CN108886498B - 在无线系统中处理用户平面 - Google Patents

在无线系统中处理用户平面 Download PDF

Info

Publication number
CN108886498B
CN108886498B CN201780021388.5A CN201780021388A CN108886498B CN 108886498 B CN108886498 B CN 108886498B CN 201780021388 A CN201780021388 A CN 201780021388A CN 108886498 B CN108886498 B CN 108886498B
Authority
CN
China
Prior art keywords
wtru
transmission
resources
data
logical channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780021388.5A
Other languages
English (en)
Other versions
CN108886498A (zh
Inventor
马蒂诺·M·弗雷达
吉斯伦·佩尔蒂埃
保罗·马里内尔
黛安娜·潘尼
伯诺瓦·佩尔蒂埃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Patent Holdings Inc
Original Assignee
IDAC Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IDAC Holdings Inc filed Critical IDAC Holdings Inc
Priority to CN202210539358.6A priority Critical patent/CN115209484A/zh
Publication of CN108886498A publication Critical patent/CN108886498A/zh
Application granted granted Critical
Publication of CN108886498B publication Critical patent/CN108886498B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • H04L47/286Time to live
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/04Registration at HLR or HSS [Home Subscriber Server]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Databases & Information Systems (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

所提供的是用于在无线通信系统中处理用户平面的系统、方法和工具。该无线通信系统可以用灵活的空中接口来表征。所述灵活的空中接口的一个方面在于:无线发射/接收单元(WTRU)在系统中进行的传输可以具有不同的服务质量(QoS)需求,例如不同的时延需求。该WTRU可以基于QoS需求来调整其行为,例如通过使用预先配置的资源、资源请求、和/或自调度等等来调整,以便可以依照相应的QoS需求来执行传输。

