CN108885264A - 对象的实时位置感测 - Google Patents

对象的实时位置感测 Download PDF

Info

Publication number
CN108885264A
CN108885264A CN201680082143.9A CN201680082143A CN108885264A CN 108885264 A CN108885264 A CN 108885264A CN 201680082143 A CN201680082143 A CN 201680082143A CN 108885264 A CN108885264 A CN 108885264A
Authority
CN
China
Prior art keywords
pixel
light
various embodiments
reception
multirow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680082143.9A
Other languages
English (en)
Other versions
CN108885264B (zh
Inventor
杰拉德·迪尔克·施密茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority claimed from PCT/US2016/067626 external-priority patent/WO2017106875A1/en
Publication of CN108885264A publication Critical patent/CN108885264A/zh
Application granted granted Critical
Publication of CN108885264B publication Critical patent/CN108885264B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/003Bistatic lidar systems; Multistatic lidar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

实施例涉及测量距目标的三维范围。发射器向目标发射光。光圈可以接收来自目标的光反射。光圈可以将反射引向包括具有列的像素行的传感器。传感器偏离发射器预定距离。反射到达传感器上的预期到达时间基于离开时间和预定偏离距离。一部分像素被基于预期到达时间顺序激活。目标的三维范围测量基于该部分像素检测到的反射。

Description

对象的实时位置感测
相关申请的交叉引用
本申请是基于先前于2015年12月18日提交的美国临时专利申请序列号62/386,991的实用专利申请,要求在35U.S.C.§119(e)规定下该美国临时专利申请的申请日权益并且将其全部内容通过引用并入本文。该实用专利申请还基于先前于2016年5月3日提交的美国临时专利申请序列号62/391,637,要求在35U.S.C.§119(e)规定下该美国临时专利申请的申请日权益并且将其全部内容通过引用并入本文。该实用专利申请还基于先前于2016年9月19日提交的美国临时专利申请序列号62/495,667,要求在35U.S.C.§119(e)规定下该美国临时专利申请的申请日权益并且将其全部内容通过引用并入本文。
技术领域
本发明一般涉及三维跟踪系统,更具体地但非排他地,涉及在高度紧凑的基于激光的投影系统中采用顺序像素束扫描。
背景技术
可以采用跟踪系统来跟踪远程对象(例如飞机、导弹、无人机、射弹、棒球、车辆等)的位置和/或轨迹。系统可以基于对远程对象发射和/或反射的光子或其他信号的检测来跟踪远程对象。跟踪系统可以用跟踪系统发射的电磁波或光束照射远程对象。跟踪系统可以检测由远程对象反射或散射的一部分光束。跟踪系统可能遭受不期望的速度、不期望的准确度或不期望的对于噪声的易感性中的一个或多个。
附图说明
图1示出了可以实现本发明的各种实施例的示例性环境的实施例;
图2示出了可以包括在诸如图1所示的系统中的示例性移动计算机的实施例;
图3示出了可以包括在诸如图1所示的系统中的示例性网络计算机的实施例;
