合板,其特征在于:所述氟聚合物至少占所述导电自润滑膜的重量的72%、78%、或80%。
7.一种轴承用导电自润滑复合板的制备方法,其包括如下步骤:
S21:提供一个金属基层,并在该金属基层上开设多个均匀分布的凹陷结构,所述凹陷结构的深度为0.02mm~0.10mm,凹陷结构的面积占所述金属基层的面积的30%~50%;
S22:提供粘合层,并使该粘合层平铺设置在所述具有凹陷结构的金属基层上,所述粘合层的厚度0.01mm~0.05mm;
S23:提供导电自润滑膜,所述导电自润滑膜主要由氟聚合物、炭黑、碳纳米管,碳纤维,以及固体润滑剂组成,所述聚合物选自氟聚合物中的一种或几种且其重量比为70%~80%,炭黑的重量比为4%~5%,所述碳纳米管的重量比为1%~2%,所述碳纤维的重量比为15%~20%,所述固体润滑剂的重量比为0~9%,所述碳纳米管的长度为3μm~5μm,所述导电自润滑膜覆盖在所述粘合层上;
S24:将所述叠加在一起的金属基层、粘合层、以及导电自润滑膜置入温控箱中,该温控箱的温度的复合温度为270℃~300℃;
S25:提供复合压力至所述导电自润滑膜上,该复合压力为2MPa~10MPa以将所述导电自润滑膜与所述金属基层电导通以制得所述轴承用导电自润滑复合板。
8.如权利要求7所述的轴承用导电自润滑复合板的制备方法,其特征在于:所述粘合层由氟聚合物制成,所述氟聚合物选自乙烯-四氟乙烯共聚物,氟化乙烯丙烯共聚物,乙烯氟化乙烯-丙烯三聚物,聚氯三氟乙烯,乙烯氯三氯乙烯,或者它们的任意组合。
9.如权利要求7所述的轴承用导电自润滑复合板的制备方法,其特征在于:所述凹陷结构为网格状,所述网格的深度为深度0.02-0.05mm。
10.如权利要求7所述的轴承用导电自润滑复合板的制备方法,其特征在于:所述凹陷结构为圆坑状,所述圆坑的深度为深度0.05-0.10mm。
CN201810959873.3A 2018-08-22 2018-08-22 一种轴承用导电自润滑复合板及其制备方法 Pending CN108891103A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810959873.3A CN108891103A (zh) 2018-08-22 2018-08-22 一种轴承用导电自润滑复合板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810959873.3A CN108891103A (zh) 2018-08-22 2018-08-22 一种轴承用导电自润滑复合板及其制备方法

Publications (1)

Publication Number Publication Date
CN108891103A true CN108891103A (zh) 2018-11-27

Family

ID=64358220

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810959873.3A Pending CN108891103A (zh) 2018-08-22 2018-08-22 一种轴承用导电自润滑复合板及其制备方法

Country Status (1)

Country Link
CN (1) CN108891103A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020038263A1 (zh) * 2018-08-22 2020-02-27 浙江长盛滑动轴承股份有限公司 一种轴承用导电自润复合板
CN111394157A (zh) * 2020-04-24 2020-07-10 烟台中天连接技术研究院 一种衬套用高抗载二硫化钼干膜润滑剂及其制备方法
CN112247482A (zh) * 2020-09-25 2021-01-22 王俊霞 一种转动导电机构的制备方法
WO2021031569A1 (zh) * 2019-08-20 2021-02-25 明阳科技(苏州)股份有限公司 一种塑料-钢背复合自润滑板材的快速粘接方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1265182A (zh) * 1997-07-24 2000-08-30 诺顿潘葡斯有限公司 自润滑轴承
CN101305486A (zh) * 2004-12-29 2008-11-12 3M创新有限公司 z轴导电流场隔板
CN104249154A (zh) * 2013-06-26 2014-12-31 浙江长盛滑动轴承股份有限公司 一种金属基自润滑复合材料及其制备方法
CN104379951A (zh) * 2012-05-11 2015-02-25 马勒国际有限公司 滑动轴承
CN104877283A (zh) * 2015-06-25 2015-09-02 河南泛锐复合材料研究院有限公司 抗静电碳纳米材料-聚四氟乙烯复合材料的制备方法
CN105276007A (zh) * 2014-06-12 2016-01-27 凯玛蒂斯有限公司 导电轴承系统及形成导电轴承的方法
CN107043557A (zh) * 2016-02-05 2017-08-15 新材料与产业技术北京研究院 一种双层膜及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1265182A (zh) * 1997-07-24 2000-08-30 诺顿潘葡斯有限公司 自润滑轴承
CN101305486A (zh) * 2004-12-29 2008-11-12 3M创新有限公司 z轴导电流场隔板
CN104379951A (zh) * 2012-05-11 2015-02-25 马勒国际有限公司 滑动轴承
CN104249154A (zh) * 2013-06-26 2014-12-31 浙江长盛滑动轴承股份有限公司 一种金属基自润滑复合材料及其制备方法
CN105276007A (zh) * 2014-06-12 2016-01-27 凯玛蒂斯有限公司 导电轴承系统及形成导电轴承的方法
CN104877283A (zh) * 2015-06-25 2015-09-02 河南泛锐复合材料研究院有限公司 抗静电碳纳米材料-聚四氟乙烯复合材料的制备方法
CN107043557A (zh) * 2016-02-05 2017-08-15 新材料与产业技术北京研究院 一种双层膜及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020038263A1 (zh) * 2018-08-22 2020-02-27 浙江长盛滑动轴承股份有限公司 一种轴承用导电自润复合板
WO2021031569A1 (zh) * 2019-08-20 2021-02-25 明阳科技(苏州)股份有限公司 一种塑料-钢背复合自润滑板材的快速粘接方法
CN111394157A (zh) * 2020-04-24 2020-07-10 烟台中天连接技术研究院 一种衬套用高抗载二硫化钼干膜润滑剂及其制备方法
CN112247482A (zh) * 2020-09-25 2021-01-22 王俊霞 一种转动导电机构的制备方法