Description

在无线系统中处理用户平面
相关申请的交叉引用
本申请要求享有2016年3月30日提交的美国临时专利申请62/315,373的权益,所述申请的公开内容在这里全部引入以作为参考。
背景技术
移动通信技术正在不断演进,并且业已处于其第五代——5G的前夕。5G网络可以构建在灵活的无线电接入技术之上。随着这些新技术的显现,在确定如何支持具有不同特性的各种使用范例方面也提出了挑战。
发明内容
这里公开的是用于从无线发射/接收单元(WTRU)向网络传送上行链路数据的系统、方法和工具。上行链路数据可以包括上行链路数据单元(例如上行链路数据分组),并且上行链路数据单元的传输可以用一种满足特定服务质量(QoS)需求的方式来执行。所述QoS需求可以是定时需求。作为示例,QoS需求可以是以相对较低的时延来传送上行链路数据单元。
WTRU可以保持一个用于监视上行链路数据单元传输时延的生存时间(TTL)参数。举例来说,该TTL参数的值可以反映从上行链路可用于传输时起经过的时间量和/或在假设上行链路数据单元应被传送之前剩余的时间量。WTRU可以基于QoS需求来为TTL参数确定阈值,并且可以尝试使用第一传输模式来传送该上行链路数据单元,以及确定TTL参数值在实现成功传输之前已经达到阈值。然后,WTRU可以尝试使用第二传输模式来传送上行链路数据单元,例如在TTL参数到期之前。
第二传输模式可以在一个或多个方面不同于第一传输模式。例如,WTRU可以在第二传输模式中使用预先配置的资源集合来传送上行链路数据单元。WTRU可以接收这种预先配置的资源,例如从网络接收。网络可以为特定QoS需求(例如与未决的上行链路数据单元相关联的QoS需求)所表征的传输保留预先配置的资源。网络可以规定预先配置的资源将会被多个WTRU共享。
WTRU可以在其初始注册到网络的时候接收预先配置的资源。作为替换或补充,WTRU可以借助专用信令来从网络接收预先配置的资源(例如在WTRU已经注册到网络之后)。WTRU可以通过连至网络的上行链路传输来获取对预先配置的资源集合的访问。作为示例,该上行链路传输可以指示WTRU希望使用预先配置的资源的时间。WTRU可以从网络接收响应于上行链路传输的应答。
在第二传输模式中,WTRU可以向网络发送上行链路控制信息(UCI)。该UCI可以包含关于资源的请求。UCI可以指示与上行链路数据单元相关联的QoS需求,或是上行链路数据单元的参数配置(numerology)。WTRU可以从网络接收响应于该UCI的许可。所述许可可以指示WTRU可在第二传输模式中使用哪些资源。作为补充或替换,该许可可以指定可供WTRU在第二传输模式中使用的频谱工作模式(SOM)或传输信道。例如,该许可可以指定可供WTRU在第二传输模式中使用的参数配置和/或波形。
在第二传输模式中,WTRU可以中断已有的混合自动重复请求(HARQ)进程,以便传送上行链路数据单元。
附图说明
更详细的理解可以从以下结合附图举例给出的描述中得到,其中:
图1A是可以实施所公开的一个或多个实施例的例示通信系统的系统图示。
图1B是可以在图1A所示的通信系统内部使用的例示无线发射/接收单元(WTRU)的系统图示。
图1C是可以在图1A所示的通信系统内部使用的例示无线电接入网络和例示核心网络的系统图示。
图1D是可以在图1A所示的通信系统内部使用的另一个例示无线电接入网络和另一个例示核心网络的系统图示。
图1E是可以在图1A所示的通信系统内部使用的另一个例示无线电接入网络和另一个例示核心网络的系统图示。
图2是关于带宽灵活性的示例的图示。
图3是关于灵活的频谱分配的示例的图示。
图4A是关于TDD双工的定时关系的示例的图示。
图4B是关于FDD双工的定时关系的示例的图示。
图5是关于经过优先排序的传输的示例的图示。
具体实施方式
现在将参考不同的附图来描述具体实施方式。虽然本描述提供了关于可能的实施方式的详细示例,然而应该指出的是,这些细节应该是例示性的,并且不会对本申请的范围构成限制。
在关于例示实施例的描述中将会用到以下的缩略语和首字母缩写词:
Δf 子载波间隔
5gFlex 5G灵活无线电接入技术
5gNB 5GFlex节点B
ACK 应答
BLER 块差错率
BTI 基本TI(一个或多个符号持续时间的整数倍)
CB 基于争用的(例如接入,信道,资源)
CoMP 协作多点传输/接收
CP 循环前缀
CP-OFDM 常规OFDM(依赖于循环前缀)
CQI 信道质量指示符
CN 核心网络(例如LTE分组核心)
CRC 循环冗余校验
CSI 信道状态信息
CSG 闭合订户群
D2D 设备到设备传输(例如LTE侧链路)
DCI 下行链路控制信息
DL 下行链路
DM-RS 解调参考信号
DRB 数据无线电承载
EMBB 增强型移动宽带
EPC 演进型分组核心
FBMC 滤波器组多载波
FBMC/OQAM 使用偏移正交振幅调制的FBMC
FDD 频分双工
FDM 频分复用
FEC 前向纠错
ICC 工业控制和通信
ICIC 小区间干扰消除
IP 网际协议
LAA 授权辅助接入
LBT 先听后说
LCH 逻辑信道
LCG 逻辑信道群组
LCP 逻辑信道优先排序
LLC 低时延通信
LTE 长期演进,例如从3GPP LTE R8开始向上
MAC 介质访问控制
NACK 否定ACK
MBB 大规模宽带通信
MC 多载波
MCS 调制和编码方案
MIMO 多输入多输出
MTC 机器类型通信
NAS 非接入层
OFDM 正交频分复用
OFDMA 正交频分多址接入
OOB 带外(辐射)
PBR 经过优先排序的比特率
Pcmax 指定TI中的总的可用UE功率
PHY 物理层
PRACH 物理随机接入信道
PDU 协议数据单元
PER 分组差错率
PL 路径损耗(估计)
PLMN 公共陆地移动网络
PLR 分组丢失率
PSS 主同步信号
QoS 服务质量(从物理层的角度来看)
RAB 无线电接入承载
RACH 随机接入信道(或过程)
RF 无线电前端
RNTI 无线电网络标识符
RRC 无线电资源控制
RRM 无线电资源管理
RS 参考信号
RTT 往返时间
SCMA 单载波多址接入
SDU 服务数据单元
SOM 频谱工作模式
SS 同步信号
SSS 辅同步信号
SRB 信号无线电承载
SWG 切换间隙(在自包含子帧中)
TB 传输块
TBS 传输块大小
TDD 时分双工
TDM 时分复用
TI 时间间隔(一个或多个BTI的整数倍)
TTI 传输时间间隔(一个或多个TI的整数倍)
TRP 传输/接收点
TRx 收发信机
UFMC 通用滤波多载波
UF-OFDM 通用滤波OFDM
UL 上行链路
URC 超可靠通信
URLLC 超可靠低时延通信
V2V 车辆-车辆通信
V2X 车载通信
WLAN 无线局域网和相关技术(IEEE 802.xx领域)
WTRU 无线发射/接收单元
图1A是可以实施所公开的一个或多个实施例的例通信系统100的图示。通信系统100可以是为多个无线用户提供语音、数据、视频、消息传递、广播等内容的多址接入系统。该通信系统100通过共享包括无线带宽在内的系统资源来允许多个无线用户访问此类内容。作为示例,通信系统100可以使用一种或多种信道接入方法,例如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交FDMA(OFDMA)、单载波FDMA(SC-FDMA)、使用偏移正交振幅调制的正交频分复用(OFDM-OQAM)、通用滤波正交频分复用(UF-OFDM)等等。
如图1A所示,通信系统100可以包括无线发射/接收单元(WTRU)102a、102b、102c和/或102d(其通常被统称为WTRU 102),无线电接入网络(RAN)103/104/105,核心网络106/107/109,公共交换电话网络(PSTN)108,因特网110以及其他网络112,但是应该了解,所公开的实施例设想了任意数量的WTRU、基站、网络和/或网络部件。
通信系统100还可以包括多个基站,例如,基站114a和基站114b。每一个基站114a、114b可以是被配置成通过与WTRU 102a、102b、102c、102d中的至少一个无线对接来促使接入一个或多个通信网络的任何类型的设备,所述网络则可以是核心网络106/107/109、因特网110和/或网络112。作为示例,基站114a、114b可以是基地收发信台(BTS)、节点B、e节点B、家庭节点B、家庭e节点B、站点控制器、接入点(AP)、无线路由器等等。虽然每一个基站114a、114b都被描述成是单个部件,但是应该了解,基站114a、114b可以包括任何数量的互连基站和/或网络部件。
基站114a可以是RAN 103/104/105的一部分,并且所述RAN还可以包括其他基站和/或网络部件(未显示),例如基站控制器(BSC)、无线电网络控制器(RNC)、中继节点等等。基站114a和/或基站114b可以被配置成在名为小区(未显示)的特定地理区域内部发射和/或接收无线信号。小区可被进一步划分成小区扇区。例如,与基站114a关联的小区可分为三个扇区。由此,在一个实施例中,基站114a可以包括三个收发信机,也就是说,每一个收发信机对应于小区的一个扇区。在另一个实施例中,基站114a可以使用多输入多输出(MIMO)技术,由此可以为小区的每个扇区使用多个收发信机。
基站114a、114b可以经由空中接口115/116/117来与一个或多个WTRU 102a、102b、102c、102d进行通信,该空中接口可以是任何适当的无线通信链路(例如射频(RF)、微波、红外线(IR)、紫外线(UV)、可见光等等)。所述空中接口115/116/117可以用任何适当的无线电接入技术(RAT)来建立。
更具体地说,如上所述,通信系统100可以是多址接入系统,并且可以使用一种或多种信道接入方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA、OFDM-OQAM、UF-OFDM等等。举例来说,RAN103/104/105中的基站114a与WTRU 102a、102b、102c可以实施诸如通用移动电信系统(UMTS)陆地无线电接入(UTRA)之类的无线电技术,并且该技术可以使用宽带CDMA(WCDMA)来建立空中接口115/116/117。WCDMA可以包括诸如高速分组接入(HSPA)和/或演进型HSPA(HSPA+)之类的通信协议。HSPA则可以包括高速下行链路分组接入(HSDPA)和/或高速上行链路分组接入(HSUPA)。
在另一个实施例中,基站114a与WTRU 102a、102b、102c可以实施演进型UMTS陆地无线电接入(E-UTRA)之类的无线电技术,该技术可以使用长期演进(LTE)、先进LTE(LTE-A)和/或5gFLEX来建立空中接口115/116/117。
在其他实施例中,基站114a与WTRU 102a、102b、102c可以实施IEEE 802.16(全球微波接入互操作性(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000EV-DO、临时标准2000(IS-2000)、临时标准95(IS-95)、临时标准856(IS-856)、全球移动通信系统(GSM)、用于GSM增强数据速率演进(EDGE)、GSM EDGE(GERAN)等无线电接入技术。
作为示例,图1A中的基站114b可以是无线路由器、家庭节点B、家庭e节点B或接入点,并且可以使用任何适当的RAT来促成局部区域中的无线连接,例如营业场所、住宅、交通工具、校园等等。在一个实施例中,基站114b与WTRU 102c、102d可以通过实施诸如IEEE802.11之类的无线电技术来建立无线局域网(WLAN)。在另一个实施例中,基站114b与WTRU102c、102d可以通过实施诸如IEEE 802.15之类的无线电技术来建立无线个人局域网(WPAN)。在再一个实施例中,基站114b和WTRU102c、102d可以通过使用基于蜂窝的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、5gFLEX等等)来建立微微小区或毫微微小区。如图1A所示,基站114b可以直接连接到因特网110。由此,基站114b未必需要经由核心网络106/107/109来接入因特网110。
RAN 103/104/105可以与核心网络106/107/109通信,所述核心网络可以是被配置成向一个或多个WTRU 102a、102b、102c、102d提供语音、数据、应用和/或借助网际协议的语音(VoIP)服务的任何类型的网络。例如,核心网络106/107/109可以提供呼叫控制、记账服务、基于移动位置的服务、预付费呼叫、因特网连接、视频分发等等,和/或执行用户验证之类的高级安全功能。虽然在图1A中没有显示,但是应该了解,RAN103/104/105和/或核心网络106/107/109可以直接或间接地和其他那些与RAN103/104/105使用相同RAT或不同RAT的RAN进行通信。例如,除了与使用E-UTRA无线电技术的RAN103/104/105连接之外,核心网络106/107/109还可以与别的使用GSM无线电技术的RAN(未显示)通信。
核心网络106/107/109还可以充当供WTRU 102a、102b、102c、102d接入PSTN 108、因特网110和/或其他网络112的网关。PSTN 108可以包括提供简易老式电话服务(POTS)的电路交换电话网络。因特网110可以包括使用公共通信协议的全球性互联计算机网络设备系统,所述协议可以是TCP/IP互连网协议族中的传输控制协议(TCP)、用户数据报协议(UDP)和网际协议(IP)。网络112可以包括由其他服务供应商拥有和/或运营的有线或无线通信网络。例如,网络112可以包括与一个或多个RAN相连的另一个核心网络,所述一个或多个RAN可以与RAN 103/104/105使用相同RAT或不同RAT。
通信系统100中一些或所有WTRU 102a、102b、102c、102d可以包括多模能力,换言之,WTRU 102a、102b、102c、102d可以包括在不同无线链路上与不同无线网络通信的多个收发信机。例如,图1A所示的WTRU 102c可以被配置成与使用基于蜂窝的无线电技术的基站114a通信,以及与可以使用IEEE 802无线电技术的基站114b通信。
图1B是例示WTRU 102的系统图示。如图1B所示,WTRU 102a、102b、102c、102d可以包括处理器118、收发信机120、发射/接收部件122、扬声器/麦克风124、数字键盘126、显示器/触摸板128、不可移除存储器130、可移除存储器132、电源134、全球定位系统(GPS)芯片组136以及其他周边设备138。应该了解的是,在保持符合实施例的同时,WTRU 102还可以包括前述部件的任何子组合。
处理器118可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)电路、其他任何类型的集成电路(IC)、状态机等等。处理器118可以执行信号编码、数据处理、功率控制、输入/输出处理和/或其他任何能使WTRU102在无线环境中工作的功能。处理器118可以耦合至收发信机120,收发信机120可以耦合至发射/接收部件122。虽然图1B将处理器118和收发信机120描述成是独立组件,但是应该了解,处理器118和收发信机120可以集成在一个电子组件或芯片中。
WTRU 102的发射/接收部件122可以被配置成经由空中接口115/116/117来发射或接收去往或来自基站(例如基站114a)的信号。举个例子,在一个实施例中,发射/接收部件122可以是被配置成发射和/或接收RF信号的天线。在另一个实施例中,作为示例,发射/接收部件122可以是被配置成发射和/或接收IR、UV或可见光信号的放射器/检测器。在再一个实施例中,发射/接收部件122可以被配置成发射和接收RF和光信号。应该了解的是,发射/接收部件122可以被配置成发射和/或接收无线信号的任何组合。
此外,虽然在图1B中将发射/接收部件122描述成是单个部件,但是WTRU 102可以包括任何数量的发射/接收部件122。更具体地说,WTRU102可以使用MIMO技术。因此,在一个实施例中,WTRU 102可以包括两个或多个经由空中接口115/116/117来发射和接收无线电信号的发射/接收部件122(例如多个天线)。
WTRU 102的收发信机120可以被配置成对发射/接收部件122将要发射的信号进行调制,以及对发射/接收部件122接收的信号进行解调。如上所述,WTRU 102可以具有多模能力。因此,收发信机120可以包括允许WTRU 102借助诸如UTRA和IEEE 802.11之类的多种RAT来进行通信的多个收发信机。
WTRU 102的处理器118可以耦合至扬声器/麦克风124、数字键盘126和/或显示器/触摸板128(例如液晶显示器(LCD)显示单元或有机发光二极管(OLED)显示单元),并且可以接收来自这些部件的用户输入数据。处理器118还可以向扬声器/麦克风124、数字键盘126和/或显示器/触摸板128输出用户数据。此外,处理器118可以从任何适当的存储器(例如不可移除存储器130和/或可移除存储器132)中访问信息,以及将信息存入这些存储器。所述不可移除存储器130可以包括随机存取存储器(RAM)、只读存储器(ROM)、硬盘或是其他任何类型的记忆存储设备。可移除存储器132可以包括订户身份模块(SIM)卡、记忆棒、安全数字(SD)记忆卡等等。在其他实施例中,处理器118可以从那些并非实际位于WTRU102的存储器访问信息,以及将数据存入这些存储器,其中举例来说,所述存储器可以位于服务器或家庭计算机。
处理器118可以接收来自电源134的电力,并且可以被配置分发和/或控制用于WTRU 102中的其他组件的电力。电源134可以是为WTRU102供电的任何适当的设备。举例来说,电源134可以包括一个或多个干电池组(如镍镉(Ni-Cd)、镍锌(Ni-Zn)、镍氢(NiMH)、锂离子(Li-ion)等等)、太阳能电池、燃料电池等等。
处理器118还可以与GPS芯片组136耦合,该芯片组可以被配置成提供与WTRU 102的当前位置相关的位置信息(例如经度和纬度)。作为来自GPS芯片组136的信息的补充或替换,WTRU 102可以经由空中接口115/116/117接收来自基站(例如基站114a、114b)的位置信息,和/或根据从两个或多个附近基站接收的信号定时来确定其位置。应该了解的是,在保持符合实施例的同时,WTRU 102可以借助任何适当的定位方法来获取位置信息。
处理器118还可以耦合到其他周边设备138,这其中可以包括提供附加特征、功能和/或有线或无线连接的一个或多个软件和/或硬件模块。例如,周边设备138可以包括加速度计、电子指南针、卫星收发信机、数码相机(用于照片或视频)、通用串行总线(USB)端口、振动设备、电视收发信机、免提耳机、
Figure BDA0001816052980000131
模块、调频(FM)无线电单元、数字音乐播放器、媒体播放器、视频游戏机模块、因特网浏览器等等。
图1C是根据一个实施例的RAN 103和核心网络106的系统图示。如上所述,RAN 103可以使用E-UTRA无线电技术并经由空中接口115来与WTRU 102a、102b、102c进行通信。并且RAN 103还可以与核心网络106通信。如图1C所示,RAN 103可以包括节点B 140a、140b、140c,其中每一个节点B都可以包括经由空中接口115与WTRU 102a、102b、102c通信的一个或多个收发信机。节点B 140a、140b、140c中的每一个都可以关联于RAN 103内部的特定小区(未显示)。RAN 103还可以包括RNC 142a、142b。应该了解的是,在保持与实施例相符的同时,RAN 103可以包括任何数量的节点B和RNC。
如图1C所示,节点B 140a、140b可以与RNC 142a进行通信。此外,节点B 140c还可以与RNC 142b进行通信。节点B 140a、140b、140c可以经由Iub接口来与相应的RNC 142a、142b进行通信。RNC 142a、142b彼此则可以经由Iur接口来进行通信。每一个RNC 142a、142b都可以被配置成控制与之相连的相应节点B 140a、140b、140c。另外,每一个RNC 142a、142b都可被配置成执行或支持其他功能,例如外环功率控制、负载控制、许可控制、分组调度、切换控制、宏分集、安全功能、数据加密等等。
图1C所示的核心网络106可以包括媒体网关(MGW)144、移动交换中心(MSC)146、服务GPRS节点交换中心(SGSN)148、和/或网关GPRS支持节点(GGSN)150。虽然前述每个部件都被描述成是核心网络106的一部分,但是应该了解,核心网络运营商之外的其他实体也可以拥有和/或运营这其中的任一部件。
RAN 103中的RNC 142a可以经由IuCS接口连接到核心网络106中的MSC 146。MSC146则可以连接到MGW 144。MSC 146和MGW 144可以为WTRU 102a、102b、102c提供针对PSTN108之类的电路交换网络的接入,以便促成WTRU 102a、102b、102c与传统陆线通信设备间的通信。
RAN 103中的RNC 142a还可以经由IuPS接口连接到核心网络106中的SGSN 148。所述SGSN 148则可以连接到GGSN 150。SGSN 148和GGSN 150可以为WTRU 102a、102b、102c提供针对因特网110之类的分组交换网络的接入,以便促成WTRU 102a、102b、102c与启用IP的设备之间的通信。
如上所述,核心网络106还可以连接到网络112,该网络可以包括其他服务供应商拥有和/或运营的其他有线或无线网络。
图1D是根据一个实施例的RAN 104以及核心网络107的系统图示。如上所述,RAN104可以使用E-UTRA无线电技术并经由空中接口116来与WTRU 102a、102b、102c进行通信。此外,RAN 104还可以与核心网络107通信。
RAN 104可以包括e节点B 160a、160b、160c,然而应该了解,在保持与实施例相符的同时,RAN 104可以包括任何数量的e节点B。每一个e节点B 160a、160b、160c可以包括一个或多个收发信机,以便经由空中接口116来与WTRU 102a、102b、102c通信。在一个实施例中,e节点B 160a、160b、160c可以实施MIMO技术。由此,举例来说,e节点B 160a可以使用多个天线来向WTRU 102a发射无线信号,以及接收来自WTRU 102a的无线信号。
每一个e节点B 160a、160b、160c可以关联于特定小区(未显示),并且可以被配置成处理无线电资源管理决策、切换决策、上行链路和/或下行链路中的用户调度等等。如图1D所示,e节点B 160a、160b、160c彼此可以在X2接口上进行通信。
图1D所示的核心网络107可以包括移动性管理网关(MME)162、服务网关164以及分组数据网络(PDN)网关166。虽然上述每一个部件都被描述成是核心网络107的一部分,但是应该了解,核心网络运营商之外的其他实体同样可以拥有和/或运营这其中的任一部件。
MME 162可以经由S1接口来与RAN 104中的每一个e节点B 160a、160b、160c相连,并且可以充当控制节点。例如,MME 162可以负责验证WTRU 102a、102b、102c的用户,激活/去激活承载,在WTRU 102a、102b、102c的初始附着过程中选择特定服务网关等等。所述MME162还可以提供控制平面功能,以便在RAN 104与使用了GSM或WCDMA之类的其他无线电技术的其他RAN(未显示)之间执行切换。
服务网关164可以经由S1接口连接到RAN 104中的每一个e节点B 160a、160b、160c。该服务网关164通常可以路由和转发去往/来自WTRU102a、102b、102c的用户数据分组。此外,服务网关164还可以执行其他功能,例如在e节点B间的切换过程中锚定用户面,在下行链路数据可供WTRU 102a、102b、102c使用时触发寻呼,管理和存储WTRU 102a、102b、102c的上下文等等。