图4示出了示例性发射和接收(Tx-Rx)系统的三维透视图的实施例;
图5示出了示例性接收系统的二维视图的实施例;
图6示出了示例性二维位置跟踪接收器系统的三维透视图的实施例;
图7示出了具有体素大小的触发光束(TB)的示例性选通搜索光(SSL)的实施例,其在三维表面上扫描;
图8示出了示例性窄准直体素大小的触发光束的实施例,其被示例性飞点式(flying spot style)SSL包围;
图9示出了示例性窄准直体素大小的触发光束的实施例,其由示例性飞点式SSL拖尾;
图10示出了快速跟踪系统的示例性三维透视图的实施例,该快速跟踪系统采用三个示例性一维实时传感器来跟踪示例性飞点式SSL;
图11示出了示例性快速跟踪系统的三维透视图的另一个实施例,该系统采用三个示例性一维实时传感器来跟踪示例性飞点式SSL;
图12示出了示例性快速跟踪系统的三维透视图的另一个实施例,该系统采用三个示例性一维实时传感器来跟踪示例性飞点式SSL;
图13示出了示例性立体接收系统的示例性二维视图的实施例;
图14示出了示例性后向反射目标的实施例,其将示例性扫描光束分成并反射成两个示例性单独光束;
图15示出了分离并反射示例性扫描光束的示例性立方逆向反射小平面的三维透视图的实施例;
图16示出了示例性后向反射目标的三维透视图的实施例,该目标将示例性扫描光束分成并反射成两个单独的示例性光束,朝向示例性跟随车辆上的示例性接收器;
图17示出了示例性引导车辆的二维透视图的另一实施例,该引导车辆采用示例性后向反射目标,该目标将示例性扫描光束分成并反射成两个单独的示例性光束,朝向示例性跟随车辆的示例性接收器;
图18示出了图示用于从示例性三角测量模式动态切换到示例性飞行时间(TOF)模式的示例性过程的逻辑流程图;
图19示出了防止示例性枕形失真的示例性扫描镜的三维透视图的实施例;
图20示出了示例性传感器网格的实施例,其具有与示例性快速线扫描轨迹匹配的示例性像素和行几何形状,以防止示例性光学畸变;
图21示出了示例性扫描系统的二维透视图的实施例,该扫描系统具有提供示例性重叠视场的示例性多焦点相机阵列;
图22示出了示例性扫描系统的二维透视图的实施例,该扫描系统具有采用示例性广角视场的示例性多焦点相机阵列;
图23示出了示例性扫描系统的二维透视图的实施例,该扫描系统具有采用示例性窄角视场的示例性多焦点相机阵列;
图24示出了示例性四晶体管光电二极管像素的实施例;
图25示出了示例性双晶体管光电二极管像素的实施例;
图26示出了采用示例性波前颜色分离的示例性闪光照明的实施例;
图27示出了示例性级联触发像素系统的实施例,其采用示例性单独的感测线来顺序地捕获各种示例性的颜色分离和时间分离的分量;
图28示出了示例性闪光触发的四晶体管光电二极管像素的实施例,其采用示例性感测线来顺序地捕获各种示例性的颜色分离和时间分离的分量;
图29示出了示例性三角测量激光雷达接收器(LIDAR)的示例性立体对的二维透视图的实施例,该LIDAR检测示例性示踪子弹的示例性反射光波,其中对于每个单独发射的示踪子弹,每个接收器中的像素单独且预期地被激活以使每个单独像素的每个有效ON周期与对于沿着单个发射的示踪子弹的行进路径的每个可能的范围和位置的每个可能的反射的预期返回时间和预期像素位置同步;
图30示出了示例性LIDAR三角测量发射和接收(Tx-Rx)系统的二维透视图的实施例,其具有与飞行时间成比例的示例性视差;
图31示出了示例性空间范围选择的二维透视图的实施例;
图32示出了示例性三维范围选择的三维透视图的实施例;
图33示出了示例性发射和接收(Tx-Rx)系统的二维透视图的实施例,该系统管理示例性像素以检测和区分示例性“先头鸟”和“落后者”;
图34示出了采用示例性背景消除和前景消除的示例性发射和接收(Tx-Rx)系统的二维透视图的实施例;
图35示出了在待映射的示例性表面上Z锁定(Z-lock)的示例性发射和接收(Tx-Rx)系统的二维透视图的实施例;
图36示出了示例性二维LIDAR系统的实施例,该系统使用示例性小范围预料和位置确定来对示例性连续入射光子进行范围锁定和关闭(shutter);
图37示出了具有示例性快速滑动寄存器-逻辑双极性并行立体匹配系统的示例性辅助立体扫描系统的实施例;
图38示出了顺序地设置和激活示例性像素的示例性发射和接收(Tx-Rx)系统的二维透视图的实施例;