Similar Documents

Publication Publication Date Title
CN108891103A (zh) 一种轴承用导电自润滑复合板及其制备方法
He et al. Design of electrically conductive structural composites by modulating aligned CVD-grown carbon nanotube length on glass fibers
JP5293905B2 (ja) プリプレグおよび炭素繊維強化複合材料
CN101102891B (zh) 多层滑动部件
CN109181823A (zh) 一种轴承用导电自润滑膜及其制备方法
EP2765319B1 (de) Gleitlagerverbundwerkstoff und hieraus hergestelltes Gleitlagerelement
Dawoud et al. Effect of processing parameters and graphite content on the tribological behaviour of 3D printed acrylonitrile butadiene styrene: Einfluss von Prozessparametern und Graphitgehalt auf das tribologische Verhalten von 3D‐Druck Acrylnitril‐Butadien‐Styrol Bauteilen
KR19990028568A (ko) 평베어링 재료 및 그의 이용
KR101735819B1 (ko) 탄소계 방열구조체용 재료, 이를 이용한 탄소계 방열구조체의 제조방법 및 이에 의해 제조된 탄소계 방열구조체
Yadav et al. Mechanical analysis of nickel particle-coated carbon fiber-reinforced epoxy composites for advanced structural applications
Wang et al. Investigation of carbon corrosion in polymer electrolyte fuel cells using steam etching
CN208914713U (zh) 一种轴承用导电自润滑复合板
WO2008141592A1 (fr) Palier autolubrifiant sans plomb et son procédé de production
Lee et al. The electrical and corrosion properties of carbon nanotube coated 304 stainless steel/polymer composite as PEM fuel cell bipolar plates
CA2909082A1 (en) Hydrophobic porous hard coating with lubricant, method for making and use of same
Kaftelen‐Odabaşı et al. A study on graphene reinforced carbon fiber epoxy composites: Investigation of electrical, flexural, and dynamic mechanical properties
Manikkavel et al. Investigation of high temperature vulcanized and room temperature vulcanized silicone rubber based on flexible piezo‐electric energy harvesting applications with multi‐walled carbon nanotube reinforced composites
Li et al. Thermal conductivity enhancement and heat transport mechanism of carbon fiber z-pin graphite composite structures
Taherian et al. application of polymer-based composites: Bipolar plate of PEM fuel cells
Kaiser et al. High-volume-fraction textured carbon nanotube–bis (maleimide) and− epoxy matrix polymer nanocomposites: Implications for high-performance structural composites
Kim et al. Transparent, water-repellent, antiviral, antistatic, and flexible Cu–Plasma-Polymerized fluorocarbon nanocomposite thin films
Huang et al. Tailoring intrinsic hydrophobicity and surface energy on rough surface via low‐T Cassie–Wenzel wetting transition method
Hu et al. Effects of the electrophoretic deposition of CNTs on the mechanical properties of Ti/CFRP composite laminates
Mulqueen et al. Spray deposition of sustainable plant based graphene in thermosetting carbon fiber laminates for mechanical, thermal, and electrical properties
Wang et al. Utility of whiskerized carbon fabric surfaces in resistive heating of composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Zhang Rongping

Inventor after: Sun Zhihua

Inventor after: Lu Zhongquan

Inventor after: Hua Qiang

Inventor after: Jiang Zhihui

Inventor after: Zhang Juxiang

Inventor after: Long Teng

Inventor before: Zhang Rongping

Inventor before: Sun Zhihua

Inventor before: Lu Zhongquan