服务网关164还可以连接到PDN网关166,该PDN网关可以为WTRU 102a、102b、102c提供针对诸如因特网110之类的分组交换网络的接入,以便促成WTRU 102a、102b、102c与启用IP的设备之间的通信。
核心网络107可以促成与其他网络的通信。例如,核心网络107可以为WTRU 102a、102b、102c提供针对PSTN 108之类的电路交换网络的接入,以便促成WTRU 102a、102b、102c与传统陆线通信设备之间的通信。作为示例,核心网络107可以包括IP网关(例如IP多媒体子系统(IMS)服务器)或与之通信,其中所述IP网关充当了核心网络107与PSTN108之间的接口。此外,核心网络107还可以为WTRU 102a、102b、102c提供针对网络112的接入,其中该网络可以包括其他服务供应商拥有和/或运营的其他有线或无线网络。
图1E是根据一个实施例的RAN 105和核心网络109的系统图示。RAN 105可以是通过使用IEEE 802.16无线电技术而在空中接口117上与WTRU 102a、102b、102c通信的接入服务网络(ASN)。如下文中进一步论述的那样,WTRU 102a、102b、102c,RAN 105以及核心网络109的不同功能实体之间的通信链路可被定义成参考点。
如图1E所示,RAN 105可以包括基站180a、180b、180c以及ASN网关182,但是应该了解,在保持与实施例相符的同时,RAN 105可以包括任何数量的基站及ASN网关。每一个基站180a、180b、180c都可以关联于RAN 105中的特定小区(未显示),并且每个基站都可以包括一个或多个收发信机,以便经由空中接口117来与WTRU 102a、102b、102c进行通信。在一个实施例中,基站180a、180b、180c可以实施MIMO技术。由此,举例来说,基站180a可以使用多个天线来向WTRU 102a发射无线信号,以及接收来自WTRU 102a的无线信号。基站180a、180b、180c还可以提供移动性管理功能,例如切换触发、隧道建立、无线电资源管理、业务量分类、服务质量(QoS)策略实施等等。ASN网关182可以充当业务量聚集点,并且可以负责实施寻呼、订户简档缓存、针对核心网络109的路由等等。
WTRU 102a、102b、102c与RAN 105之间的空中接口117可被定义成是实施IEEE802.16规范的R1参考点。另外,每一个WTRU 102a、102b、102c都可以与核心网络109建立逻辑接口(未显示)。WTRU 102a、102b、102c与核心网络109之间的逻辑接口可被定义成R2参考点,该参考点可以用于验证、许可、IP主机配置管理和/或移动性管理。
每一个基站180a、180b、180c之间的通信链路可被定义成R8参考点,该参考点包含了用于促成WTRU切换以及基站之间的数据传送的协议。基站180a、180b、180c与ASN网关182之间的通信链路可被定义成R6参考点。所述R6参考点可以包括用于促成基于与每一个WTRU102a、102b、180c相关联的移动性事件的移动性管理的协议。
如图1E所示,RAN 105可以连接到核心网络109。RAN 105与核心网络109之间的通信链路可以被定义成R3参考点,作为示例,该参考点包含了用于促成数据传送和移动性管理能力的协议。核心网络109可以包括移动IP家用代理(MIP-HA)184、验证许可记帐(AAA)服务器186以及网关188。虽然前述每个部件都被描述成是核心网络109的一部分,但是应该了解,核心网络运营商以外的实体也可以拥有和/或运营这其中的任一部件。
MIP-HA可以负责实施IP地址管理,并且可以允许WTRU 102a、102b、102c在不同的ASN和/或不同的核心网络之间漫游。MIP-HA 184可以为WTRU 102a、102b、102c提供针对因特网110之类的分组交换网络的接入,以便促成WTRU 102a、102b、102c与启用IP的设备之间的通信。AAA服务器186可以负责实施用户验证以及支持用户服务。网关188可以促成与其他网络的互通。例如,网关188可以为WTRU 102a、102b、102c提供对于PSTN 108之类的电路交换网络的接入,以便促成WTRU102a、102b、102c与传统陆线通信设备之间的通信。另外,网关188还可以为WTRU 102a、102b、102c提供针对网络112的接入,其中该网络可以包括其他服务供应商拥有和/或运营的其他有线或无线网络。
虽然在图1E中没有显示,但是应该了解,RAN 105可以连接到其他ASN,并且核心网络109可以连接到其他核心网络。RAN 105与其他ASN之间的通信链路可被定义成R4参考点,该参考点可以包括用于协调WTRU102a、102b、102c在RAN 105与其他ASN之间的移动的协议。核心网络109与其他核心网络之间的通信链路可以被定义成R5参考点,该参考点可以包括用于促成归属核心网络与被访核心网络之间互通的协议。
这里描述的例示通信系统可以支持能够实现以下的一项或多项的空中接口:改进的宽带性能(IBB),工业控制和通信(ICC)以及车载应用(V2X),以及大规模机器类型通信(mMTC)。空中接口可以支持超低时延通信(LLC),超可靠通信(URC),和/或MTC操作(作为示例,包括窄带操作)。对于LLC来说,以下的一项或多项是可以被支持的:低空中接口时延(例如1毫秒的RTT),短TTI(例如介于100微秒与250微秒之间),超低访问时延(举例来说,接入时延可以与从初始系统接入到完成首次用户平面数据单元传输的时间量相关联),和/或低端到端(e2e)时延(例如在诸如ICC和/或V2X中小于10毫秒)。至于URC,作为示例,传输/通信可靠性将会达到99.999%的传输成功率和/或服务可用性。所期望的移动性具有范围在0-500千米/小时的速度。分组丢失率可被设计成小于10e-6(例如在ICC和V2X中)。对于MTC操作来说,空中接口可以支持窄带操作(例如使用小于200KHz),延长的电池寿命(例如长达15年的自治性)和/或减少的通信开销(作为示例,至少是对小型和/或不频繁的数据传输而言,例如具有范围在1-100kbps的数据速率和/或具有数秒到数小时的接入时延的传输)。
这里描述的例示通信系统可以使用OFDM作为波形(例如至少在下行链路上)。OFDM可以是用于LTE和/或802.11中的数据传输的基本数据格式。对于OFDM来说,频谱可以分成多个并行的正交子带。子载波可以用时域中的矩形窗口来整形,由此会在频域中产生正弦形状的子载波。OFDMA可被设计成在循环前缀的持续时间内部尝试实现高等级的频率同步和/或上行链路定时校准(作为示例,由此保持信号之间的正交性和/或将载波间干扰最小化)。在被设计成实现如上所述的其他设计目标的例示通信系统中,要想满足OFDM(例如常规OFDM或CP-OFDM)的同步需求有可能是颇具挑战性的(作为示例,因为WTRU可以同时连接到多个接入点)。附加的功率降低处理可被应用于上行链路传输,以便符合相邻频带的频谱辐射需求(例如在存在用于WTRU传输的分段频谱聚合的情况下)。有鉴于这些挑战,这里描述的例示通信系统有可能为CP-OFDM施加更加严格的RF需求(例如在使用不依赖于聚合的大量连续频谱时)。如果使用的话,那么基于CP-OFDM的传输方案可能会导致下行链路物理层与旧有系统的下行链路物理层相似(例如在对导频信号密度和位置进行修改的情况下)。
这里描述的例示通信系统可以使用其他波形。例如,该例示通信系统中的下行链路传输方案可以基于多载波(MC)波形。作为示例,MC波形可以用高频谱约束性(例如较低的旁瓣和/或较低的OOB辐射)来表征。MC波形可以将信道分成子信道,并且可以在这些子信道中的子载波上调制数据符号。例示的MC波形是OFDM-OQAM。对于OFDM-OQAM来说,作为示例,在时域中(例如依照子载波)可以将滤波器应用于OFDM信号,以便减小OOB。OFDM-OQAM可能会对相邻频带造成很低的干扰,有可能不需要很大的保护频带,并且不会使用循环前缀。OFDM-OQAM可以是一种适当的FBMC技术。然而应该指出的是,在一些例示系统中,OFDM-OQAM可能在正交性方面会对多径干扰和高延迟扩展非常敏感。对于OFDM-OQAM来说,其均衡和信道估计处理有可能会很复杂。
另一个可以使用的例示MC波形是UFMC(UF-OFDM)。对于UFMC(UF-OFDM)来说,在时域中可以将滤波器应用于OFDM符号(例如用于减小OOB)。在一个示例中,滤波处理可以依照子带来应用,以便可以使用频谱分段(例如用于减小实施复杂度)。如果频带中的一些频谱分段未被使用,那么这些分段中的OOB放射有可能会居高不下(作为示例,对于常规OFDM而言有可能出现这种情况)。至少出于这个原因,UF-OFDM会是一种至少适合在经过滤波的频谱的边缘使用的波形。
应该指出的是,这里描述的波形都是示例,由此并不可以实施在这里描述实施例的仅有波形。该例示波形至少能在具有非正交特性的信号中实现复用(例如具有不同子载波间隔的信号)。这些例示波形可以允许异步信号共存(例如在不需要复杂的干扰消除接收机的情况下)。这些例示波形可以促成基带处理中的分段频谱聚合,由此作为低成本的替换方案来替换作为RF处理一部分的用于聚合分段频谱的处理。
在例示的通信系统中,不同的波形有可能会共同存在于相同的频带内部(作为示例,至少用于支持可以使用SCMA的mMTC窄带操作)。对于一些或所有操作方面和/或对于下行链路和上行链路传输之一或是所有这二者来说,诸如CP-OFDM、OFDM-OQAM和/或UF-OFDM之类的不同波形的组合是可以被支持的。作为示例,波形的共存性可以包括在不同WTRU之间使用了不同类型的波形的传输,或是来自相同WTRU的传输(举例来说,所述传输可以是同时的,具有某种重叠的,或者在时域中是连续的)。
作为示例,其他共存方面可以包括:支持混合类型的波形(例如至少支持有可能发生变化的CP持续时间的波形和/或传输,例如随传输改变),支持CP与低功率尾部(例如零尾)的组合,和/或支持某种混合保护间隔形式(例如使用低功率CP和/或自适应低功率尾部)等等。例示的波形可以支持诸如滤波处理之类的一个或多个其他方面的动态变化和/或控制。举例来说,以下的一项或多项是可以动态改变和/或控制的:是否在用于接收关于指定载波频率的传输的频谱边缘应用滤波处理,是否在用于接收与特定SOM相关联的传输的频谱的边缘应用滤波处理,依照子带还是依照群组来应用滤波处理等等。通常,波形/波形类型可被认为是可被改变以实现不同类型的传输方案的传输参数的示例。由此,第一传输方案可以使用第一类型的波形(例如CP-OFDM),而第二传输方案则可以使用不同的波形(例如OFDM-OQAM)。不同的波形可以与不同的传输特性相关联,例如不同的潜在吞吐量,不同的时延特性,不同的开销需求等等。
上行链路传输方案可以使用与下行链路传输方案中使用的波形相同或不同的波形。对往来于相同小区中的不同WTRU的传输所执行的复用处理可以基于FDMA和/或TDMA。
对于这里描述的例示通信系统来说,其设计可以用高度的频谱灵活性来表征。这种频谱灵活性可以允许(例如启用)具有不同特性的不同频带中的部署方式,作为示例,所述特性可以是不同的双工布置和/或不同的可用频谱大小(举例来说,这其中包括相同频带或不同频带中的连续和不连续的频谱分配)。这种频谱灵活性可以支持可变的定时方面,其示例包括支持多个TTI长度和/或支持异步传输。
这里描述的例示通信系统可以用双工布置的灵活性来表征。举例来说,该例示通信系统可以同时支持TDD和FDD双工方案。对于FDD操作来说,补充的下行链路操作可以用频谱聚合来支持。全双工FDD和半双工FDD操作都是可以被支持的。对于TDD操作来说,DL/UL分配可以是动态的。举例来说,所述分配不会基于固定的DL/UL帧配置;相反,DL或UL传输间隔的长度可以是依照传输时机设置的。
这里描述的例示通信系统可以用带宽分配的灵活性来表征。举例来说,在上行链路传输和/或下行链路传输上可以启用不同传输带宽(举例来说,该传输带宽的范围可以是从标称系统带宽到与系统带宽相对应的最大带宽)。在例示的单载波操作中,举例来说,所支持的系统带宽至少可以包括5、10、20、40和80MHz。在一个示例中,所支持的系统带宽可以是指定范围以内的任何带宽(例如从数兆赫兹到160MHz)。标称带宽可以具有一个或多个取值(例如一个或多个固定值)。所支持的可以是上至200KHz的窄带传输(作为示例,所述传输可以处于MTC设备的工作范围以内)。
图2示出了例示的通信系统可以支持的例示传输带宽。这里指代的系统带宽可以与指定载波网络所管理的频谱的最大部分相关联。对于这种载波来说,WTRU所能支持(例如最低限度支持)的用于小区捕获、测量以及初始网络接入的频谱部分可以与标称的系统带宽相对应。WTRU可被配置成具有处于整个系统带宽范围以内的信道带宽。为WTRU配置的信道带宽可以包括或者不包括系统带宽的标称部分。
能在这里描述的例示通信系统中实现带宽灵活性的一个例示原因在于:用于指定工作带宽(例如最大工作带宽)的一些或所有适用RF需求可以在不引入用于该工作频带的附加许可信道带宽的情况下得到满足。作为示例,其原因在于有效支持相关频域波形的基带滤波处理。这里描述的实施例可以将用于配置、再配置和/或动态改变WTRU信道带宽的技术用于单载波操作。这里描述的实施例可以在标称系统带宽、系统带宽或是所配置的信道带宽内部为窄带传输分配频谱。该例示通信系统的物理层可以是频带不可知的。该物理层可以支持授权频带(例如低于5GHz)中的操作以及无授权频带(例如处于5-6GHz的范围或更高)中的操作。对于无授权频带中的操作来说,所支持的可以是基于LBT Cat 4的信道接入框架(例如与LTE LAA相类似的信道接入框架)。这里描述的实施例可以将用于缩放和/或管理小区专用和/或WTRU专用的信道带宽的技术用于不同的频谱块大小。作为示例,这些技术可以与调度、寻址资源、广播信号、测量等等相关联。频谱块大小可以是任意的。
这里描述的例示通信系统的特征在于具有频谱分配的灵活性。下行链路控制信道和信号可以支持FDM操作。WTRU可以捕获下行链路载波,例如通过经由系统带宽的标称部分(例如仅仅是标称部分)接收传输来捕获。举例来说,WTRU初始不会被配置成接通过相关载波网络管理的完整带宽来接收传输。
下行链路数据信道可以在可与标称系统带宽对应或者不与之对应的带宽上来分配。作为示例,不同于在为WTRU配置的信道带宽内部,这种分配可以是没有限制的。例如,载波可被用5MHz标称带宽以12MHz的系统带宽来操作。这种布置可以允许支持5MHz最大RF带宽的设备捕获和接入系统,同时将载波频率+10到-10MHz分配给支持高达20MHz的信道带宽的其他WTRU。
图3显示了可以将不同子载波指配给(例如至少在概念上)不同SOM的频谱分配的示例。不同的SOM可用于满足不同传输的不同需求。SOM可以包括以下的一项或多项/基于以下的一项或多项来定义:子载波间隔,TTI长度,或是可靠性方面(例如HARQ处理方面)。SOM可以包括辅助控制信道。举例来说,SOM可以包括单独的控制信道(例如与主控制信道分离),其中相关联的WTRU可被配置成对该信道进行监视。SOM可以用于指代特定的波形,或者可以与处理方面相关联,例如用于支持不同波形通过使用FDM和/或TDM而在相同载波中的共存性,或是FDD和TDD的共存性(例如在TDD频带中执行FDD操作,比方说以TDM的方式来执行)。
WTRU可被配置成依照一个或多个SOM来执行传输。举例来说,SOM可以对应于使用了以下的一项或多项的传输:特定TTI持续时间,特定初始功率电平,特定HARQ处理类型,用于成功的HARQ接收/传输的特定上限,特定传输模式,特定物理信道(上行链路或下行链路),特定波形类型,或是依照特定RAT的传输(作为示例,所述传输可以使用旧有LTE或5G传输技术)。SOM可以对应于QoS等级和/或相关方面,例如最大/目标延迟、和/或最大/目标BLER等等。SOM可以对应于频谱区域和/或特定控制信道或是其方面(例如搜索空间、DCI类型等等)。作为示例,WTRU可被配置成具有用于以下的一项或多项的SOM:URC服务类型,LLC服务类型或MBB服务类型。WTRU可以具有(例如WTRU可以接收)用于系统接入和/或用于传输/接收L3控制信令(例如RRC)的SOM配置。作为示例,WTRU可被配置成使用诸如这里描述的标称系统带宽之类的系统频谱的一部分来发送和/或接收L3控制信令。
指定SOM的资源可以依照关于该SOM的参数配置来定义或描述。举例来说,第一SOM可以使用第一参数配置(例如第一子载波间隔,第一符号长度,第一TTI长度,第一带宽,第一波形类型等等),并且第二SOM可以使用第二参数配置(例如第二子载波间隔,第二符号长度,第二TTI长度,第二带宽,第二波形类型等等)。在这里,术语SOM与参数配置是可以交换引用的。
这里描述的例示通信系统中的WTRU可被配置成在该WTRU确定无法使用原始传输方案成功完成传输的情况下切换到不同的传输方案。这里描述的传输方案可以包括资源、传输技术、传输参数和/或与传输性能相关联的其他操作方面。举例来说,不同的传输方案可以使用不同的SOM和/或不同的参数配置。如此一来,SOM和/或参数配置可以是可针对不同类型的传输方案而改变的操作方面的示例。
这里描述的例示通信系统可以支持频谱聚合(例如至少对于单载波操作而言)。举例来说,如果WTRU能在相同工作频带内部的连续和/或不连续的物理资源块(PRB)集合上发射和/或接收多个传输块,那么频谱聚合是可以被支持的。传输块可被映射到单独的PRB集合。与不同SOM相关联的传输是可以同时执行的。
这里描述的例示通信系统支持多载波操作。作为示例,这种支持可以通过使用相同工作频带或是两个或更多工作频带上的连续和/或不连续频谱块来提供。例示的通信系统可以支持频谱块聚合。举例来说,频谱块可以用诸如FDD和/或TDD之类的不同的模式来聚合,和/或用不同的信道接入技术来支持,例如低于6GHz的授权和无授权频带操作。WTRU的多载波聚合操作可以由网络和/或WTRU配置、再配置和/或动态改变。
下行链路和/或上行链路传输可被组织到无线电帧中。所述无线电帧可以用多个固定的方面(例如下行链路控制信息的位置)和/或多个变化的方面(例如传输定时和/或所支持的传输类型)来表征。基本时间间隔(BTI)可以用一个或多个符号的数量(例如整数)来表示。符号持续时间可以取决于与时间-频率资源相适用的子载波间隔。至少对于FDD来说,子载波间隔会在用于指定帧的上行链路载波频率fUL和下行链路载波频率fDL之间发生变化。传输时间间隔(TTI)可以是系统所支持的连续传输之间的最小时间。一个或多个(例如每一个)连续传输可以与用于下行链路(TTIDL)和/或上行链路(UL TRx)的不同传输块(TB)相关联。在TTI确定过程中可以排除下行链路和/或上行链路的前序码(如果适用的话)。在TTI确定过程中可以包含控制信息(例如用于下行链路的DCI或是用于上行链路的UCI)。TTI可以依照一个或多个BTI的数量(例如整数)来表示。BTI可以是特定的和/或与指定SOM和/或参数配置相关联的。
这里描述的例示通信系统可以支持不同的帧持续时间,其示例包括100微秒、125微秒(1/8毫秒)、142.85微秒(例如1/7毫秒或2个nCP LTE OFDM符号)、和/或1毫秒。帧持续时间可被设置成能与旧有LTE定时架构相校准。一个帧可以以具有固定持续时间tdci的下行链路控制信息(DCI)为开始,所述下行链路控制信息处于与所涉及的载波频率(作为示例,对于TDD来说是fUL+DL,对于FDD来说是fDL)有关的任何下行链路数据传输(DL TRx)之前。对于TDD双工(例如仅仅对于TDD双工)来说,帧可以包含下行链路部分(例如DCI和/或DL Rx)和/或上行链路部分(例如UL TRx)。如果存在切换间隙(swg),那么它可以位于帧的上行链路部分之前。对于FDD双工(例如仅仅对于FDD双工)来说,帧可以包括下行链路参考TTI和/或用于上行链路的一个或多个TTI。上行链路TTI的开端可以使用从可能与上行链路帧开端重叠的下行链路参考帧的开端施加的偏移(toffset)来得出。双工模式(例如TDD相比于FDD)可以是可针对不同的传输方案而改变的操作方面的示例。
这里描述的例示通信系统可以支持帧中的D2D/V2x/侧链路操作。该例示通信系统可以使用各种配置/技术来提供D2D/V2x/侧链路支持。在一个示例中(例如在使用TDD的时候),该例示通信系统可以在帧的DCI+DL TRx部分中(例如在使用半静态的资源分配的时候)或是在帧的DL TRx部分中(例如在使用动态资源分配的时候)包括相应的下行链路和前向传输。作为补充或替换,该例示通信系统可以在帧的UL TRx部分中包括相应的反向传输。在一个示例中(例如在使用FDD的时候),举例来说,通过将相应的下行链路控制、前向和反向传输包含在帧的UL TRx部分中,该例示通信系统可以支持帧的UL TRx部分中的D2D/V2x/侧链路操作。更进一步,与相应传输相关联的资源可以是动态分配的。
图4A显示了例示的TDD帧结构。图4B显示了例示的FDD帧结构。
这里描述的例示通信系统可以使用各种调度和/或速率控制技术,其示例包括MAC层中的调度功能,基于网络的调度模式和/或基于WTRU的调度模式。举例来说,基于网络的调度模式会导致在下行链路传输和/或上行链路传输的资源、定时和/或传输参数方面进行密集调度。作为示例,基于WTRU的调度模式会导致在定时和/或传输参数方面具有灵活性。对于一种或多种调度技术(例如调度模式)来说,调度信息可以在单个TTI或多个TTI中是生效。调度技术(例如调度模式)可以是可针对不同类型的传输方案而改变的操作方面的一个示例。
基于网络的调度能使网络密集管理指配给不同WTRU的无线电资源(例如用于优化这种资源共享)。在至少一些情况中,网络可以动态地实施这种调度。基于WTRU的调度能使WTRU基于逐项需要和/或在网络指配的共享或专用上行链路资源集合内部以最小的时延来访问(例如适时地访问)上行链路资源。所述共享或专用的上行链路资源可以是动态或静态指配的。WTRU可被配置成执行同步和/或不同步的适时传输。WTRU可被配置成执行基于争用和/或无争用的传输。例如,WTRU可被配置成通过执行适时传输(例如调度或非调度)来满足超低时延需求(例如针对5G)和/或节能需求(例如在mMTC使用范例中)。
这里描述的例示通信系统可以对逻辑信道进行优先排序。举例来说,该例示通信系统可被配置成关联数据和资源(例如用于上行链路传输)。该例示通信系统可以在相同传输块内部复用具有不同QoS需求的数据,例如在此类复用不会对服务的QoS需求产生负面影响或是不必要地浪费系统资源的情况下。逻辑信道优先排序可以是可针对不同类型的传输方案而改变的操作方面的一个示例。
这里描述的例示通信系统可以用不同的编码技术来对传输进行编码。不同的编码技术可以具有不同的特征。编码技术可以产生具有一个或多个信息单元或信息块的序列。所述信息单元或信息块(例如,每个信息单元或信息块)可以是自包含的。举例来说,如果第二信息块是无差错的,和/或如果能在第二信息块或是至少部分被成功解码的不同信息块中发现足够的冗余度,那么第一信息块的传输中的差错将不会损害接收机成功解码第二信息块的能力。
例示的编码技术可以包括raptor/fountain码,由此,传输可以包括具有N个raptor码的序列。一个或多个这样的码可以在时间上被映射到一个或多个传输符号。传输符号可以对应于一个或多个信息比特集合(例如一个或多个八比特组)。通过使用这种编码技术,可以将FEC添加到传输中,由此,如果假设存在逐个符号都具有一个raptor码的关系,那么所述传输将可以使用N+1或N+2个raptor码或符号。这样一来,传输将会对符号损失更具弹性,其中作为示例,该符号损失有可能归因于在时间上重叠的别的传输所产生的干扰和/或穿孔。编码/解码技术可以是可针对不同类型的传输方案而改变的操作方面的一个示例。