图39示出了示例性发射和接收(Tx-Rx)系统的二维透视图的实施例,该系统采用连续的示例性射线来获得示例性的对应视差;
图40示出了示例性发射和接收(Tx-Rx)系统的二维透视图的实施例,该系统采用示例性颜色编码来防止模糊并增加示例性扫描速率;
图41示出了采用示例性实时像素和列关闭(column shuttering)以及动态灵敏度调整的示例性“抽动像素”的实施例;
图42示出了内置于示例性像素中的示例性激活和增益控制电路的实施例;
图43示出了内置于示例性列感测线放大器中的示例性增益控制电路的实施例;
图44示出了采用示例性光剑(blade)和示例性单光子雪崩二极管(SPAD)阵列传感器的示例性发射和接收(Tx-Rx)系统的三维透视图的实施例;
图45示出了示例性有源列控(column-gated)SPAD阵列传感器的二维透视图的实施例;
图46示出了示例性编排的连续SPAD像素列激活的实施例;
图47示出了示例性发射和接收(Tx-Rx)系统的二维透视图的实施例,该系统采用示例性系列的光剑和捕获光剑的示例性反射的示例性SPAD阵列;和
图48示出了示例性SPAD阵列的二维透视图的实施例,该SPAD阵列捕获示例性位置处的示例性系列的示例性光剑,所述示例性位置具有示例性视差增量,所述示例性视差增量作为示例性接收器和示例性发射器之间的距离的示例性函数并且作为目标对象的Z范围的示例性函数而变化。
具体实施方式
现在将在下文中参考形成本发明的一部分并且通过图示的方式示出了可以实践本发明的特定实施例的附图更全面地描述各种实施例。然而,实施例可以以许多不同的形式实施,并且不应该被解释为限于这里阐述的实施例;相反,提供这些实施例是为了使本公开彻底和完整,并且向本领域技术人员充分传达实施例的范围。各种实施例可以是方法、系统、介质或设备,等等。因此,各种实施例可以采用完全硬件实施例、完全软件实施例或组合软件和硬件方面的实施例的形式。因此,以下详细描述不应被视为具有限制意义。
在整个说明书和权利要求书中,除非上下文另有明确规定,否则以下术语采用本文明确相关的含义。这里使用的短语“在一个实施例中”不一定是指相同的实施例,尽管它可以指相同的实施例。此外,这里使用的短语“在另一个实施例中”不一定是指不同的实施例,尽管可能指不同的实施例。因此,如下所述,在不脱离本发明的范围或精神的情况下,可以容易地组合本发明的各种实施例。
另外,如本文所用,术语“或”是包含性的“或”运算符,并且等同于术语“和/或”,除非上下文另有明确规定。除非上下文另有明确规定,否则术语“基于”不是排他性的并且允许基于未描述的其他因素。另外,在整个说明书中,“一”、“一个”和“该”的含义包括复数引用。“在…中”的含义包括“在…中”和“在…上”。
如本文所用,术语“光子束”、“光束”、“电磁束”、“图像束”或“束”是指有点局部化(在时间和空间上)的具有EM频谱内各种频率或波长的电磁(EM))波束或光束或光子束。出射光束是通过本文公开的各种实施例中的各实施例发射的光束。入射光束是由本文公开的各种实施例中的各实施例检测到的光束。
如本文所用,术语“光源”、“光子源”或“源”是指能够发射、提供、传输或产生具有EM频谱内一个或多个波长或频率的EM波或一个或多个光子的各种设备。光或光子源可以发射一个或多个出射光束。光子源可以是激光器、发光二极管(LED)、灯泡等。光子源可以通过原子或分子的受激发射、白炽过程或产生EM波或一个或多个光子的各种其他机制产生光子。光子源可以提供预定频率或频率范围的连续或脉冲式出射光束。出射光束可以是相干光束。由光源发射的光子可以具有各种波长或频率。
如本文所用,术语“光子检测器”、“光检测器”、“检测器”、“光子传感器”、“光传感器”或“传感器”是指对具有EM频谱的一个或多个波长或频率的一个或多个光子的存在敏感的各种设备。光子检测器可以包括光子检测器阵列,例如多个光子检测或感测像素的布置。这些像素中的一个或多个像素可以是对至少一个光子的吸收敏感的光电传感器。光子检测器可以响应于一个或多个光子的吸收而产生信号。光子检测器可包括一维(1D)像素阵列。然而,在其他实施例中,光子检测器可以包括至少二维(2D)像素阵列。像素可以包括各种光子敏感技术,例如有源像素传感器(APS)、电荷耦合器件(CCD)、单光子雪崩检测器(SPAD)(以雪崩模式或盖革(Geiger)模式操作)、光伏电池、光电晶体管、抖动像素等中的一个或多个。光子检测器可以检测一个或多个入射光束。