WTRU可被配置成接收和/或检测一个或多个系统签名。系统签名可以包括使用序列的信号结构。该信号可以与同步信号相类似。系统签名可以为指定区域内部的特定节点或TRP所特有(例如可以唯一标识该节点或TRP),或者它也可以为区域内部的多个这样的节点或TRP所共有。前述方面中的一个或多个方面有可能不为WTRU所知和/或有可能与WTRU无关。WTRU可以确定和/或检测系统签名序列,并且可以进一步确定与系统关联的一个或多个参数。举例来说,WTRU可以推导出索引,并且可以使用该索引来检索相关联的参数(举例来说,WTRU可以从诸如这里描述的接入表之类的表格中检索参数)。WTRU可以使用与系统签名相关联的接收功率来执行开环功率控制(例如用于在WTRU确定它可以使用适用的系统资源来进行接入和/或传输的情况下设置初始传输功率)。作为示例,如果WTRU确定其可以使用系统的适用资源来执行接入和/或传输,那么WTRU可以使用所接收的签名序列的定时来设置传输定时(例如PRACH资源上的前序码)。不同的信号结构可以与不同的SOM和/或不同的参数配置相关联。如此一来,信号结构可以是可针对不同类型的传输方案而改变的操作方面的示例。
WTRU可被配置成具有一个条目(例如工作参数)列表,并且该列表可被称为接入表。虽然被称作是接入表,然而应该指出的是,该条目列表可以用包括表格结构在内的任何适当类型的结构来保存。该条目列表或接入表可被索引,以使条目(例如每一个条目)可以与系统签名和/或其序列相关联。该列表或接入表可以提供一个或多个区域的初始接入参数。例如,该列表中的条目(例如每一个条目)可以提供与执行系统的初始接入相关联的一个或多个参数。作为示例,此类参数可以包括一个或多个随机接入参数,例如时间和/或频率中的适用的物理层资源(例如PRACH资源),初始功率电平,和/或用于接收响应的物理层资源。此类参数可以包括接入限制,例如PLMN身份标识和/或CSG信息。此类参数可以包括路由相关信息,例如适用的路由区域。条目(例如每一个条目)可以与系统签名相关联和/或由其索引。条目(例如每一个条目)可以为多个节点或TRP所共有。WTRU可以经由专用资源(例如RRC配置)上的传输和/或使用了广播资源的传输来接收这种列表或接入表。至少在后一种情况中,传输接入表的周期有可能很长(例如长达10240毫秒)。作为示例,传输接入表的周期有可能长于传输签名的周期(举例来说,该周期可以是在100毫秒的范围以内)。上述接入表可以是可针对不同类型的传输方案而改变的操作方面的示例。
这里描述的例示通信系统可以支持多种使用范例。每个使用范例可以包括不同的QoS需求。这些使用范例在适用的无线电资源和/或传输技术方面可能存在区别。举例来说,这些使用范例有可能在TTI持续时间、可靠性、应用于传输的分集、最大时延等方面存在差异。针对不同的数据分组、数据流和/或数据承载(或是其等价物)可以引入QoS差异。这种差异可以用最大保证延迟预算、分组差错率、和/或数据速率等等来衡量。MAC层可以处理这里描述的一个或多个功能,以便接入所有的后续方面或是其子集。
考虑到不同的可能无线电资源和/或传输技术具有不同的特性,WTRU可被配置成请求、确定和/或访问支持数据服务的QoS需求的资源(例如适当的上行链路传输资源)。考虑到不同的可能资源分配(例如在上行链路和/或下行链路中)具有不同的特性,WTRU可被配置成对下行链路和上行链路传输行使控制(例如用于控制许可和/或资源分配)(例如确定和以不同方式处理一个或多个类型的分配)。考虑到与不同的传输块相关联的不同特性,WTRU可被配置成复用和/或组装满足适用的QoS需求的MAC PDU。举例来说,WTRU可以依照一组扩展规则(例如通过考虑所涉及的数据的QoS属性和/或与所涉及的TB相关联的SOM)来指配与不同承载、和/或不同逻辑连接等相关联的数据。考虑到这里描述的使用范例和传输技术,WTRU可被配置成满足用于上行链路传输的一个或多个先决条件(作为示例,所述先决条件可以包括UL TA,定位,WTRU速度,PL估计等等)。举例来说,WTRU可以管理和/或确定其是否具有足以执行指定类型的传输的先决条件。
该例示通信系统可以基于QoS需求来执行调度和/或与调度相关的操作。网络调度器并不是始终都可以独自实施用于所有类型的数据的所有类型的QoS需求。举例来说,基于网络的调度功能可能没有与关联于可供WTRU缓冲器中的上行链路传输使用的数据的QoS需求有关的适时信息和/或确切知识。WTRU可被配置成启用具有严格的可靠性和/或时延需求的服务(作为示例,这些行为能使WTRU接收URLLC服务)。WTRU可以影响如何传送数据/传送什么数据(例如借助附加参数)。举例来说,WTRU可被配置成具有与如何传送数据的特性描述相关联的一个或多个参数。该特性描述可以代表在WTRU传送数据时期望其满足和/或实施的限制和/或需求。基于该特性描述,作为示例,WTRU可以基于数据的状态和/或特性(例如取决于数据的状态和/或特性)来执行不同的操作和/或调整其行为。
这里描述的例示通信系统可以包括以下的一个或多个与时间相关联的QoS需求(例如与时间相关联的特性)。作为示例,在网络调度器无法独自实施定时/时延需求的时候(例如至少对于可用于传输的数据子集来说),这些与时间相关的QoS需求将会是有益的。WTRU可被配置成传送与一个或多个时间相关联的特定QoS需求相关联的数据。依照这些与时间相关联的QoS需求,WTRU可以改变用于传送数据的指定传输方案的一个或多个操作方面。举例来说,如果WTRU在使用第一传输方案没有成功传送数据的情况下(例如没有满足一个或多个基于时间的QoS需求)接近于传输结束,那么WTRU可以通过改变第一传输方案的一个或多个操作方面来切换到第二传输方案,以便在基于时间的QoS需求终止之前尝试并成功传送数据。
这里描述的基于时间的QoS需求可以包括允许用于满足数据传输(例如上行链路数据传输)的一个或多个方面的最大时间。WTRU可以基于观察和/或估计来确定是否达到或超过这个最大时间。基于时间的QoS需求可以包括允许用于获取关于数据传输的适当资源的最大时间量。WTRU可以通过监视控制信道来确定与获取适当的资源相关联的时间。例如,WTRU可以依照借助控制信道接收的许可,和/或依照在控制信道中用信号通告的参数等等来确定这个时间。WTRU可以通过监视与资源捕获相关联的SOM来确定与捕获适当的资源相关联的时间。WTRU可以通过监视该WTRU的一个或多个状态来确定与捕获适当的资源相关联的时间。作为示例,此类状态可以包括WTRU是同步还是非同步的,调度请求是否正在进行等等。
基于时间的QoS需求可以包括允许数据停留在WTRU的传输缓冲器中的最大时间。WTRU可被配置成基于数据的初始传输定时来确定这个最大时间。举例来说,WTRU可被配置成通过保持一个定时器来确定数据在WTRU的传输缓冲器中停留了多长时间,其中该定时器会追踪从数据进入传输缓冲器时起到开始执行该数据的初始传输时经过的时间。
基于时间的QoS需求可以包括数据传输达到HARQ工作点的最大时间量。以包含相关数据的PDU的第x次传输为例,WTRU到达HARQ工作点的时间可被确定成是WTRU执行关于该PDU的第x-1次重传所耗费的时间。
基于时间的QoS需求可以包括允许用于成功完成数据传输或是接收与包含数据的PDU的传输有关的反馈的时间。WTRU可以基于该WTRU何时接收到HARQ反馈来确定这个时间,作为示例,该反馈可以是用于相应传输块的HARQ ACK。
基于时间的QoS需求可以包括与数据相关联的生存时间(TTL)的最大值。作为示例,这个TTL参数可以与数据分组的传输和WTRU对数据分组采取的其他行动相关联。例如,WTRU可以保持(例如被配置成具有)一个TTL参数,该参数具有与数据分组传输相关联的某个阈值(例如N毫秒)。WTRU可以监视从数据分组可用于传输时起(例如在WTRU接收到其缓冲器中的数据分组之后)经过的时间。如果在没有成功传送数据分组的情况下达到该阈值,那么WTRU可以确定该TTL已经终止。WTRU可以基于剩余的TTL总量来执行不同的行动。例如,WTRU可以在确定TTL达到阈值的时候切换到不同的传输方案。
基于时间的QoS需求可以包括允许用于完成诸如以无线电承载为基础的数据逻辑归组处理的最大时间量。基于时间的QoS需求可以包括允许用于最坏的情况或是队列头端延迟的最大时间量。WTRU可被配置成基于在该WTRU缓冲器中耗费了最长时间的数据来确定这种延迟。
基于时间的QoS需求可以包括与数据传输的一个或多个方面相关联的平均或准时时间。WTRU可以基于观察和/或估计来确定这样的平均或准时时间。例如,基于时间的QoS需求可以包括允许数据停留在WTRU的传输缓冲器中的平均时间量(例如与相同的逻辑信道、群组和/或SOM相关联)。WTRU可被配置成确定这个平均时间,例如基于数据可用于传输的时间与传送数据的时间之间的时段来确定。作为示例,WTRU可以以发起用于请求和/或获取资源的过程的定时和/或用于传送针对这一效应的信号的定时为基础来确定此类数据可用于传输的时间。作为示例,WTRU可以以数据的初始传输的定时或是接收与该数据传输相对的ACK的定时为基础来确定传送该数据的时间。这里描述的平均值可以是移动平均值(例如在具有特定长度的窗口内部),与数据相关联的逐个突发的平均值,从WTRU最后一次请求关于此类数据的资源时起的平均值,或是从WTRU首次获取用于传送此类数据的的传的资源时起的平均值。
基于时间的QoS需求可以包括相对于该平均时间所发生的可允许的变化。作为示例,这种变化可以对应于平均值的减小或增大。以前述的缓冲时间为例,该定时需求可以规定,允许数据在WTRU的传输中停留的时间量与平均时间相比只能超出指定的时间量。
基于时间的QoS需求可以包括允许用于减小WTRU缓冲器中的数据的平均或准时时间。举例来说,这种平均或准时时间可以与将WTRU缓冲器中的数据量减少至某个等级的处理相关联(作为示例,该等级是可配置的)。该等级可以对应于这里描述的其他与时间相关的特性,例如允许用于成功完成传输的最大时间。WTRU可以基于估计或观察来确定这个平均时间。
基于时间的QoS需求可以包括用于最坏的情况或是队列头部延迟的平均或准时时间。WTRU可被配置成基于多次出现的最差情况的延迟来确定这种平均或准时时间。
基于时间的QoS需求可以包括允许用于执行数据逻辑归组处理(例如基于无线电承载等等)的平均或准时时间。
基于时间的QoS需求可以与HARQ实体、HARQ进程类型和/或进行中的HARQ进程相关联。
WTRU可以确定上行链路数据单元(例如上行链路数据分组)的传输具有QoS需求。如这里所述,QoS需求可以是与上行链路传输的一个或多个方面相关联的与时间相关的QoS需求。WTRU可以尝试使用第一传输方案来传送上行链路数据单元。作为示例,至少对于可用于传输的数据子集来说,WTRU可以确定是否能使用第一传输方案来满足QoS需求。例如,WTRU可以基于QoS需求来确定WTRU为上行链路数据单元保持的TTL参数不应该超过某个阈值。作为示例,TTL参数可以反映从上行链路数据单元可用于传输到成功传送上行链路数据单元为止经过的时间量。WTRU可以监视TTL参数,并且一旦在使用第一传输方案成功传送上行链路数据单元之前确定TTL已达到阈值,则WTRU可以选择第二传输方案来传送上行链路数据单元。如这里更详细描述的那样,第二传输方案至少会在一个操作方面不同于第一传输方案。
这里描述的例示通信系统可以包括以下的一个或多个传输速率相关需求(例如传输速率相关特性)。如这里所述,网络调度器并不是始终都能独自实施传输速率相关需求(例如至少对于可用于WTRU中的传输的数据子集而言)。WTRU可被配置成致使数据的归组处理可关联于传输速率相关需求。这种归组处理可以包括数据分组和/或PDU之间的逻辑关联,例如LCH、LCG,数据与SOM和/或其一个或多个方面的关联,和/或数据与无线电承载的关联等等。作为示例,WTRU可被配置成具有用于此类数据的传输速率(例如经过优先排序的比特率)。WTRU可以使用该传输速率来确定应该在传输中包含多少数据(例如通过实施逻辑信道优先排序操作)。传输速率相关需求可以与HARQ实体、HARQ进程类型和/或进行中的HARQ进程相关联。WTRU可以观察和/或估计关于至少一个数据子集的传输速率(例如使用在这里为定时相关方面描述的相似的量度)。WTRU可以确定是否可以满足所关注的传输速率相关需求,并且可以基于该确定来采用不同的行动(例如切换到不同的传输方案)。
为了例证,WTRU可以尝试使用第一传输方案来传送上行链路数据单元。该WTRU可以确定是否可以使用第一传输方案来满足传输速率相关需求,或者更一般地说是满足与上行链路传输相关联的QoS需求。如果WTRU确定不能使用第一传输方案来满足传输速率相关需求,那么WTRU可以确定切换到第二传输方案,以便满足所关注的传输速率相关需求。如这里更详细描述的那样,所述第二传输方案可以在至少一个操作方面不同于第一传输方案。
这里描述的示例通信系统可以包括以下的一个或多个配置相关需求(例如配置相关特性)。例如,WTRU可被配置成为某些数据给予取代了一个或多个其他QoS需求的传输优先级(例如绝对优先级)。在一个示例中,WTRU可被由上层配置成传送具有最高优先级的分组,而不用考虑诸如其他与定时、速率或效率相关的QoS需求。
这里描述的例示通信系统可以允许和/或启用其他WTRU行为,其示例包括用于TRP的随机接入,变更和/或监视控制信道,许可和/或传输参数选择,和/或SR方法选择等等。
如这里所述,WTRU可被配置成没有满足与传输(例如上行链路传输)相关联的一个或多个QoS需求。作为示例,这种QoS需求可以与定时和/或速率相关(例如这里描述的QoS需求)。作为示例,如果不能满足QoS需求,那么有可能导致改变适用的过程,改变传输方案,和/或变更至其他传输相关行为。例如,WTRU可以尝试使用了第一传输方案的上行链路传输。WTRU可以确定使用第一传输方案是否可以满足QoS需求,例如这里描述的定时相关需求或传输速率相关需求(例如对于可用于传输的数据的至少一个子集来说)。如果WTRU确定使用第一传输方案不能满足QoS需求,那么WTRU可以通过调整其操作来满足QoS需求。例如,WTRU可以自主调整用于传输的传输方案。所述调整可以包括增加、改变或减少用于传输的资源,并且所述调整会导致传输方案的一个或多个操作方面发生变化(例如一个或多个传输参数发生变化)。
在改变传输方案时,WTRU与网络的连接有可能被影响/改变。由此,连接类型可以是在不同的传输方案之间发生变化的操作方面的一个示例。举例来说,一旦改变了连接类型,那么WTRU可以发起一个接入过程,和/或可以请求与网络的再配置过程(例如L3再配置)。在一个示例中,WTRU可以发起一个请求重新配置其连接的RRC过程。该请求可以包括以下的一项或多项。该请求可以包括适用的逻辑数据归组(例如LCH、LCG、和/或SOM等等)的身份标识。该请求可以包括与触发了连接变化(例如用于改进等等的资源调整量、速率或定时)的请求的QoS方面相关的信息。该请求可以包括与所要传送的数据相关的信息(例如队列头延迟或平均延迟,未处理的数据量等等)。WRTU可以在该请求包含一个量度。
WTRU可以发起TRP接入和/或随机接入。举例来说,WTRU有可能会出于增加可用资源量、改变资源类型、和/或修改相关联的TRP数量等等的目的而发起系统接入。WTRU可以确定(例如关于签名之类的参考信号的量度中)一个或多个TRP可能处于该WTRU的范围以内。WTRU可以确定适当的随机接入资源(例如通过使用包含在接入表中的信息)。WTRU可以在此类资源上发起前序码传输。上述操作可能导致产生可供该WTRU使用的不同资源集合(例如,所述资源有可能增加或减少,和/或有可能存在要监视的不同的控制信道集合)。举例来说,WTRU可以发起增加可用资源集合的处理,而这有可能导致聚合更多的物理层资源、更多的载波、网络实体的附加TRP和/或Uu接口(作为示例,该网络实体可以包括eNB和/或TRP,该接口可以借助于双重连接或是类似的技术等等)。
在改变传输方案时,WTRU可以扩展或修改WTRU正在监视的控制信道的身份标识和/或数量。由此,被WTRU监视的一个或多个控制信道的集合可以是可针对不同传输模式而改变的操作方面的一个示例。例如,WTRU可以确定不同和/或附加控制信道可用于调度传输。WTRU可以请求和/或激活这些控制信道。WTRU可以在传输了信号(例如向网络)之后执行该确定。该信号可以指示激活这种控制信道的请求。在一个示例中,WTRU可以以与执行系统接入相类似的方式(但是针对的是相同的签名和/或小区)来执行所述确定。WTRU可以切换和/或添加控制信道。例如,WTRU可以切换到和/或添加与不同SOM相关联的控制信道(举例来说,该控制信道可以与不同的物理层资源、不同的物理数据信道和/或不同的参数配置相关联)。
在改变传输方案时,WTRU可以扩展和/或修改可用资源。由此,可用资源集合可以是可针对不同传输模式而改变的操作方面的一个示例。WTRU可以确定不同的资源集合是可用的。该WTRU可以切换到关于DCI和/或DCI类型的不同集合。例如,WTRU可以确定它能尝试解码控制信道上的不同的DCI集合。这种DCI可以与不同的SOM、不同的参数配置、和/或不同的PRB集合等等相关联。WTRU可以更新其控制信道监视活动(例如,所更新的可以是DRX)。举例来说,WTRU可以改变其关于控制信道的监视频率或强度(例如开始更高强度地解码)。在期望更多资源时,WTRU可以进入关于控制信道的活动模式。WTRU可以基于QoS需求(例如依照QoS需求)来选择用于调度请求的方案。例如,WTRU可以基于与要传送的数据相关联的QoS需求(例如依照QoS需求)来选择用于获取传输资源的特定方案。如果WTRU确定可以满足适用于数据的QoS需求,那么WTRU可以使用基于争用的传输方案。如果WTRU确定无法满足适用于数据的QoS需求,那么WTRU可以使用专用的SR资源来进行传输。如果WTRU确定有多个资源和/或请求调度方案可用,那么WTRU可以在与SOM相关联的请求调度方案和/或资源能够实现满足适用的传输需求的传输的情况下选择所述方案和/或资源。
在改变传输方案时,WTRU可以修改和/或选择特定的传输参数或许可。由此,传输参数和/或许可可以是可针对不同传输模式而改变的操作方面的一个示例。举例来说,WTRU可以确定不同的传输参数集合可用的和/或可以用于数据传输。该WTRU可以在多个许可中选择一个许可,以便可以修改数据传输的一个或多个特性。此类特征可以包括可靠性,HARQ工作点,应用于传输的分集,传输功率等等。
在改变传输方案时,WTRU可以修改与数据传输相关联的复用、组装和/或分段技术和/或规则。由此,复用、组装和分段可以是可针对不同传输模式而改变的操作方面的一个示例。例如,在创建用于传输数据的MAC PDU时,WTRU可以改变其复用规则,组装和/或分段规则等等。作为示例,在处理QoS需求无法得到满足的数据时,WTRU可以跳过MAC层的对分组进行分段的处理。
WTRU可被配置为维持和/或作用于与第一数据子集而不是第二数据子集有关的时延相关特征或标准(例如与时间相关的QoS需求)。第一数据子集可以与第一逻辑信道、第一个流、第一服务、和/或第一数据类型等等相关联。第二数据子集可以与第二逻辑信道、第二个流、第二服务、和/或第二数据类型等等相关联。在一个示例中,与速率相关的判据可以与一个或多个逻辑信道的特定集合而不是与其他逻辑信道相关联。在一个示例中,QoS需求可以是与来自高层且处于任一逻辑信道或流上的分组一起提供的。QoS需求可以是根据需要提供的。
在改变传输方案时,WTRU可以向网络提供与该WTRU正在尝试传输的上行链路数据相关联的信息。例如,WTRU可以传送与QoS相关的信息。WTRU可以将与QoS相关的信息连同相关的数据分组、SDU和/或字节集合一起传送(例如在MAC PDU中)。例如,WTRU可以将TTL和与之关联的分组、SDU和/或字节集合一起传送。TTL(或绝对时间)可以用时间单位(例如毫秒)来表示。TTL可以占用绝对时间的最低有效部分(例如用于允许接收方确定绝对时间将会是是什么)。
与QoS相关的信息可被附加于相关数据。与QoS相关信息一起发送的数据的接收实体可以是网络节点(例如基站)或接收WTRU。作为示例,该接收实体有可能涉及诸如中继和/或转发之类的数据操作,例如,该实体可以是被配置成启用V2V通信的eNB(例如通过直接向目的地转发UL传输)。该接收实体可以使用与QoS相关的信息来确定如何处理接收到的数据。该接收实体(例如基站)可以确定和/或修改与将数据传送到最终目的地相关联的最佳或优选路径、资源、TTI、和/或SOM等等。该接收实体可以根据QoS需求来修改和/或优先排序其对所接收的数据的处理。例如,接收实体可以修改和/或优先排序资源接收优先级的实施(例如在RF或基带限制的情况下)。接收实体可以修改用于中继所接收的数据的资源、RAT和/或机制(例如SC-PTM相比于单播相比于eMBMS)。该接收实体可以选择用于一个或多个相关小区或是一个或多个网络的路径,以便转发数据。举例来说,接收实体可以确定是将数据发送到网络中的应用服务器还是将数据发送到位于小区或TRP的代理应用服务。
与时间相关的需求(例如与时延相关的需求)在WTRU中可具有各种表示。WTRU可以使用基于时间的需求作为用于确定WTRU何时应从第一传输方案切换到第二传输方案的判据。例如,WTRU可以保持时延需求。WTRU可以获取传输时延需求,例如从上层获取。作为示例,WTRU可以使用这种需求来做出调度决定和/或资源使用决策,指导与资源请求相关的方面,执行复用/解复用和/或控制传输。举例来说,WTRU可以保持和/或监视代表了从接收数据分组时起到成功传送数据分组为止所经过的时间的TTL参数。WTRU可以在传输阶段(例如在每一个传输阶段)以满足与时间相关的QoS需求的方式来使用TTL参数调节行为、和/或过程等等。WTRU可以保持分组、SDU、和/或字节集合等等的TTL。所述TTL可以与所分配的用于成功完成空中接口上的传输的时间量相关联。
当TTL达到某个值或者超出某个范围时,WTRU可以通过执行特定的操作(例如在其传输栈内部)来改变WTRU的行为。例如,当与MAC PDU相关联的TTL达到某个阈值时,WTRUMAC可以使用这里描述的一种或多种技术来决定发起自主传输(例如使用基于争用的资源)。
举例来说,在与MAC PDU相关联的TTL已达到某个阈值时,MAC可以决定使用一个接一个的HARQ类型,一个接一个的TTI,一个接一个的传输信道,和/或一个接一个的编码速率。由此,TTI长度、传输信道身份标识、编码速率等等可以是可在WTRU改变传输方案时变更的操作方面的一个示例。当TTL已达到某个阈值时,WTRU可以决定触发关于来自网络的资源(例如在某个SOM上)的特定请求,或者使用不同的机制来发布这种请求。
应该指出的是,这里使用的概念TTL并不局限于任一具体定义。例如,TTL的概念可以包括用于定义和表示一个或多个QoS需求的任何机制。由此,一些示例可以是对照使用TTL确定何时切换传输方案和/或改变传输参数的处理描述的,但是用于指示一个或多个QoS需求的其他信息也可以被用作判据来确定何时切换传输方案和/或改变传输参数。
这里描述的例示通信系统可以用至少涉及请求、确定和访问适当传输资源的特征来表征。举例来说,这些特征可以与用于调度和/或确定一个或多个适用控制信道(例如SOM专用控制信道)的处理相关联。
这里描述的例示通信系统的特征可在于具有用于请求网络接入(例如,接入适用资源)以满足特定的QoS需求(例如与时间关联的QoS需求)的唯一机制。在一个例示实施例中,WTRU可以向网络发送资源请求(RR)。所述RR可以包括关于新的或是经过修改的资源的请求和/或可以指示缓冲器状态。所述RR可以包括要求改变与网络的连接的请求。所述RR可以包括要求更改资源的请求。所述RR可以包括要求更改所要监视或配置的控制信道的请求。所述RR课可以包括要求更改TRP的请求。所述RR可以包括要求更改SOM的请求。所述RR可以包括要求更改这里描述的别的方面的请求。
RR可以指示QoS相关参数,和/或可以提供关于无法满足QoS需求的指示或潜在指示。为了满足QoS相关需求,可以为不同的服务、逻辑信道、逻辑信道群组和/或QoS群组定义不同的资源请求机制和/或格式。RR的类型可以以一个或多个QoS参数达到某个阈值为基础来确定。RR可以是以一个或多个QoS参数达到某个阈值(例如TTL达到阈值)为基础而被发送的。
RR可以用所使用的传输格式的类型、传送RR的资源的类型、在RR内部提供的信息、用于RR传输的TTI的长度、和/或SOM等等来表征。WTRU可以基于一个或多个QoS特性来确定所要使用的是哪一个RR。