如本文所用,术语“目标”是反射或散射入射光、EM波或光子的至少一部分的一个或多个各种2D或3D体。例如,目标可以散射或反射由本文公开的各种实施例中的各实施例发射的出射光束。在本文描述的各种实施例中,一个或多个光子源可以与一个或多个光子检测器和/或一个或多个目标相对运动。类似地,一个或多个光子检测器可以与一个或多个光子源和/或一个或多个目标相对运动。一个或多个目标可以与一个或多个光子源和/或一个或多个光子检测器相对运动。
如本文所使用的,术语“视差(disparity)”表示传感器中的一个或多个像素相对于传感器中的预定位置的位置偏移。例如,传感器中给定像素的水平和垂直视差可表示给定像素与传感器(或另一传感器)中的预定位置的水平和垂直偏移(例如,如行或列号、距离单位等所指示)。可以从传感器(或另一传感器)中的中心、一个或多个边缘、一个或多个其他像素等测量这种视差。在其他实施例中,视差可以表示角度。例如,发射器可以以角度α发射光束,并且传感器可以通过光圈以角度β接收光束的反射。可以将视差测量为180°与角度α和β之和之间的差。
以下简要描述本发明的实施例,以便提供对本发明的一些方面的基本理解。该简要描述不是广泛的概述。它并不意图识别关键或重要元素或界定或以其他方式缩小范围。其目的仅仅是以简化的形式呈现一些概念,作为稍后呈现的更详细描述的序言。
简而言之,各种实施例涉及测量距反射来自发射器的光到接收器的目标的距离。接收器可以从发射器偏移预定距离,并且可以包括具有一行或多行像素的传感器。发射器和接收器之间的预定偏移距离使得能够按顺序推测性地激活传感器的行中的像素。顺序推测性激活可以基于针对从发射器发射光之后的每个时间实例预测在目标处于距发射器相应距离的情况下哪个或哪些像素将接收反射。在各种实施例中的一个或多个中,如果一个或多个推测性激活的像素并不捕获来自发射器的光的反射,则推测性激活的序列继续用在对处于另一距离处的目标的预测。在一些实施例中,响应于捕获来自发射器的光的反射的一个或多个推测性激活的像素,可以基于一个或多个推测性激活的像素的位置来确定距目标的距离。
在各种实施例中的一个或多个中,每个推测性激活的像素被激活一定持续时间,该持续时间基于偏移距离、发射器发射光的角度、以及自发射器发射光以来已经过的时间量。从对应于推测性激活的像素的距离处到推测性激活的像素的预期反射路径可以限定与传感器的角度。推测性激活的序列可以行进,使得随着时间的推移,所定义的角度接近180°与发射器发射光的角度之间的差。在各种实施例中的一些实施例,随着预期的反射路径变得更加平行于发射器发射光的路径,每个推测性激活的像素可以对应于更大范围的距目标的潜在距离(例如,每个推测性激活的像素的激活的持续时间可以随着推测性激活的序列的行进而增加)。
在各种实施例中的一个或多个中,由发射器发射的光可以是在传感器的视场上扫描的连续光束。在一些实施例中,由发射器发射的光可以形成光片(blade),其具有与传感器的一行或多行垂直(或者比平行而言更垂直)并且还与发射器发射光所沿着的路径垂直(或者比平行而言更垂直)的纵向尺寸。传感器中多行中的推测性激活的像素可以各自捕获光片从目标的反射。在一些实施例中,传感器中的每列像素可以向同一列感测线报告。
在各种实施例中的一个或多个中,响应于推测性激活的序列进展到每个推测性激活的像素对应于一定范围的超过阈值的潜在距离的点,可以采用一个或多个不同的距离测量模式来代替推测性顺序激活。在采用多个传感器并且多个传感器中的一个或多个报告捕获来自目标的反射的各种实施例中的一些实施例中,响应于多个传感器中的一个或多个传感器未能捕获目标的反射,可以采用一个或多个不同的距离测量模式。在一些实施例中,响应于重复顺序激活序列一定次数还没有捕获来自目标的反射,可以采用一种或多种不同距离测量模式。
在各种实施例中的一个或多个中,一个或多个不同距离测量模式可以采用由发射器发射的强(例如,与针对推测性激活序列所发射的光的幅度相比)脉冲束。在各种实施例的一些中,脉冲束的每个脉冲可以包括与紧接在前脉冲和紧接在后脉冲相比而言的不同颜色。在一些实施例中,一个或多个不同距离测量模式可以采用脉冲的快速幅度或频率调制。在各种实施例中的一个或多个中,一个或多个不同距离测量模式可以包括基于发射器发射的光突发的飞行时间来确定距目标的距离。在各种实施例中的一个或多个中,一个或多个不同的距离测量模式可以采用一个或多个不同的传感器(例如,LIDAR或雷达传感器)。
在各种实施例中的一个或多个中,传感器中的像素可包括单光子雪崩二极管(SPAD)。在各种实施例的一些中,传感器中的像素可以通过连接到每个像素(例如,“抖动像素”)中的光电二极管的高灵敏度感测放大器或源跟随器中的一个或多个来报告反射的捕获。
图示的操作环境
图1示出了可以实践本发明的各种示例性实施例的示例性环境的一个实施例的示例性组件。实践本发明并非需要所有组件,并且可以在不脱离本发明的精神或范围的情况下进行组件的布置和类型的变化。如图所示,图1的系统100包括网络102、光子发射器104、光子接收器106、目标108和跟踪计算机设备110。在一些实施例中,系统100可以包括一个或多个其他计算机,例如但不限于膝上型计算机112和/或移动计算机,例如但不限于智能手机或平板电脑114。在一些实施例中,光子发射器104和/或光子接收器106可包括计算机(例如但不限于计算机110、112或114中的各种计算机)中包括的一个或多个组件。
系统100以及本文讨论的其他系统可以是顺序像素光子投影系统。在至少一个实施例中,系统100是顺序像素激光投影系统,其包括可见和/或不可见光子源。在至少美国专利No.8,282,222、美国专利No.8,430,512、美国专利No.8,696,141、美国专利No.8.711,370、美国专利公开No.2013/0300,637以及美国专利公开No.2016/0041266中详细描述了这种系统的各种实施例。注意,上面列出的每个美国专利和美国专利公开都通过引用整体并入本文。
目标108可以是三维目标。目标108不是理想化的黑体,即它反射或散射入射光子的至少一部分。如与光子接收器106相关联的速度矢量所示,在一些实施例中,光子接收器106与光子发射器104和/或目标108中的至少一个相对运动。对于实施例图1中,光子发射器104和目标108相对于彼此静止。然而,在其他实施例中,光子发射器104和目标108处于相对运动。在至少一个实施例中,光子接收器106可以相对于光子发射器104和/或目标108中的一个或多个静止。因此,光子发射器104、目标108和光子接收器106中的每一个可以是静止的或者与光子发射器104、目标108和光子接收器106中的其他各个是相对运动的。此外,如本文所使用的,术语“运动”可以指沿着三个正交特殊维度中的一个或多个的平移运动和/或围绕一个或多个对应旋转轴的旋转运动。
下面更详细地描述光子发射器104。然而,简言之,光子发射器104可包括一个或多个光子源,用于发射光或光子束。光子源可以包括光电二极管。光子源可以提供预定频率或频率范围的连续或脉冲光束。所提供的光束可以是相干光束。光子源可以是激光器。例如,光子发射器104可包括一个或多个可见和/或不可见激光源。在一个实施例中,光子发射器104包括红色(R)、绿色(G)和蓝色(B)激光源中的至少一个以产生RGB图像。在一些实施例中,光子发射器包括至少一个非可见激光源,例如近红外(NIR)激光器。光子发射器104可以是投影仪。光子发射器104可以包括计算机设备(包括但不限于图2的移动计算机200和/或图3的网络计算机300)的各种特征、组件或功能。
光子发射器104还包括光学系统,该光学系统包括用于引导、聚焦和扫描发射的或出射的光束的光学部件。该光学系统瞄准和塑造出射光束的空间和时间光束轮廓。该光学系统可以以准直、扇出或以其他方式操纵出射光束。至少一部分出射光束对准目标108并被目标108反射。在至少一个实施例中,光子发射器104包括一个或多个光子探测器,用于探测从目标108反射的入射光子,例如,发射器104是收发器。