作为示例,在RR中传送的信息可以包括关于资源的请求,要求修改所指配的资源的请求,关于缓冲器状态的指示,和/或关于无法满足或可能无法满足某个QoS需求的指示。RR可以包括关于在即将到来的资源和/或RR计划使用的资源中执行传输的意图的指示。RR可以包括用于表明正在请求资源以满足与触发RR所针对的数据相关联的某些QoS需求的指示。在一些示例中,此类指示可以是在RR中提供的唯一信息。在其他示例中,在RR中还可以提供附加信息,例如与传输和/或执行传输的WTRU有关的信息。
WTRU可以在RR中识别所述RR所应用的特定服务、SOM和/或LCG中的一个或多个。在一个示例中,包含在RR中的指示可以用信号通告一个要求为传送RR的SOM/传输信道分配附加资源的请求(举例来说,假设为不同的SOM/传输信道使用不同的物理资源)。WTRU可以在单个SOM中传送多个RR(作为示例,每一个RR都对应于与每一个SOM相关联的资源)。RR(例如多个RR中的每一个)可以用信号通告一个关于与不同SOM相关联的资源的请求。RR与所发送的RR对应的SOM之间的关联可以基于标签(作为示例,所述标签可包含在RR中),基于所使用的资源(例如时间或频率或是所有这二者中的比特位置),基于RR传输的其他物理特性(例如发射功率/能量,调制方案等等),基于RR的格式,基于RR的大小,和/或基于RR的定时(例如WTRU发送RR的时间)等等。
RR可以指示关于附加传输资源的请求和/或当前分配的资源是否足够(例如就特定的服务或逻辑信道的数据而言,或者就特定的SOM而言)。RR可以动态请求附加资源(例如相对于在先传输)。举例来说,WTRU可以通过传送RR来获得对于在先前传输之后不久或立即可被分配的附加资源的访问。RR可以请求与WTRU中当前分配的资源量相关的资源。例如,WTRU可以请求和/或被配置成具有供该WTRU在有限时段使用的依照时间单元的特定资源量(举例来说,所述资源可以是有保证或是被保留的)。在配置了这种资源之后,WTRU可以通过发送RR(例如新的请求)或指示来减少或增加已经提供给该WTRU的资源量。
RR中的指示可以具有某个值。例如,该指示可以采用两个可能值(例如1比特值)中的一个。如果对于至少一个PDU来说,成功完成其传输的预期时间超出当前时间加上PDU的TTL,那么该指示可以取第一个值。否则该指示将会取第二个值。在另一个示例中,RR中的指示可以采用四个可能的值(例如2比特值)中的一个。WTRU可以为每一个PDU确定所预期的成功完成时间与当前时间加上PDU的TTL的总和之间的差值。WTRU可以基于所要传送的所有PDU上的这个最高差值来设置所指示的值。如果该差值超过第一阈值,那么可以将该指示设置成第一个值,如果所述差值超过第二阈值(但不超过第一阈值),那么可以将该指示设置成第二个值,如果所述差值超过第三阈值(但是没有超过第二阈值),那么可以将该指示设置成第三个值,否则将其设置成第四个值。所述阈值可以预先定义或是由高层用信号通告的。如果增大该指示的可能值的数量,那么将可以允许更快或更准确地调整所分配的资源。
在某些选项中或者对某些RR类型来说,RR可以包括从这里描述的与QoS相关的调度信息中得到的信息。例如,WTRU可以向接收节点传送与时延相关或是任何与QoS相关的信息。该信息可以在RR、MAC PDU或RRC信令消息中传送。作为示例,网络可以使用该信息而在需要资源的不同WTRU中调度资源和/或执行优先排序。包含在RR中的信息(例如由WTRU包含)可以具有或者取决于后续的一种或多种形式。
WTRU可以在RR中包含与TTL相关联的信息。例如,WTRU可以包含用于当前在WTRU上排队以进行传输的分组、PDU等等的最小TTL或TTL。WTRU可以保持多个时延敏感的传输队列。WTRU可以传送关于所述多个传输队列中的每一个队列头部的TTL。
WTRU可以在RR中包含与缓冲器大小相关联的信息。例如,WTRU可以包含:被配置成具有TTL需求的数据的缓冲器大小,可以为触发该请求的一个或多个服务复用的数据的缓冲器大小,或是WTRU中的所有数据的缓冲器大小(作为示例,以及他们的相关联的优先级和/或需求)。
WTRU可以在RR中包含与特定分组、PDU等等的定时范围和/或其相应的缓冲器大小相关联的信息。例如,WTRU可以传送用于PDU或数据集合的可接受时延范围的最小和最大值。
WTRU可以在RR中包含与空中传送/接收分组或数据量的绝对时间或是用于可接受的时延的绝对时间范围相关联的信息。WTRU可以在RR中包括与QoS分类或是数据的绝对优先级相关联的信息、速率相关信息和/或成功完成至少一个PDU的传输的预期时间(例如在给出了当前分配的资源的情况下)。该预期时间可以转而取决于以下的一项或多项。该预期时间可以取决于依照制定的优先排序规则集合而将PDU首次包含在提交给物理层以进行传输的传输块中的预期时间。该预期时间可以取决于重传的预期时间。这里描述的一个或多个参数可被设置成是预先定义的值,或者可以由高层用信号通告。
WTRU可以在RR中包含与可供WTRU在资源(例如2个符号或0.5毫秒)上使用的特定TTI相关联的信息,每一个时间单位的资源块的数量(例如大小为x个帧的固定时段中的资源块的数量),和/或此类资源所能位于的频率范围(例如在WTRU支持或是WTRU由于该WTRU的无线电特性所优选的特定窄带带宽中)。
WTRU可以通过与PHY资源上的传输相关联的资源、定时、编码、和/或功率等等的选择来指示(例如隐性指示)特定的RR相关信息。举例来说,WTRU可以基于其用于发送RR的时间/频率资源来指示分配给WTRU的附加资源的数量。RR相关信息可以通过RR传输中使用的格式和/或传输机制来指示。作为示例,所述RR可以在PHY层(例如在特定的PHY控制信道上或与数据捎带传送)和/或MAC层(例如使用MAC CE等等)中传送。RR可以完全在PHY层中传输。当在PHY层中传送时,所述RR可以借助以下的一项或多项来传送。
RR可以通过使用单个OFDM符号或是通过使用与WTRU上行链路传输相关联的一个资源块中(例如在预先定义或配置的位置)的单个符号来传送。在一个示例中,所述RR可以在具有最大索引的OFDM子载波的最后的一个或多个符号(例如在时间上处于最后的一个或多个符号)中传送。所述RR可以通过使用上行链路控制信道或是作为可在上行链路控制信道中传送的WTRU自主调度信息的一部分来传送。
RR可以用专用的PHY资源来发送,其中所述资源的位置既可以在网络中借助信令(例如RRC信令)提供给WTRU,也可以通过包含在发送给WTRU的接入表中的信息来获取。所述RR可以使用与身份标识或定时相关的信息(例如与以上信息相结合)来传送(例如用于推导PHY资源的位置)。
RR可以用基于争用的资源来传送,例如RACH或类似的信令。所述基于争用的资源可以通过一种能将对WTRU产生的总体干扰最小化的方式扩展在供其他WTRU使用的PHY资源上(例如使用CDMA或穿孔处理,由此使用与特定WTRU相关联的少量/微量的干扰资源元素)。在关于LTE辅助的5Gflex紧密交互的例示情形中,WTRU可被配置成通过LTE PUCCH来传送RR。所述PUCCH RR可被扩展成运送与该请求相关的且具有能被5G系统满足的QoS特性的信息。更具体地说,所述SR可以指示WTRU正在请求5G资源。作为示例,这种处理可以通过改变SR格式以包含附加比特、通过保留用于发送触发SR的5G请求的特殊资源和/或类似的方式来启用。
WTRU可以访问多个资源集合或是用于传送RR的机制。作为示例,对于不同的服务来说,所述RR可被定义成具有不同的特性,其示例包括不同的格式或类型,不同的传输时间值(例如从触发该请求到空中传送该请求的时间),不同的符号,不同的信令机制,和/或不同的传输格式等等。WTRU能够基于以下的一项或多项来从这些不同的机制中做出选择。WTRU可以基于队列中的数据或是待发送数据的时延特性(例如所述数据可以是或者可以不是时延敏感的)来选择用于传送RR的机制。WTRU可以基于一个或多个分组或是待传送数据的TTL(例如所述TTL可以与阈值相关或者不与阈值相关)来选择用于传送RR的机制。WTRU可以基于数据或服务类型的优先级来选择用于传送RR的机制。WTRU可以基于这里描述的一个或多个QoS需求来选择用于传送RR的机制(例如基于时间或者基于速率的QoS需求)。作为示例,WTRU可以依照为之发送/触发了RR的一个或多个缓存器中的数据的时间关键性、优先级和/或定时需求来使用不同的TTI在PHY中发送关于某个服务(例如ULLRC或eMBB)的RR。
用于SOM(例如用于每一个SOM)、指定服务或逻辑信道的RR可以具有与如何在PHY层中传送RR相关的不同特性。在一个示例中,RR可以通过采用不同的编码方案、在不同的传输信道上、使用不同的TTI和分集/可靠性,使用专用(例如与共享/基于争用相比)资源和/或使用其他机制/技术来传送。WTRU可以依照所涉及的SOM或服务来使用不同的RR机制。例如,被配置成具有ULL服务的WTRU可以使用1比特PHY层RR机制来请求用于ULL服务的资源,同时该WTRU可以在与PHY层上的RR相配合的缓冲器状态指示了关于IBB类型的服务的请求的情况下使用MAC层RR。
WTRU可以基于以下的一项或多项来触发RR。该WTRU可以基于这里描述的QoS需求(例如与QoS相关的事件)来触发RR。例如,WTRU可以基于与时延相关的事件来触发RR。作为示例,这种与时延相关的事件可以包括时间敏感的分组到达MAC层或更高层。WTRU可以基于一个或多个分组或数据的TTL降到阈值以下来触发RR。WTRU可以以在WTRU上发起、配置或再配置服务、TRP、逻辑信道、和/或SOM等等为基础来触发RR。WTRU可以以与进行中的传输具有不同QoS分类的分组的到来为基础而触发RR。WTRU可以以数据不满足与速率相关的QoS需求等等为基础来触发RR。
WTRU可以基于以下的一项或多项来触发RR。WTRU可以基于源自应用层的指示来触发RR。WTRU可以基于定时器的周期性期满来触发RR。WTRU可以基于表明缓冲器不再为空的指示(或其他缓冲器占用信息)来触发RR。WTRU可以基于一个或多个指示在从休眠、DRX等等返回的时候执行重传的HARQ实体来触发RR。WTRU可以基于服务的发起、配置或再配置来触发RR。WTRU可以基于逻辑信道(例如需要低时延通信的逻辑信道)的创建来触发RR。WTRU可以以该WTRU与网络相连为基础来触发RR。对于最后一个例示触发事件来说,如果网络是LTE辅助的网络,并且如果到来的新数据具有LTE服务无法满足的需求,那么WTRU可以触发5GFlex RR。
当在服务于别的服务或别的逻辑信道的资源上进行或者已经开始数据传输时,WTRU可以触发用于服务或逻辑信道的RR。在该场景中,举例来说,WTRU可以基于对优先级、资源量和/或所要发送的数据量所做的判定(例如在绝对项中或者基于每一服务的当前QoS特性)来执行以下的一个或多个行动。WTRU可以将RR信息附加于进行中的数据传输,或者WTRU可以将RR传输延迟至进行中的数据传输结束。然而,对于时间敏感的传输来说,如果WTRU延迟了关于RR的传输,或者如果网络在TTI结束时解码了附加信息,那么将不会执行RR延迟。WTRU可以即时向网络发送RR。WTRU可以避免传送RR,并且可以通过使用现有资源执行资源的优先排序来处理触发了RR的新的服务。
出于例证目的,WTRU可能具有进行中的web浏览会话,并且可以具有可供传输使用的资源。此时,如果WTRU接收到具有不太严格的QoS需求(例如与时间相关的QoS需求)的数据,那么WTRU可以将资源请求信息连同数据一起传送(例如使用MAC PDU或者将RR嵌入PHY层)。如果接收到的数据具有严格的QoS需求,或者如果没有满足时延需求,那么WTRU可以使用与服务相关联的RR特性来触发RR传输(例如,用于RR传输的RR特性可以隐性指示RR所应用的服务;该RR特性可以反映参数配置、定时、资源、和/或传输技术等等)。在这种情况下,WTRU可以以与进行中的数据传输并行的方式来传送RR(例如在不同的资源上),或者WTRU可以通过延迟数据传输来传送RR。举例来说,如果数据传输进行到中间并且触发了RR,那么WTRU可以在第一可用资源中传送(例如立即发送)数据。如果下一个可用资源是在比在空中接口上传送相应RR的时间较晚的时间出现的,那么WTRU可以在进行中的传输期间传送RR。在这里描述了在进行具有较长的TTI的传输的同时和/或在RR专用资源受到限制或者不可用的时候传送RR的机制。
在这里描述的例示通信系统中,WTRU可以通过源自网络的许可来获得对于资源的访问。是否使用许可资源可以是在切换传输方案时有可能改变的操作方面的一个示例。WTRU可以在该许可中接收以下的一项或多项。WTRU可以接收关于可供该WTRU访问的资源的信息(例如指示)。作为示例,所述资源可被指定成是预先配置的资源索引,或者在许可中显性地用信号通告。WTRU可以接收关于所述许可有效所针对的SOM或传输信道的信息。举例来说,该信息可以指示可供WTRU使用的参数配置、TTI和/或波形。WTRU可以接收与可供WTRU用于指定许可的逻辑信道、服务类型、和/或优先级等等有关的信息。该信息可以包括通常能在WTRU和网络之间被理解的标识符或值。WTRU可以接收关于所述许可的传输格式的信息(例如MCS、块大小、开始时间等等)。WTRU可以接收关于TTI长度的信息。WTRU可以接收关于许可的有效性的信息。作为示例,该信息可以指示允许WTRU用于许可、时段长度等等的TTI或TTI范围。WTRU可以接收关于可以与许可一起使用或者可被从许可中排除的逻辑信道、优先级和/或服务范围的信息。该范围可以大于或小于某个优先级值(作为示例,所述优先级值可以由网络在许可中指示)。
WTRU可以对逻辑信道传输执行优先排序。逻辑信道传输的这种优先排序处理可以是可在WTRU切换传输方案时改变的操作方面的一个示例。作为示例,WTRU可以使用许可来传送优先级值小于或大于许可中通告的值的或者处于许可中通告某个范围以内(例如从最小值到最大值)的逻辑信道(例如任何逻辑信道)。在可允许的优先级值范围以内,WTRU可以排除某些优先等级。
WTRU可被配置成对所许可的资源的使用进行优先排序。在不同的服务中进行的对于许可资源的优先排序可以是可在WTRU切换传输方案时改变的操作方面的一个示例。举例来说,5G服务的优先级范围可以包括与许可资源的调度和使用相关联的十个不同的优先等级,其中等级10是可以与ULLC服务类型相关联的最高优先级。WTRU可被配置成先为较高优先级的服务指定资源(例如在这些较高优先级的服务要传送数据的时候)。举例来说,WTRU可以接收一个指配了优先等级5的许可。如此一来,该WTRU可被配置成将该许可(例如与该许可相关联的资源)用于标记了优先等级5或更高优先等级的传输块,或者在最高优先级小于5的情况下的将其用于具有最高优先级的传输块。一旦从PHY层接收关于许可的指示,则MAC层可以在其传输缓冲器中选择优先等级为5或更高的分组,或者在最高优先级小于5的情况下选择具有最高优先级的分组,并且可以将这个分组发送到PHY层,以便进行传输。
WTRU可被配置成将资源的优先排序束缚于PHY层上的特定类型的资源。将资源优先排序束缚于资源类型的处理可以是可在WTRU切换传输方案时改变的操作方面的一个示例。举例来说,WTRU可被配置成仅仅将特定的SOM用于具有特定优先级的逻辑信道。出于例证目的,WTRU可以接收已被指配了优先等级5的许可。WTRU可被配置成将该许可(例如与该许可相关联的资源)用于标记了优先等级5或更低的传输块。如此一来,WTRU可以避免使用与用于更高优先级数据(例如优先等级高于5的数据)的许可相关联的资源,因为这些资源不会被配置成(例如就可靠性或时间性而言)适应更高优先等级的数据。
WTRU可以被配置为从可以使用许可资源的优先等级范围中排除特定优先等级。这种排除特定优先等级的处理可以是可在WTRU切换传输方案时改变的操作方面的一个示例。能被WTRU排除的特定等级可以通过规范来定义,或者可以用信号通告给WTRU。举例来说,由于优先等级10可以与超低时延通信的最高形式相关联,并且如此一来会需要有可能要单独许可的特定类型的资源(例如通过指示该特定优先等级或者借助不同的机制),因此可以排除该优先等级。
WTRU可被配置成自主访问资源(例如预先配置的资源)。自主的资源访问可以是可在WTRU切换传输方案时改变的操作方面的一个示例。WTRU可被预先配置可供所述WTRU自主执行的传输集合。作为示例,这种能力在IoT应用、工业应用、和/或车载通信等等中是非常理想的。在这其中的一个或多个场景中,WTRU可以从在很长时段中具有少量或没有上行链路传输转到具有时延很低的常规(例如周期性)传输。为了启动低时延的常规传输,WTRU可被配置成具有一组预先配置的资源。该WTRU可以使用这些预先配置的资源中的一个或多个资源来传送具有某个QoS需求的数据。举例来说,WTRU可被配置成具有用于UL、DL、侧链路等等的资源。这种配置未必会为WTRU保留资源,但是可以向WTRU指示所述WTRU在需要时可以使用哪些资源。
预先配置的资源可以包括关于一个或多个重叠或不重叠的时间-频率资源的静态配置。这些资源可以持续有限的时段和/或可以是以某个周期发生的。举例来说,一个预先配置的资源可以包括位于特定的帧或子帧编号的单个资源块。WTRU在注册和/或连接到网络时借助来自网络的专用信令(例如与RRC信令相似)、借助接入表(例如与系统签名相关联)、通过使用与WTRU或服务相对应的身份标识和/或通过建立有可能需要预先配置的资源的服务、无线电承载、和/或逻辑信道等等来接收预先配置的资源或者请求修改预先配置的资源。
举例来说,WTRU可以通过短的上行链路传输或者经由RR或调度信息(SI)传输来获取对于预先配置的资源的访问。这种上行链路传输可以包括以下的一项或多项。该传输可以包括所要传送的请求。该传输可以包括用于标识预先配置的资源集合中的所期望的预先配置的资源的索引或标识符。该传输可以包括用于预先配置的资源的使用时长的信息(例如WTRU是希望一次性还是周期性使用资源,WTRU希望使用资源的持续时间等等)。该传输可以包括可能用于定义预先配置的资源是否和/或何时不再有效的条件。该传输可以包括关于标识符/索引以及其他与预先配置的资源的定时时长相关联的信息的请求。该传输可以包括可供WTRU使用预先配置的资源的时段。该传输可以包括可以在RR或SI中运送的其他信息。在该传输中可以标识WTRU,例如通过WTRU专用的RR或SI资源来标识,或者通过这里描述的显性标识符来标识。
一旦传送请求(例如这里描述的RR),则WTRU可以开始监视与触发该请求的服务或QoS分类相关联的一个或多个控制信道。举例来说,如果所请求的是关于低时延数据的传输,那么WTRU可以开始监视与低时延服务或是相应的SOM相关联的一个或多个控制信道。该WTRU可以及时接收确认(例如以与这里描述的方式相类似的方式)。如这里所述,WTRU可以在发送了短上行链路传输之后从网络接收响应。WTRU可以从该响应中接收以下的一项或所有两项:可处于短上行链路传输中与索引和/或定时相关的信息,或关于资源使用的应答。作为示例,WTRU可以执行一个短UL传输,以指示关于特定服务或SOM的资源的请求。网络可以使用预先配置的资源的索引来做出响应。依照预先配置的条件和/或所请求的服务类型,所述预先配置的资源可以用于至少一个传输。
在下行链路(DL)中可以为WTRU提供预先配置的资源。举例来说,通过使用这里描述的响应机制,可以做出一个规定(作为示例,所述规定可被包含在来自网络的响应中)。WTRU可以禁用预先配置的资源(例如以与如何启用预先配置的资源相似的方式)。举例来说,WTRU可以在缓冲器中的时延敏感数据量低于阈值的时候通过传输RR来禁用(例如隐性地)预先配置的资源传输。关于预先配置的资源的请求和/或启用/禁用处理是可在WTRU切换传输方案时改变的操作方面的一个示例。
作为示例,WTRU可以通过使用未必会被分配给该WTRU的潜在资源来执行自主上行链路传输。对于此类传输来说,WTRU将能够使用使预先配置的资源和/或向网络通知此类资源正被该WTRU使用。作为替换或补充,WTRU可以在低延迟上行链路控制信道上或者借助指配给该WTRU或者专用于一个或多个WTRU的低延迟数据传输(例如具有短TTI)来执行上行链路传输。自主的上行链路传输是可在WTRU切换传输方案时改变的操作方面的一个示例。
WTRU可以借助于为上行链路传输调度的资源上的MAC CE或是其他类似的控制消息来执行用于启用预先配置的资源的UL传输。WTRU可以执行前述处理而不是自主发送UL传输。使用所调度的资源来启用预先配置的资源可以是可在WTRU切换传输方案时改变的操作方面的一个示例。
WTRU可以借助这里描述的任何适当的技术来传送关于预先配置的资源的请求或是使用预先配置的资源的指示。举例来说,WTRU可以使用与传送RR相类似的方式来传送所述请求或指示。作为示例,WTRU可以借助RR(例如基于RR的内容)来启用预先配置的资源。作为示例,该WTRU可以通过发送RR来指示期望的资源配置,由此显性地启用预配置的资源。并且作为示例,该WTRU可以通过在可被解释成关于特定类型的资源配置的自动请求的RR中包含QoS相关参数来隐性地启用预先配置的资源。一旦传送包含特定触发条件的RR,则WTRU可以隐性地启用使用预先配置的资源的处理。该条件可以是预先配置的资源自身的初始预先配置的一部分。作为示例,WTRU可以被配置成在传输用于指示高于特定阈值的时延敏感数据量的RR的时候使用预先配置的资源。
WTRU可被配置成使用以下的一个或多个机制来执行这里描述的上行链路传输。WTRU可被配置成使用为一个或多个WTRU保留的短PHY层信号来执行上行链路传输,以便向网络发送信号。WTRU可被配置成使用在多个WTRU之间共享的信道上发送的类似于CDMA的信号或穿孔信号来执行上行链路传输。WTRU可被配置成使用在明确定义的特定时间实例上执行的类似于RACH的上行链路传输来执行上行链路传输。WTRU可被配置成借助于与预先的配置资源相关联的某一个资源上的初始传输来执行上行链路传输。下行链路中的网络传输(其示例可以包括ACK或指示)可以使用低时延控制信道、具有短TTI的数据信道或是别的适当的DL信道来执行。
WTRU可被分配资源以传送用于一个或多个服务的数据。该WTRU可以使用所分配的全部资源或是其子集来动态调度数据传输(例如借助于自调度)。所分配的资源可被限制在时域中的一个或多个特定窗口内部(作为示例,此类时间窗口可以具有几毫秒到数毫秒的持续时间)。在某些实施例中,所述一个或多个时间窗口可以周期性(例如基本上是周期性地)重现。所分配的资源可被限制在频域的某个范围以内。该频率范围可以取决于时间(例如用于提供频率分集)。所分配的资源可供至少一个上行链路物理信道(UPCH)使用,其中WTRU可以在所述信道上传送数据和控制信息。所分配的资源可以供一个或多个侧链路物理信道(SPCH)使用。资源可以是基于服务类型(例如针对每一种类型的服务)分配的,由此可以将一些资源保留用于某些类型的服务。
WTRU可被分配资源以传送调度信息(SI)、其他上行链路控制信息(UCI)和/或侧链路控制信息(SCI)。作为示例,这些信息可以包括HARQ-ACK和/或CSI反馈。应该指出的是,这里的关于SI的讨论也可适用于资源请求(RR)(举例来说,RR可被视为SI的一种类型,并且是可以与SI互换引用的;举例来说,依照SI描述的示例同样适用于RR,反之亦然)。同样,这里关于RR的讨论也可适用于SI。举例来说,虽然在上文中论述了用于传送SI的资源分配,但是本领域技术人员将会理解,这种机制也可应用于传送RR。为传送SI和/或其他UCI/SCI所分配的资源可以是为自调度操作分配的资源块的一部分,或者可以是单独分配的。在某些实施例中,这些资源可用于传送数据。SI和/或其他UCI/SCI的传输可以在特定的物理控制信道上进行(例如上行链路或侧链路物理控制信道)。所述SI和/或其他UCI/SCI可被编码和复用(例如在带内)在上行链路或侧链路物理信道中(例如与数据一起)。
用于传送SI和/或其他UCI/SCI的资源分配可被配置成在规则间隔上进行,例如在每一个最短的适用TTI上,由此频繁的传输时机。用于传输SI的单个实例的资源可以占用所述分配在频域中的全部范围。这样一来,被配置用于传送SI的一个实例的时间符号的数量可以减少(例如最小化)。SI可以与其他UCI/SCI联合编码。所述SI和/或其他UCI/SCI可以在调制、层映射和/或资源元素映射之前被单独编码和复用(例如级联)。编码速率、编码方案和/或调制可以使用这里描述的一种或多种技术来确定。