下面更详细地描述光子接收器106。然而,简单地说,光子接收器106可包括一个或多个光子敏感或光子检测的传感器像素阵列。传感器像素阵列检测从目标108反射的连续或脉冲光束。像素阵列可以是一维阵列或二维阵列。像素可以包括SPAD像素或其他光敏元件,其在照射一个或少许入射光子时雪崩。像素在检测单个光子或数纳秒量级的少许光子时,可能具有超快的响应时间。像素可能对光子发射器104发射或传输的频率敏感,并且对其他频率相对不敏感。光子接收器106还包括光学系统,该光学系统包括光学组件,以在像素阵列上引导、聚焦和扫描接收的或入射的光束。在至少一个实施例中,光子接收器106包括用于朝向目标108发射光子的一个或多个光子源(例如,接收器106包括收发器)。光子接收器106可包括相机。光子接收器106可以包括计算机设备(包括但不限于图2的移动计算机200和/或图3的网络计算机300)的各种特征、组件或功能。
下面结合图2-3更详细地描述跟踪计算机设备110的各种实施例(例如,跟踪计算机设备110可以是图2的移动计算机200和/或图3的网络计算机300的实施例)。然而,简言之,跟踪计算机设备110包括实质上能够基于对从一个或多个表面(包括但不限于目标108的表面)反射的光子的检测来执行本文所讨论的各种跟踪过程和/或方法的各种计算机设备。基于检测到的光子或光束,跟踪计算机设备110可以改变或以其他方式修改光子发射器104和光子接收器106的一个或多个配置。应当理解,跟踪计算机设备110的功能可以由光子发射器104、光子接收器106或其组合来执行,而不与单独的设备通信。
在一些实施例中,跟踪功能的至少一些可以由其他计算机执行,包括但不限于膝上型计算机112和/或移动计算机(例如但不限于智能手机或平板电脑114)。下面结合图2的移动计算机200和/或图3的网络计算机300更详细地描述这种计算机的各种实施例。
网络102可以被配置为将网络计算机与其他计算设备(包括光子发射器104、光子接收器106、跟踪计算机设备110、膝上型计算机112或智能电话/平板电脑114)耦合。网络102可以包括用于与远程设备通信的各种有线和/或无线技术,例如但不限于USB电缆、 等。在一些实施例中,网络102可以是被配置为将网络计算机与其他计算设备耦合的网络。在各种实施例中,在设备之间传递的信息可以包括各种信息,包括但不限于处理器可读指令、远程请求、服务器响应、程序模块、应用程序、原始数据、控制数据、系统信息(例如,日志文件)、视频数据、语音数据、图像数据、文本数据、结构化/非结构化数据等。在一些实施例中,可以使用一种或多种技术和/或网络协议在设备之间传送信息。
在一些实施例中,这种网络可以包括各种有线网络、无线网络或其各种组合。在各种实施例中,网络102可以使用各种形式的通信技术、拓扑、计算机可读介质等,用于将信息从一个电子设备传送到另一个电子设备。例如,除了因特网以外,网络102还可以包括LAN、WAN、个域网(PAN)、校园区域网、城域网(MAN)、直接通信连接(例如通过通用串行总线(USB)端口)等或其各种组合。
在各种实施例中,网络内和/或网络之间的通信链路可包括但不限于双绞线、光纤、空中(open air)激光器、同轴电缆、普通老式电话服务(POTS)、波导、声学、全部或部分专用数字线路(例如T1,T2,T3或T4)、电子载波、综合业务数字网络(ISDN)、数字订户线路(DSL)、无线链路(包括卫星链路)或本领域技术人员已知的其他链路和/或载体机制。此外,通信链路还可以采用各种数字信令技术中的各种技术,包括但不限于,例如,DS-0、DS-1、DS-2、DS-3、DS-4、OC-3、OC-12、OC-48等。在一些实施例中,路由器(或其他中间网络设备)可以充当各种网络(包括基于不同体系结构和/或协议的网络)之间的链路,以使信息能够从一个网络传输到另一个网络。在其他实施例中,远程计算机和/或其他相关电子设备可以通过调制解调器和临时电话链路连接到网络。本质上,网络102可以包括各种通信技术,信息可以通过这些技术在计算设备之间传送。
在一些实施例中,网络102可以包括各种无线网络,其可以被配置为耦合各种便携式网络设备、远程计算机、有线网络、其他无线网络等。无线网络可以包括各种子网中的各子网,子网可以进一步覆盖独立的ad-hoc网络等,以为至少客户端计算机(例如,膝上型计算机112或智能电话或平板电脑114)(或其他移动设备)提供面向基础设施的连接。这种子网络可以包括网状网络、无线LAN(WLAN)网络、蜂窝网络等。在各种实施例的至少一个实施例中,该系统可以包括一个以上的无线网络。