WTRU可以传送与关联于SI和/或UCI/SCI传输的参数有关的信息。此类信息可以帮助诸如网络节点或别的WTRU之类的接收节点解码SI和/或UCI/SCI。举例来说,WTRU可以指定信息比特的数量,调制和编码方案,和/或与SI和/或UCI/SCI相关联的资源信息(例如,时间符号数量)。此类信息可以以与SI和/或UCI/SCI分离的方式编码,和/或可被映射到所分配的资源的已知部分。WTRU可以包含关于下一个时间符号是否包含SI和/或UCI/SCI的指示(例如针对每一个包含SI和/或UCI/SCI的时间符号)。
WTRU可以在一个或多个TTI中传送数据。WTRU可以传送用于一个或多个服务、一个或多个逻辑或传输信道和/或一个或多个接收机(例如网络节点或其他WTRU)的数据。WTRU可以在SI(例如SI的实例)中包含与该数据相关联的信息,以便帮助一个或多个接收机解码数据。所述SI的实例可以在数据传输之前在一个或多个TTI中传送。所述SI的传输可以依照固定的定时关系。
WTRU可以在SI中指示是否在TTI中进行数据传输。举例来说,SI可以指示以下关于TTI或是TTI内部的适用的传输类型的一项或多项信息。该SI可以指示是否在TTI中传送数据。该SI可以指示包含在该传输中的数据、服务或逻辑信道的类型。该SI可以内包含关于TTI的定时指示(例如来自SI实例的时间单位的数量)。该SI可以指示TTI的持续时间。该SI可以指示WTRU的标识符(例如RNTI)。该SI可以包含关于目的地节点(例如网络节点(TRP)或别的WTRU)的指示。该SI可以指示循环冗余校验(CRC),例如与WTRU标识符之类的别的字段相结合或是用其遮蔽的CRC。该SI可以指示码字的数量。该SI可以指示与功率相关的信息(例如功率余量)。该SI可以指示其他控制信息,例如调度请求和/或缓冲器状态报告、HARQ-ACK或CSI反馈,和/或发射功率控制命令。
WTRU可以在SI中指示与如何发送码字信息的描述有关的指示。该描述转而可以包括以下的一项或多项。该描述可以包括传输信道类型。描述可以包括编码类型,例如卷积码或turbo码。该描述可以包括调制和编码方案(MCS)。该描述可以包括HARQ信息,例如新数据指示(NDI)、进程标识和/或重传序列号。该描述可以包括已分配资源内部或是TTI内部的频率/时间分配。该描述可以包括空间处理信息,例如发射分集或空间复用方案和/或传输层数量。该描述可以包括天线端口和/或参考信号信息。
作为示例,WTRU可以使用单个字段来用信号通告或指示这里描述的多个参数,以便减小开销。举例来说,字段可以指示MCS与编码类型或传输信道类型的组合。组合值与相应参数的值之间的映射可以是预先定义或是由高层配置的。WTRU可以使用以下的一种或多种技术来调度传输,和/或设置与所述传输有关的参数。
WTRU可被配置成在频域或空域中复用传输。举例来说,如这里所述,WTRU可以基于服务类型和/或TTL之类的其他参数来对数据传输进行优先排序。该WTRU可以采用这样一种方式来应用优先级,其中较高优先级数据的开始时间要早于较低优先级数据的开始时间。WTRU可以在相同的时间间隔中传送具有不同优先级的数据(例如在所有较高优先级的数据都可以在该时间间隔中被传送的情况下)。在这种情况下,较高优先级的数据可以使用功率域、频域和/或空域中的可用资源的一部分来传送。
在频域中可以对可用资源进行拆分。WTRU可以根据需要将尽可能多的频率资源分配给优先级较高的数据,并且可以使用剩余资源来传输优先级较低的数据。该WTRU可以根据预先定义的规则来确定关于传输(例如关于每一个传输)的频率分配。举例来说,WTRU可以首先分配最高或最低的频率。所述分配可以基于来自接收机的频率选择性信道质量反馈和/或基于传输优先级。WTRU可以首先将具有较高信道质量的频率部分分配给较高优先级的传输。举例来说,WTRU可能从网络节点接收到了表明分配给自调度操作的频率范围的第一部分具有高于第二部分的质量的指示。在这种情况下,WTRU可以使用所述频率范围的至少第一部分来执行较高优先级的传输。
如果可以使用空间复用,那么WTRU可以根据需要而将尽可能多的传输层分配给较高优先级的数据,并且可以使用剩余的空间层来传送较低优先级的数据。举例来说,WTRU可以根据预定义的规则或者基于来自接收机的特定于层的信道质量的反馈来确定关于传输(例如关于每一个传输)的层选择。
WTRU可以依照一个或多个适配原则来选择发射功率、MCS和/或空间传输方案。举例来说,WTRU可以配置和再配置(例如调整)发射功率。作为示例,这种发射功率可被表述成是最大发射功率的比值。WTRU可以基于物理层信令、高层信令或是其组合来配置和再配置(例如调整)发射功率。为了协助所述配置和再配置(例如调整),WTRU可以在所配置的功率电平上或者使用网络用信号通告的功率电平来传送参考信号。WTRU可以为一个或多个资源块(例如为每一个资源块)使用相同的发射功率。所述发射功率可以基于资源块来配置,以使总的发射功率可以取决于执行传输的资源块的数量。
WTRU可以接收关于与特定类型的数据一起使用的MCS和/或编码类型的指示。举例来说,WTRU可以接收与用于第一服务类型(例如URLLC)的第一编码类型(例如卷积编码)、第一调制和编码方案(例如QPSK和速率1/3)和/或第一空间传输方案(例如SFBC之类的传输分集)有关的指示。WTRU可以接收与用于第二服务类型(例如eMBB)的第二编码类型(例如turbo码)、第二调制和编码方案(例如16-QAM和速率1/2)和/或第二空间传输方案(例如等级2的空间复用)有关的指示。
WTRU可以根据来自接收机的信道质量反馈和/或根据所要传送的数据的类型来选择MCS和/或编码类型。作为示例,针对来自接收机的信道质量反馈的指定值,如果所要传送的数据对应于第一服务类型(例如URLLC),那么WTRU可以选择第一编码类型、第一调制和编码方案和/或第一空间传输方案。如果所要传送的数据对应于第二服务类型(例如eMBB),那么WTRU可以选择第二编码类型、第二调制和编码方案和/或第二空间传输方案。信道质量反馈值与用于特定服务类型的MCS和/或编码类型之间的映射可以由高层配置。
WTRU可以借助物理层信令来接收关于信道质量、MCS和/或码类型的指示。举例来说,这些指示可以在下行链路控制信息中与用于为自调度操作分配资源的其他参数一起用信号通告。这些指示可以是定期用信号通告的(例如在大约为若干个TTI的级别的间隔上)。
WTRU可以基于与TTI适用的动态指示来调整其对MCS、传输方案和/或发射功率所做的选择。WTRU可以借助物理层信令来从网络接收此类指示。举例来说,如果该指示被设置成第一个值,那么WTRU可以选择更保守的MCS等级和/或传输方案,并且如果该指示被设置成第二个值,那么WTRU可以应用不那么保守的MCS和/或传输方案。通过使用该指示,网络可以调整传输的健壮性,例如以别的WTRU是否预计会在该TTI中使用相同资源为基础来调整(例如在多用户MIMO的情形中)。通过使用该指示,网络可以在一定数量的HARQ重传之后提升传输的健壮性。该WTRU可以将各种指示映射到MCS/传输方案组合。MCS与传输方案的组合可以按照从最不保守到最保守的顺序排序。举例来说,WTRU可以将这种排序保存在表格中,并且一个指示可被映射到与该表格中的一个或多个条目相链接的偏移。所述偏移可以由高层配置和/或取决于服务类型或传输信道。
WTRU可以基于所执行的重传次数、从初始传输数据时起的延迟和/或数据的TTL来调整其对MCS、编码类型和/或发射功率所做的选择。举例来说,当传输传送的数据的TTL低于阈值时,WTRU可以应用更加保守的MCS等级和/或传输方案。所述调整可以包括在关于MCS和/或传输方案的表格中应用的偏移。所述调整会导致将所分配的资源中的较大部分分配给传输,同时提升传输的健壮性和成功完成的可能性。当数据的TTL低于阈值时,WTRU可以将发射功率增大该偏移。
WTRU可被配置成对一个以上的接收机执行传输(例如使用一个以上的MAC实例和/或同时)发送。在一个示例中,第一MAC实例可以对应于针对第一网络节点的传输,并且第二MAC实例可以对应于针对第二网络节点的传输。在一个示例中,第一MAC实例可以对应于针对网络节点的传输,并且第二MAC实例可以对应于针对别的WTRU的传输。适用于传输(例如每一个传输)的MCS和/或编码类型可以取决于接收机提供的信道质量反馈和/或其他指示。
资源可以被配置成用于自调度操作。对于一种或多种服务类型(例如对于每一种服务类型)来说,这些资源可以包括以下的一项或多项。用于自调度的资源可以包括用于传输数据和/或控制信息(例如SI和/或SCI/UCI)的资源。用于自调度的资源可以包括用于接收控制信息(例如下行链路或侧链路控制信息,比方说信道质量反馈、HARQ反馈和/或其他指示)的资源。用于自调度的资源可以包括用于链路自适应的参数(例如发射功率,功率调整偏移量,MCS和/或传输方案)。用于自调度的资源可以由高层或由物理层信令与高层信令的组合来配置。举例来说,WTRU可以借助源于物理控制信道的下行链路控制信令来接收可被映射到与用于自调度的资源配置相关联的参数集合的字段。这种映射可以由高层来配置。
WTRU可以访问专用于特定服务类型(例如URLLC)的资源。此类资源可以为多个WTRU所共有(例如被其共享)。所述多个WTRU可以传送URLLC数据(例如至少偶尔传送)。所述专用资源可以包括特定的时间/频率资源,例如特定的资源块或子载波。资源可被用于指定帧或子帧集合,或者可以在很长的时段上被使用。举例来说,WTRU可以基于网络的广播或专用信令或者通过接入表来确定专用于特定服务(例如用于URLLC)的资源。
WTRU能够在专用的PHY资源上自主地执行传输。举例来说,WTRU可被配置成为在为该WTRU(例如仅仅为该WTRU)保留了专用PHY资源的时候执行这种自主传输。WTRU可以通过低时延下行链路控制信道来从网络接收ACK。作为示例,ACK可以通过控制信道来发送。所述ACK可以与一个指示在相同的子帧中发送,和/或通过使用缩短的TTI来发送。所述ACK可以包括关于使用何种资源的指示。所述ACK可以通过某个时间频率空间(例如为该特定用途保留的时间频率空间)以内的专用符号来发送。作为示例,在这里可以为WTRU(例如每一个WTRU)保留一组符号,以供其接收下行链路ACK。作为示例,在WTRU不会期待有来自所述指示的响应的子帧或TTI上,这种符号可被用于其他用途(例如,这些符号可以充当参考符号)。
WTRU可被配置成具有可供利用缩短的TTI的传输使用(例如专门为其保留)的PHY层上的资源。举例来说,特定的时间/频率资源(例如每y个子帧的x个资源块)可被保留,以供WTRU执行TTI缩短的传输(例如2个OFDM符号)。WTRU可以使用以下的一种或多种例示技术来确定为具有TTI缩短的传输所保留的资源。所述资源可以是为WTRU静态限定的。这些资源可以由网络通过专用信令或者借助接入表用信号通告。这些资源可以基于WTRU的设备类型、基于服务类型和/或基于WTRU当前管理的业务量类型来定义/创建(例如用隐性的方式)。WTRU可被配置成自主地选择资源。
某个传输类型可能优先于其他传输类型。图5示出了对传输进行优先排序的处理的一个示例。这种传输优先排序可被应用在不同的使用范例中,这其中包括涉及URLLC传输、差分QoS eMBB传输、和/或非复用URLLC传输等等的使用范例。作为示例,传输优先级可以基于以下的一项或多项来实现。传输优先排序可以借助请求差分来实现。传输优先排序可以借助传输信道选择来实现。传输优先排序可以借助传输资源与高优先级HARQ和/或不同传输信道的重新关联来实现。经过优先排序的传输可以指示和/或使用特定的参数配置。经过优先排序的传输可以包括被配置成具有用于成功完成传输的最大允许时间的PDU(例如对于URLLC传输或是差分QoS eMBB传输而言)。经过优先排序的传输可以包括与特定逻辑信道相关联的PDU(例如对于非复用URLLC传输而言)。
如这里所述,该例示通信系统可以支持低时延通信。WTRU可以被配置成在MAC/PHY层即时或者在具有处理延迟(例如最短的可能延迟)的情况下传送低时延分组。WTRU可被配置成延迟那些已在进行、已被取消和/或已被终止的传输,以便将优先级给予低时延分组。在一个用于对低时延通信进行优先排序的例示方案中,将要执行所调度的上行链路传输的WTRU可以自主决定延迟所调度的传输,并且可以使用分配给所调度的传输的资源来传送或重传具有低时延需求的传输。
关于可被WTRU延迟的传输的示例可以包括动态调度的上行链路传输,半永久性传输或是静态的上行链路许可传输,和/或被调度的重传等等。在一个示例中,具有多个进行中的HARQ进程的WTRU可以暂停其中一个HARQ进程,以便允许传输低时延数据。在一个示例中,WTRU可以暂停将要重传的传输块或传输,并且可以使用用于所述重传的资源来执行具有低时延需求的传输块或数据的初始传输。在一个示例中,WTRU有可能接收到了与具有特定优先级的传输、逻辑信道和/或服务相关联的许可,并且该WTRU有可能决定使用用于所许可的传输的资源来传送低时延分组。作为示例,低时延分组可以是在做出了关于非低时延资源的请求以及相应许可之后到达MAC层的。在这样的场景中,WTRU可以向网络发送一个与当前被保留了资源的非低时延传输以及WTRU意图为之使用资源的不同服务、优先级或逻辑信道有关的指示。所述指示可以使用这里描述的格式和/或技术来传送。
一旦决定延迟诸如非低时延传输之类的传输,则WTRU可以向网络传送一个表明已经为了支持另一个传输(例如低时延传输)而延迟了所述传输的指示。该指示可以表明许可或资源分配正被覆盖。该指示可以指示与被延迟的数据相关联的HARQ ID或进程。该指示可以指示与新数据相关联的HARQ ID或进程。该指示可以指示可用于重传被延迟的数据的资源、位置和/或过程。如这里所述,该指示可以在UCI/SCI、SI和/或RR中提供。该指示可以包括正被延迟或将要传输的数据的类型。例如,WTRU可以指示某个传输是低时延传输并且应被相应地处理。该WTRU可以指示正被传送的数据的传输格式(例如MCS、编码等等)和/或用于在相同资源上传送所述数据的PHY层参数(例如TTI参数)。一旦接收到所述指示,网络可以暂停与已中断的特定HARQ进程相关的HARQ处理。一旦成功完成了低时延传输块的传输,则网络可以恢复HARQ处理。
一旦将新的传输(例如低时延传输)优先排序成优先于原始传输,则WTRU可以使用为所述新传输使用与用于原始传输的调制和/或编码技术相同的调制和/或编码技术。作为替换,WTRU可以为新的传输选择新的TTI、调制和/或编码技术,以便允许该WTRU在相同的资源内部或是相同的资源部分内部传送所述新的传输。
WTRU可以使用分配给该WTRU的资源子集来向网络发送上述指示。举例来说,WTRU可以在传输块中、在资源元素集合中或者在子载波集合中发送该指示。所述资源子集可以是为此目的预先定义的。作为例证,WTRU可以使用第一传输块的前N个子载波来发送指示。此外,WTRU还可以传送预先定义的序列,以便用信号通告网络存在所述指示。这种技术可以允许网络首先解码专用资源元素,以便确定预先定义的序列、暂停指示、和/或物理层参数等等的存在性。
作为替换或补充,WTRU可以在单独的控制信道(例如用于UL低时延控制通信的控制信道)上发送上述指示。该WTRU可以在具有缩短的TTI的不同资源集合发送指示。网络可被配置成对WTRU传送的信息进行盲解码。WTRU可以使用UCI/SCI、UL控制信道、SI或RR来运送新的调度信息和/或指示新的HARQ信息、新的物理层参数、新的SOM和/或新的TTI。WTRU可以使用这里描述的一种或多种技术来传送相关信息和/或选择相关参数。
WTRU可以被配置成在另一个传输进行的同时传送RR、SI和/或低时延数据。如果在进行另一个传输的同时触发了RR,那么WTRU可以在所述进行中的传输的中间传送RR。在TTI内部可以保留某些符号和/或资源,以便传送用于时间敏感数据的RR。WTRU可以使用类似CDMA的信号来传送RR和/或SI。该WTRU可以将时间敏感数据穿孔,并且可以将RR请求嵌入数据信号或信道。所述数据的接收实体可以接收关于该数据已被穿孔的通知。
当数据传输被RR和/或时间敏感数据中断时,多个比特(例如中断之后的所有比特)会被丢弃。WTRU可以在信号中嵌入信息,以便向接收实体指示来自先前传输的数据已被丢弃以及新的传输已经开始,或者向其指示正在传送RR/SI。该WTRU可以向接收实体(例如网络)通告数据(例如中断之后的所有数据)已被丢弃。为了处理时间敏感数据,WTRU可以从它的传输缓冲器中丢弃分组,或者丢弃其在RAN处理分组之前从高层接收的分组。WTRU可被配置成在任何层丢弃分组。举例来说,当从较高层接收到分组时,所述分组可被丢弃。另举一例,WTRU上的特定层可以丢弃该WTRU从上面的层接收的SDU。
在丢弃分组时,WTRU可以执行一个或多个行动。WTRU可以重新调整序列编号,以使丢弃的分组和/或SDU不会占用特定序列号。WTRU可以使用该传输来发送特定指示(例如MACCE或是类似的控制消息),以便向网络提供关于被丢弃的分组的指示。可丢弃分组的例示状况可以包括以下的一项或多项。当分组或SDU晚于预期递送时间到达时,WTRU可以丢弃分组或SDU。举例来说,当分组或SDU到达时,预期的递送时间有可能已经期满。当分组或SDU的预期处理时间(例如由当前层或是下层所预期的)会导致分组或SDU的预期传送时间在传输之前期满时,WTRU可以丢弃分组或SDU。当分组或SDU与允许丢弃分组的逻辑信道、流和/或服务相关联时,WTRU可以丢弃分组或SDU。所涉及的逻辑信道、流和/或服务可以在启动时被配置成允许丢弃分组。当分组或SDU与具有时间敏感的时延需求的其他分组复用在一起并且所述分组或SDU本身不具有时间敏感的时延需求时,WTRU可以丢弃所述分组或SDU。
WTRU可以被配置为向低层、高层或应用层发送分组已被丢弃的指示。举例来说,WTRU可被配置为向PHY层发送指示,以便增加可用于传输的资源量。作为示例,WTRU可被配置成向应用层通知潜在的不正确操作。
这里描述的例示通信系统可以将多个MAC CE或MAC层控制消息用于MAC层控制信令。关于这种消息的一个示例可以与TRP修改相关联,其示例包括TRP切换、转换、添加、激活和/或去激活。网络可被配置成通过发送此类消息来指示WTRU从一个TRP上的Tx/Rx移动到另一个TRP上的Tx/Rx。该消息可以指示WTRU发起针对两个不同的TRP的组合TX/RX。该消息可以包括以下字段中的一个或多个字段:目标TRP标识符,目标TRP配置(例如资源、功率、定时器等等),目标TRP载波频率和带宽,目标TRP RACH或WTRU自主传输配置,和/或定时校准。WTRU可以预先被配置成具有目标TRP配置,并且可以接收所述配置的索引和/或子集,以便访问所述TRP。
另一个例示的MAC CE或MAC层控制消息可以与TRP连接请求相关联。WTRU可被配置成通过发送此类消息来请求与特定TRP的连接。该消息可以包括WTRU标识信息、逻辑信道和/或服务列表,和/或连接请求原因等等。
另一个例示的MAC CE或MAC层控制消息可以与TRP测量列表相关联(作为示例,该消息可以包含TRP测量列表)。网络可被配置成向WTRU提供所述WTRU应该测量的TRP列表。作为示例,WTRU可被指示测量与TRP列表相关的DL质量。网络可被配置成为WTRU提供TRP列表,其中WTRU应该根据所述TRP列表测量位置参考信号(PRS)(例如用于确定WTRU的位置)。网络可被配置成为WTRU提供应该由所述WTRU在指定时间保持UL定时校准的TRP列表。包含TRP测量列表的消息可以包括以下的一个或多个字段:消息类型,TRP标识列表(例如每一个TRP的索引或类似标识符),和/或与TRP(例如与每一个TRP)相关联的阈值。在一个示例中,与TRP测量列表相关联的信息可以作为RR和/或SI信息的一部分来提供。
另一个例示的MAC CE或MAC层控制消息可以与跨TRP的调度配置相关联。举例来说,网络可被配置成向WTRU发送此类消息,以便配置半静态的跨TRP调度配置。该消息可以包括以下的一个或多个字段:源TRP标识,目标/目的地TRP标识,和/或源与目的地资源之间的资源映射。
另一个例示的MAC CE或MAC层控制消息可以与TRP的位置相关联。网络被配置成向WTRU发送此类消息,以便提供位于该WTRU附近的TRP的相应位置。所述消息可以包括以下的一个或多个字段:WTRU附近的TRP的标识,TRP使用的系统签名,和/或TRP的相应位置。
另一个例示的MAC CE或MAC层控制消息可以与定时校准请求相关联。WTRU可被配置成向网络发送此类消息,以便请求网络向该WTRU提供UL定时校准和/或启动定时校准过程。该消息可以包括以下的一个或多个字段:启用/禁用定时校准的请求,以及在其中请求了定时校准的SOM。
另一个例示的MAC CE或MAC层控制消息可以与增强的定时提前相关联。所述消息可以包括以下的一个或多个字段:TRP标识符,与每一个TRP相关联的定时偏移,与每一个SOM相关联的定时偏移,和/或关于允许/不允许用于上行链路定时校准的技术的指示。
另一个例示的MAC CE或MAC层控制消息可以与增强的缓冲器状态报告相关联。所述消息可以包括以下的一项或多项:逻辑信道ID或逻辑信道组ID,队列中的字节数,数据的优先级,QoS分类,与RR相关联的一个或多个信息,传输信道类型,队列中TTL低于第一阈值的字节数,和/或队列中TTL高于阈值但低于第二阈值的字节数。不同的MAC CE可以是为不同的RR类型定义的。MAC CE可以包括用于指示MAC CE所对应的RR类型的报头。
另一个例示的MAC CE或MAC层控制消息可以与丢弃分组指示相关联。该消息可以由WTRU发送到网络或者由网络发送到WTR,以便向WTRU或网络调度器中的SDU排序实体通告该序列中的分组丢失。该消息可以包括以下的一个或多个字段:丢弃了分组的逻辑信道或流,和/或被丢弃的分组的索引(作为示例,或是被丢弃的分组范围的索引)。
另一个例示的MAC CE或MAC层控制消息可以与SPS配置相关联。网络可被配置成向WTRU发送此类消息,以便配置和/或再配置WTRU中的半永久性调度的资源(作为示例,所述资源可以是预先配置的)。所述消息可以包括以下的一个或多个字段:资源标识(例如时间,频率,持续时间,周期等等),使用限制,资源标识符或是资源集合标识符(例如若干个资源可被配置)和/或与资源或资源集合相关联的SOM。
另一个例示的MAC CE或MAC层控制消息可以与SPS资源启用或禁用处理相关联。WTRU可被配置成将此类消息发送到网络,以便启用或禁用预先配置的SPS资源或SPS资源集合。该消息可以包括以下的一个或多个字段:关于启用或禁用SPS的指示,和/或资源或资源集合的标识符。
另一个例示的MAC CE或MAC层控制消息可以与资源请求、资源增加或减少、和/或资源指示相关联。WTRU可被配置成向网络发送这样的消息,以便向网络指示关于特定类型的资源(例如短TTI资源)的请求,请求随着时间推移增加或减少所分配的这些资源量,和/或向网络指示所述WTRU当前正在使用或想要使用特定资源。该消息可以包括以下的一个或多个字段:消息类型,SOM标识,增量/减量,被请求的资源量,和/或资源和/或限制的类型。
另一个例示的MAC CE或MAC层控制消息可以与连接再配置相关联。网络可被配置成向WTRU发送此类消息,以便重新配置与TRP的特定连接。该消息可以包括以下的一项或多项(例如针对与TRP相连的每一个SOM):新的无线电配置,资源配置,功率配置,和/或定时器配置等等。
虽然在上文中描述了采用特定组合的特征和要素,但是本领域普通技术人员将会认识到,每一个特征或要素既可以单独使用,也可以与其他特征和要素进行任何组合。此外,这里描述的方法可以在引入计算机可读介质中以供计算机或处理器运行的计算机程序、软件或固件中实施。关于计算机可读媒体的示例包括电信号(经由有线或无线连接传送)以及计算机可读存储媒体。关于计算机可读存储媒体的示例包括但不局限于只读存储器(ROM)、随机存取存储器(RAM)、寄存器、缓冲存储器、半导体存储设备、内部硬盘盒及可拆卸磁盘之类的磁介质、磁光介质、以及CD-ROM碟片和数字多用途碟片(DVD)之类的光介质。与软件关联的处理器可以用于实施在WTRU、UE、终端、基站、RNC或任何计算机主机中使用的射频收发信机。

Claims (15)

1.一种无线发射/接收单元WTRU,包括:
处理器,其被配置成:
接收第一配置信息,其中该第一配置信息指示将由所述WTRU用于传输与第一逻辑信道相关联的调度请求的第一资源集合;
接收指示用于所述WTRU的上行链路传输许可的信息;
确定与所述第一逻辑信道相关联的数据可用于传输;
确定与所述上行链路传输许可相关联的子载波间隔并未位于与所述第一逻辑信道相关联的一个或多个子载波间隔之中;
响应于确定与所述上行链路传输许可相关联的所述子载波间隔并未位于与所述第一逻辑信道相关联的所述一个或多个子载波间隔之中,通过使用所述第一配置信息内指示的所述第一资源集合来传输用于与所述第一逻辑信道相关联的所述数据的第一调度请求。
2.根据权利要求1所述的WTRU,其中所述处理器被进一步配置为:
接收第二配置信息,该第二配置信息指示将被用于传输与第二逻辑信道相关联的调度请求的第二资源集合。
3.根据权利要求1所述的WTRU,其中所述处理器被配置为基于确定与所述上行链路传输许可相关联的所述子载波间隔位于与第二逻辑信道相关联的一个或多个子载波间隔之中,确定所述上行链路传输许可与所述第二逻辑信道相关联。
4.根据权利要求1所述的WTRU,其中所述处理器被配置为基于与第二逻辑信道相关联的至少一个传输参数,确定所述上行链路传输许可与所述第二逻辑信道相关联。
5.根据权利要求4所述的WTRU,其中所述至少一个传输参数包括用于传输与所述第二逻辑信道相关联的数据的定时参数或参数配置。
6.根据权利要求1所述的WTRU,其中指示所述上行链路传输许可的所述信息进一步指示所述上行链路传输许可将被用于的服务类型。
7.根据权利要求6所述的WTRU,其中所述服务类型与超可靠低时延通信URLLC相关联。
8.根据权利要求1所述的WTRU,其中所述第一配置信息进一步指示与所述第一逻辑信道相关联的所述一个或多个子载波间隔。
9.根据权利要求1所述的WTRU,其中所述第一逻辑信道与传输优先级或服务质量QoS需求相关联。
10.根据权利要求9所述的WTRU,其中所述传输优先级或QoS需求中的至少一者与超可靠低时延通信URLLC相关联。
11.一种在无线发射/接收单元WTRU内实施的方法,该方法包括:
接收第一配置信息,其中该第一配置信息指示将由所述WTRU用于传输与第一逻辑信道相关联的调度请求的第一资源集合;
接收指示用于所述WTRU的上行链路传输许可的信息;
确定与所述第一逻辑信道相关联的数据可用于传输;
确定与所述上行链路传输许可相关联的子载波间隔并未位于与所述第一逻辑信道相关联的一个或多个子载波间隔之中;
响应于确定与所述上行链路传输许可相关联的所述子载波间隔并未位于与所述第一逻辑信道相关联的所述一个或多个子载波间隔之中,通过使用所述第一配置信息内指示的所述第一资源集合来传输用于与所述第一逻辑信道相关联的所述数据的调度请求。
12.根据权利要求11所述的方法,进一步包括:
接收第二配置信息,该第二配置信息指示将被用于传输与第二逻辑信道相关联的调度请求的第二资源集合。
13.根据权利要求11所述的方法,进一步包括:基于确定与所述上行链路传输许可相关联的所述子载波间隔位于与第二逻辑信道相关联的一个或多个子载波间隔之中,确定所述上行链路传输许可与所述第二逻辑信道相关联。
14.根据权利要求11所述的方法,进一步包括:基于与第二逻辑信道相关联的传输定时参数或与所述第二逻辑信道相关联的参数配置参数,确定所述上行链路传输许可与所述第二逻辑信道相关联。
15.根据权利要求11所述的方法,其中所述第一配置信息进一步指示与所述第一逻辑信道相关联的所述一个或多个子载波间隔。
CN201780021388.5A 2016-03-30 2017-03-29 在无线系统中处理用户平面 Active CN108886498B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210539358.6A CN115209484A (zh) 2016-03-30 2017-03-29 在无线系统中处理用户平面