网络102可以采用多种有线和/或无线通信协议和/或技术。可以由网络使用的各种世代(例如,第三(3G),第四(4G)或第五(5G))通信协议和/或技术的示例可以包括但不限于全球移动系统通信(GSM)、通用分组无线业务(GPRS)、增强型数据GSM环境(EDGE)、码分多址(CDMA)、宽带码分多址(W-CDMA)、码分多址2000(CDMA2000)、高速度下行链路分组接入(HSDPA)、长期演进(LTE)、通用移动电信系统(UMTS)、演进数据优化(Ev-DO)、全球微波接入互操作性(WiMax)、时分多址(TDMA)、正交频分复用(OFDM)、超宽带(UWB)、无线应用协议(WAP)、用户数据报协议(UDP)、传输控制协议/互联网协议(TCP/IP)、开放系统互连(OSI)模型协议的各个部分、会话发起协议/实时传输协议(SIP/RTP)、短消息服务(SMS)、多媒体消息服务(MMS)或各种其他通信协议和/或技术。本质上,网络可以包括可用于在光子发射器104、光子接收器106和跟踪计算机设备110之间以及未示出的其他计算设备之间传递信息的通信技术。
在各种实施例中,网络102的至少一部分可以被布置为可以通过各种通信链路连接的节点、链路、路径、终端、网关、路由器、交换机、防火墙、负载平衡器、转发器、中继器、光电转换器等的自治系统。这些自治系统可以被配置为基于当前操作条件和/或基于规则的策略进行自组织,使得可以修改网络的网络拓扑。
如下面详细讨论的,光子发射器104可以提供光学信标信号。因此,光子发射器104可包括发射器(Tx)。光子发射器104可以将光子束发射到目标108的投影表面上。因此,光子发射器104可以将图像发射和/或投射到目标108上。图像可以包括顺序像素化图案。在目标108的表面上示出的离散像素指示通过光子发射器108执行的顺序扫描对图像的像素进行顺序扫描。光子接收器(Rx)106可包括接收反射图像的观察系统。如上所述,光子接收器106可以相对于被投影的图像运动(如速度矢量所示)。光子接收器106与光子发射器104和目标108中的每一个之间的相对运动可包括各个方向上的相对速度和任意幅度。在系统100中,光子发射器104和表面上的图像不是相对运动的。而是,图像稳定地保持在目标108的表面上。然而,其他实施例不受如此约束(例如,光子发射器104可以与目标108相对运动)。通过补偿光子发射器104和目标108之间的相对运动,可以将投影图像锚定在表面上。
说明性移动计算机
图2示出了示例性移动计算机200的一个实施例,其可以包括比所示的那些示例性组件更多或更少的组件。移动计算机200可以表示例如图1的系统100的膝上型计算机112、智能电话/平板电脑114和/或跟踪计算机110的至少一个实施例。因此,移动计算机200可以包括移动设备(例如,智能电话或平板电脑)、固定/台式计算机等。
客户端计算机200可以包括通过总线206与存储器204通信的处理器202。客户端计算机200还可以包括电源208、网络接口210、处理器可读固定存储设备212、处理器可读可移除存储设备214、输入/输出接口216、相机218、视频接口220、触摸接口222、硬件安全模块(HSM)224、投影仪226、显示器228、键区230、照明器232、音频接口234、全球定位系统(GPS)收发器236、空中手势接口238、温度接口240、触觉接口242和点选设备接口244。客户端计算机200可以可选地与基站(未示出)通信,或者直接与另一计算机通信。并且在一个实施例中,尽管未示出,但是可以在客户端计算机200内采用陀螺仪来测量和/或维持客户端计算机200的方向。
电源208可以向客户端计算机200提供电力。可充电或不可充电电池可用于提供电力。电力还可以由外部电源提供,例如AC适配器或充电坞座(其作为电池的补充和/或对电池进行再充电)。
网络接口210包括用于将客户端计算机200耦合到一个或多个网络的电路,并且被构造用于与一个或多个通信协议和技术一起使用,这些通信协议和技术包括但不限于实现用于移动通信(GSM)、CDMA、时分多址(TDMA)、UDP、TCP/IP、SMS、MMS、GPR)、WAP、UWB、WiMax、SIP/RTP、GPRS、EDGE、WCDMA、LTE、UMTS、OFDM、CDMA2000、EV-DO、HSDPA或各种其他无线通信协议中各协议的开放系统互连(OSI)模型的各个部分的协议和技术。网络接口210有时被称为收发器、收发设备或网络接口卡(NIC)。