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662315373P 2016-03-30 2016-03-30
US62/315,373 2016-03-30
PCT/US2017/024778 WO2017172937A1 (en) 2016-03-30 2017-03-29 Handling user plane in wireless systems

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202210539358.6A Division CN115209484A (zh) 2016-03-30 2017-03-29 在无线系统中处理用户平面

Publications (2)

Publication Number Publication Date
CN108886498A CN108886498A (zh) 2018-11-23
CN108886498B true CN108886498B (zh) 2022-06-03

Family

ID=58640989

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210539358.6A Pending CN115209484A (zh) 2016-03-30 2017-03-29 在无线系统中处理用户平面
CN201780021388.5A Active CN108886498B (zh) 2016-03-30 2017-03-29 在无线系统中处理用户平面

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202210539358.6A Pending CN115209484A (zh) 2016-03-30 2017-03-29 在无线系统中处理用户平面

Country Status (9)

Country Link
US (2) US11265901B2 (zh)
EP (1) EP3437272A1 (zh)
JP (3) JP7002464B2 (zh)
KR (2) KR102277760B1 (zh)
CN (2) CN115209484A (zh)
BR (1) BR112018069806A2 (zh)
RU (1) RU2711053C1 (zh)
TW (1) TWI752016B (zh)
WO (1) WO2017172937A1 (zh)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9014189B2 (en) * 2012-01-19 2015-04-21 Comcast Cable Communications, Llc Address translation
AU2016405921B2 (en) * 2016-05-13 2019-06-13 Huawei Technologies Co., Ltd. Uplink information sending method and apparatus, base station, and user equipment
US11063703B2 (en) * 2016-05-29 2021-07-13 Lg Electronics Inc. Method and apparatus for supporting mixed numerologies for URLLC usage scenarios in wireless communication system
WO2018036620A1 (en) * 2016-08-23 2018-03-01 Telefonaktiebolaget Lm Ericsson (Publ) Transport network, node and method
CN106888078B (zh) * 2016-12-26 2019-03-12 中国移动通信有限公司研究院 前传网络的数据传输方法及装置
US11012280B2 (en) * 2017-02-03 2021-05-18 Ntt Docomo, Inc. User terminal and radio communication method
US11178676B2 (en) * 2017-02-03 2021-11-16 Telefonaktiebolaget Lm Ericsson (Publ) First communication device, second communication device, and methods performed thereby for handling uplink transmissions based on quality of service requirements
FR3065138B1 (fr) * 2017-04-05 2020-12-11 Sigfox Systeme de communication sans fil comportant un canal physique d’acces aleatoire global dans le temps et l’espace
CN108923896B (zh) 2017-04-19 2021-03-26 上海朗帛通信技术有限公司 一种被用于寻呼的用户设备、基站中的方法和装置
US11019652B2 (en) * 2017-05-04 2021-05-25 Ofinno, Llc Parallel scheduling request process management
US11153853B2 (en) * 2017-05-05 2021-10-19 Motorola Mobility Llc Sidelink control information indication
US11032830B2 (en) * 2017-05-05 2021-06-08 Qualcomm Incorporated Scheduling request for wireless systems
CN109151836A (zh) * 2017-06-19 2019-01-04 中国移动通信有限公司研究院 一种接入方法、网络设备及移动通信终端
US11722262B2 (en) * 2017-07-21 2023-08-08 Lg Electronics Inc. Method and apparatus for transmitting feedback by terminal receiving signal from another terminal in wireless communication system
CN111264084B (zh) * 2017-10-10 2022-04-05 联想(北京)有限公司 确定传输方案
US11330566B2 (en) * 2017-10-19 2022-05-10 Lg Electronics Inc. Method and device for sidelink communication for supporting multiple beams
US11516834B2 (en) * 2017-11-13 2022-11-29 Qualcomm Incorporated Uplink control information transmission
CN109982391B (zh) * 2017-12-28 2023-04-11 华为技术有限公司 数据的处理方法及装置
CN108073829A (zh) * 2017-12-29 2018-05-25 上海唯链信息科技有限公司 用于记录对象的运输数据的方法、介质、物联网设备、区块链平台和物联网系统
US10868638B2 (en) * 2018-01-25 2020-12-15 Qualcomm Incorporated Transmission/reception point (TRP) selection for retransmissions in a coordinated multipoint network
US10862613B2 (en) * 2018-02-01 2020-12-08 T-Mobile Usa, Inc. Dynamic numerology based on services
CN110139373B (zh) * 2018-02-09 2021-08-20 大唐移动通信设备有限公司 一种资源选择方法及用户终端
WO2019154522A1 (en) * 2018-02-12 2019-08-15 Huawei Technologies Co., Ltd. Devices and methods for transmitting a data packet in a communication network
CN110167173A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种上行数据的发送方法、接收方法和装置
WO2019161269A1 (en) 2018-02-16 2019-08-22 Idac Holdings, Inc. Methods and devices to determine the quality of service mechanisms for vehicle-to-everything mobile device communications
US10785792B2 (en) * 2018-03-28 2020-09-22 Google Llc User device-initiated low-latency data transmissions
GB2572429A (en) 2018-03-29 2019-10-02 Tcl Communication Ltd Resource allocation
WO2019233586A1 (en) * 2018-06-07 2019-12-12 Huawei Technologies Co., Ltd. Apparatus and method for efficient packet transmission
CN110753335B (zh) * 2018-07-24 2023-04-07 中兴通讯股份有限公司 信息传输方法、设备及计算机可读存储介质
US11690066B2 (en) * 2018-07-30 2023-06-27 Qualcomm Incorporated Retransmission and fallback for autonomous uplink transmission
US11627025B2 (en) * 2018-09-04 2023-04-11 Qualcomm Incorporated Self-adapting autonomous transmission configuration
US12022466B2 (en) 2018-09-27 2024-06-25 Panasonic Intellectual Property Corporation Of America Terminal and communication method for allocating uplink resources
CN115622676A (zh) * 2018-09-28 2023-01-17 大唐移动通信设备有限公司 一种资源配置方法、基站及终端
US20210345302A1 (en) * 2018-11-01 2021-11-04 Sony Corporation Telecommunications apparatus and methods
WO2020091546A1 (en) * 2018-11-02 2020-05-07 Lg Electronics Inc. Configuration coordination for power efficient operation for nr
US11330562B2 (en) * 2018-11-27 2022-05-10 Tencent Technology (Shenzhen) Company Limited Method and apparatus for sidelink resource control
CN111294936B (zh) * 2018-12-06 2023-04-14 大唐移动通信设备有限公司 一种传输方法及终端
CN111435871A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 一种旁链路中的反馈资源确定方法及设备
US11438887B2 (en) * 2019-01-11 2022-09-06 Qualcomm Incorporated Default beam identification and beam failure detection in cross carrier scheduling
US12096277B2 (en) * 2019-02-15 2024-09-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangements for desired buffer size target time
WO2020191608A1 (en) * 2019-03-26 2020-10-01 Qualcomm Incorporated Waveform configuration and indication for uplink transmission
CN109936433B (zh) * 2019-04-30 2021-10-08 成都中科微信息技术研究院有限公司 一种根据QoS分配PUCCH资源的基站及系统
EP3954150B1 (en) * 2019-04-30 2023-11-29 Huawei Technologies Co., Ltd. Network entity and user equipment for exploiting resilience to consecutive transmission failures
EP3949297A1 (en) * 2019-05-23 2022-02-09 Huawei Technologies Co., Ltd. Client device for indication of non-fulfillment of latency requirements
CN111800219B (zh) * 2019-07-29 2022-05-24 维沃移动通信有限公司 数据传输方法、用户设备及控制节点
CN118102471A (zh) * 2019-08-15 2024-05-28 瑞典爱立信有限公司 支持侧链路重传的方法
CN118019145A (zh) * 2019-09-20 2024-05-10 株式会社Ntt都科摩 终端、通信方法以及系统
CN113826337B (zh) * 2019-09-30 2023-12-08 华为技术有限公司 一种时刻信息的通知方法和装置
EP3813285A1 (en) * 2019-10-25 2021-04-28 THALES DIS AIS Deutschland GmbH Method for priority-based data transmission
CN110572879B (zh) * 2019-10-29 2023-06-20 展讯通信(上海)有限公司 资源控制方法、装置及存储介质
US11621768B2 (en) * 2019-12-24 2023-04-04 Huawei Technologies Co., Ltd. Terrestrial and non-terrestrial communication systems, apparatuses, and methods
US20230024678A1 (en) * 2019-12-30 2023-01-26 Nokia Solutions And Networks Oy Scheduling in cloud radio access network
US11659486B2 (en) * 2020-02-11 2023-05-23 Mediatek Inc. Wireless communication method with adaptive power control mechanism and associated circuitry within electronic device
KR20230061377A (ko) * 2020-08-05 2023-05-08 인터디지탈 패튼 홀딩스, 인크 무선 시스템들에서의 포지셔닝 기준 신호들의 핸들링
CN112099871B (zh) * 2020-09-03 2023-06-02 中国联合网络通信集团有限公司 一种服务质量配置方法及装置
US11659468B2 (en) 2020-10-22 2023-05-23 Electronics And Telecommunications Research Institute Method and apparatus for link configuration and routing of relay system
US20220417972A1 (en) * 2021-06-25 2022-12-29 Apple Inc. Fast Resource Allocation Adjustment and Media Access Control Awareness of Quality of Service Flows in Wireless Communications

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7061929B1 (en) 2000-03-31 2006-06-13 Sun Microsystems, Inc. Data network with independent transmission channels
US6775541B2 (en) * 2001-01-19 2004-08-10 Motorola, Inc. Method and apparatus for controlling data rates to preserve voice quality in a CDMA system
US7155236B2 (en) * 2003-02-18 2006-12-26 Qualcomm Incorporated Scheduled and autonomous transmission and acknowledgement
US8040834B2 (en) * 2004-03-31 2011-10-18 Interdigital Technology Corporation Wireless communication method and apparatus for reporting traffic volume measurement information to support enhanced uplink data transmissions
US20050222884A1 (en) 2004-03-31 2005-10-06 Ralf Ehret Capacity planning of resources
ATE494691T1 (de) * 2004-06-15 2011-01-15 Panasonic Corp Prioritätsbehandlung für datenübertragungen
CA2862386A1 (en) 2006-02-03 2007-08-16 Interdigital Technology Corporation Quality of service based resource determination and allocation apparatus and procedure in high speed packet access evolution and long term evolution systems
PL3444991T3 (pl) * 2006-02-03 2020-09-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Przydział zasobów łącza uplink w systemie komunikacji mobilnej
CN101507302A (zh) 2006-08-21 2009-08-12 交互数字技术公司 用于分组实时服务的资源分配、调度以及信令发送
PL2670204T3 (pl) 2008-02-01 2017-07-31 Interdigital Patent Holdings, Inc. Sposób i urządzenie do priorytetyzowania kanałów logicznych
ATE525875T1 (de) 2008-11-04 2011-10-15 Htc Corp Verfahren zur verbesserung der aufwärtsstreckenübertragung in einem drahtlosen kommunikationssystem
EP2244515A1 (en) * 2009-04-23 2010-10-27 Panasonic Corporation Logical channel prioritization procedure for generating multiple uplink transport blocks
US20100281486A1 (en) * 2009-05-04 2010-11-04 HT mMobile Inc. Enhanced scheduling, priority handling and multiplexing method and system
DK3681234T3 (da) 2009-05-05 2021-09-20 Ericsson Telefon Ab L M Fremgangsmåde og anordning i et trådløst kommunikationssystem
US8638815B2 (en) * 2010-01-08 2014-01-28 Blackberry Limited Method and apparatus for logical channel prioritization for uplink carrier aggregation
CN102149206B (zh) * 2010-02-09 2016-01-13 中兴通讯股份有限公司 上行调度方法
US8942166B2 (en) 2010-02-12 2015-01-27 Google Technology Holdings LLC Method for providing a contention based uplink channel
KR101703069B1 (ko) * 2010-04-06 2017-02-06 삼성전자주식회사 이동통신시스템에서 효율적인 경쟁기반 역방향 전송 방법
US10135595B2 (en) 2010-06-21 2018-11-20 Telefonaktiebolaget L M Ericsson (Publ) Uplink control information (UCI) mapping indicator for long term evolution (LTE) carrier aggregation
US8514703B2 (en) 2010-11-11 2013-08-20 Qualcomm Incorporated Scheduling of logical channels in a wireless communication system
CN102970761A (zh) 2011-09-01 2013-03-13 华为技术有限公司 数据发送方法和用户设备
WO2013138701A2 (en) * 2012-03-16 2013-09-19 Interdigital Patent Holdings, Inc. Random access procedures in wireless systems
CN104170493B (zh) * 2012-03-23 2018-09-07 联发科技股份有限公司 移动通信网络中分配调度请求资源的方法以及装置
CN102612093B (zh) 2012-03-30 2014-07-02 西安交通大学 一种基于载波聚合的LTE-Advanced 系统中的上行跨层资源调度方法
WO2013155705A1 (en) * 2012-04-20 2013-10-24 Renesas Mobile Corporation Resource allocation in different tdd configurations with cross carrier scheduling
EP2661138A1 (en) * 2012-05-04 2013-11-06 Panasonic Corporation Threshold-based and power-efficient scheduling request procedure
TWI620459B (zh) 2012-05-31 2018-04-01 內數位專利控股公司 在蜂巢式通訊系統中賦能直鏈通訊排程及控制方法
TW201419781A (zh) 2012-08-01 2014-05-16 Interdigital Patent Holdings 上鏈傳輸控制
EP3836648A1 (en) * 2012-08-23 2021-06-16 Interdigital Patent Holdings, Inc. Providing physical layer resources to different serving sites
US9113450B2 (en) * 2012-08-23 2015-08-18 Interdigital Patent Holdings, Inc. Operating with multiple schedulers in a wireless system
CN103716114B (zh) * 2012-09-28 2018-02-23 华为技术有限公司 数据传输业务中参数设置方法、终端和基站
EP2905985A4 (en) 2012-10-03 2016-05-25 Sharp Kk TERMINAL APPARATUS, BASE STATION APPARATUS, WIRELESS COMMUNICATION SYSTEM, CONTROL METHOD, AND INTEGRATED CIRCUIT
WO2014056426A1 (zh) 2012-10-08 2014-04-17 联发科技(新加坡)私人有限公司 数据传输方法
US9590878B2 (en) 2013-01-16 2017-03-07 Qualcomm Incorporated Channel state information and adaptive modulation and coding design for long-term evolution machine type communications
US20160021581A1 (en) * 2013-01-17 2016-01-21 Interdigital Patent Holdings, Inc. Packet data convergence protocol (pdcp) placement
US10270564B2 (en) * 2013-03-12 2019-04-23 Huawei Technologies Co., Ltd. System and method for multi-layer protocol selection
WO2014168527A1 (en) 2013-04-09 2014-10-16 Telefonaktiebolaget L M Ericsson (Publ) Selection of transmission mode based on radio conditions
CA2920501C (en) 2013-08-07 2021-05-04 Interdigital Patent Holdings, Inc. Distributed scheduling for device-to-device communication
WO2015024215A1 (en) 2013-08-21 2015-02-26 Qualcomm Incorporated Pucch resource mapping an harq-ack feedback
US9900923B2 (en) * 2013-11-01 2018-02-20 Qualcomm Incorporated Techniques for using carrier aggregation in dual connectivity wireless communications
US9775151B2 (en) 2014-07-21 2017-09-26 Intel IP Corporation System and method for TDD communications
US10880883B2 (en) 2014-09-02 2020-12-29 Qualcomm Incorporated Low-latency, low-bandwidth and low duty cycle operation in a wireless communication system
WO2016040290A1 (en) * 2014-09-08 2016-03-17 Interdigital Patent Holdings, Inc. Systems and methods of operating with different transmission time interval (tti) durations
KR102059668B1 (ko) * 2015-01-28 2020-02-11 인터디지탈 패튼 홀딩스, 인크 비면허 대역에서의 lte용 업링크 동작
JP6709800B2 (ja) * 2015-05-12 2020-06-17 エルジー エレクトロニクス インコーポレイティド 無免許スペクトルで動作する少なくとも一つのSCellを有する搬送波集成における論理チャネル優先順位決定を行う方法及びその端末
WO2017039283A1 (ko) * 2015-08-31 2017-03-09 삼성전자 주식회사 서비스들 및 디바이스들에 따라 구성가능한 무선 프로토콜 구현하기 위한 방법 및 장치
US9775045B2 (en) 2015-09-11 2017-09-26 Intel IP Corporation Slicing architecture for wireless communication
DE112016004338T5 (de) 2015-09-24 2018-06-07 Intel Corporation Systeme, Verfahren und Vorrichtungen für Ressourcenzuweisungseinstellungen für drahtlose Übertragungen
CN106686738A (zh) * 2015-11-05 2017-05-17 索尼公司 基站侧和用户设备侧的装置及方法、无线通信系统
US10674529B2 (en) * 2016-03-02 2020-06-02 Lg Electronics Inc. Method for transmitting a scheduling request in a wireless communication system and a device therefor

Also Published As

Publication number Publication date
US20220150934A1 (en) 2022-05-12
US20200296749A1 (en) 2020-09-17
KR102166508B1 (ko) 2020-10-19
JP2019510426A (ja) 2019-04-11
KR20190002437A (ko) 2019-01-08
WO2017172937A1 (en) 2017-10-05
CN115209484A (zh) 2022-10-18
KR102277760B1 (ko) 2021-07-19
TW201737731A (zh) 2017-10-16
JP2022034055A (ja) 2022-03-02
KR20200120753A (ko) 2020-10-21
RU2711053C1 (ru) 2020-01-14
CN108886498A (zh) 2018-11-23
TWI752016B (zh) 2022-01-11
JP7002464B2 (ja) 2022-01-20
BR112018069806A2 (pt) 2019-01-29
JP2024042038A (ja) 2024-03-27
EP3437272A1 (en) 2019-02-06
US11265901B2 (en) 2022-03-01

Similar Documents

Publication Publication Date Title
CN108886498B (zh) 在无线系统中处理用户平面
JP7281512B2 (ja) ワイヤレス送信/受信ユニット、およびワイヤレス通信ネットワークにおけるワイヤレス送信/受信ユニットによって実行される方法
US11863302B2 (en) Medium access protocol data unit assembly in wireless systems
CN107431591B (zh) 用于无授权频带中的lte的上行链路操作的方法和装置
KR20190002436A (ko) Lte(long term evolution) 지원형 nr플렉시블 무선 액세스

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230823

Address after: Delaware

Patentee after: INTERDIGITAL PATENT HOLDINGS, Inc.

Address before: Wilmington, Delaware, USA

Patentee before: IDAC HOLDINGS, Inc.

TR01 Transfer of patent right