音频接口234可以被布置为产生和接收音频信号,例如人声的声音。例如,音频接口234可以耦合到扬声器和麦克风(未示出)以实现与其他人的通信和/或为某些动作生成音频确认。音频接口234中的麦克风还可以用于向客户端计算机200进行输入或控制客户端计算机200,例如,使用语音识别、基于声音检测触摸等。
显示器228可以是液晶显示器(LCD)、气体等离子体、电子墨水、发光二极管(LED)、有机LED(OLED)或可以与计算机一起使用的各种其他类型的反光或透光显示器。显示器228还可以包括触摸接口222、触摸接口222被布置成接收来自诸如手指的对象的输入或来自人手的手指,并且可以使用电阻、电容、表面声波(SAW)、红外、雷达或其他技术来感觉触摸和/或手势。
投影仪226可以是远程手持投影仪或集成投影仪,其能够将图像投影在远程墙壁或诸如远程屏幕的各种其他反射物体上。
视频接口220可以被布置为捕获视频图像,诸如静止照片、视频片段、红外视频等。例如,视频接口220可以耦合到数字摄像机、网络摄像机等。视频接口220可包括镜头、图像传感器和其他电子设备。图像传感器可以包括互补金属氧化物半导体(CMOS)集成电路、电荷耦合器件(CCD)或用于感测光的各种其他集成电路。
键区230可以包括各种输入设备,其被布置成接收来自用户的输入。例如,键区230可以包括按钮数字拨盘或键盘。键区230还可以包括与选择和发送图像相关联的命令按钮。
照明器232可以提供状态指示和/或提供光。照明器232可以在特定时间段内或响应于事件消息保持活动。例如,如果照明器232是活动的,则它可以对键区230上的按钮进行背光照亮并在客户计算机通电时保持打开。而且,如果执行特定动作,例如拨打另一客户端计算机,则照明器232可以以各种模式对这些按钮进行背光照亮。照明器232还可以使位于客户端计算机的透明或半透明壳体内的光源响应于动作而照亮。
此外,客户端计算机200还可以包括HSM 224,用于提供额外的防篡改安全措施,用于生成、存储和/或使用安全/加密信息,例如密钥、数字证书、密码、密码段、双因素认证信息等。在一些实施例中,可以采用硬件安全模块来支持一个或多个标准公钥基础结构(PKI),并且可以采用硬件安全模块来生成、管理和/或存储密钥对等。在一些实施例中,HSM224可以是独立计算机,在其他情况下,HSM 224可以被布置为可以添加到客户端计算机的硬件卡。
客户端计算机200还可以包括输入/输出接口216,用于与外部外围设备或诸如其他客户端计算机和网络计算机的其他计算机通信。外围设备可以包括音频耳机、虚拟现实耳机、显示屏眼镜、远程扬声器系统、远程扬声器和麦克风系统等。输入/输出接口216可以利用一种或多种技术,例如通用串行总线(USB)、红外、Wi-FiTM、WiMax、蓝牙TM等。
输入/输出接口216还可以包括一个或多个传感器,用于确定地理定位信息(例如,GPS)、监控电力状况(例如,电压传感器、电流传感器、频率传感器等)、监测天气(例如,恒温器、气压计、风速计、湿度检测器、降水标尺等)。传感器可以是一个或多个硬件传感器,其收集和/或测量客户端计算机200外部的数据。
触觉接口242可以被布置为向客户端计算机的用户提供触觉反馈。例如,如果计算机的另一个用户正在呼叫,则可以采用触觉接口242以特定方式振动客户端计算机200。温度接口240可用于向客户端计算机200的用户提供温度测量输入和/或温度改变输出。空中手势接口238可以感测客户端计算机200的用户的身体姿势,例如,通过使用单个或立体视频摄像机、雷达、由用户保持或佩戴的计算机内的陀螺仪传感器等。相机218可用于跟踪客户端计算机200的用户的物理眼睛运动。
GPS收发器236可以确定客户端计算机200在地球表面上的物理坐标,其通常把位置输出为纬度和经度值。GPS收发器236还可以采用其他地理定位机制,包括但不限于三角测量、辅助GPS(AGPS)、增强观测时间差(E-OTD)、小区标识符(CI)、服务区域标识符(SAI)、增强的定时提前(ETA)、基站子系统(BSS)等,以进一步确定客户计算机200在地球表面上的物理位置。应当理解,在不同条件下,GPS收发器236可以确定客户端计算机200的物理位置。然而,在一个或多个实施例中,客户端计算机200可以通过其他组件提供可以用于确定客户端计算机的物理位置的其他信息,包括例如媒体访问控制(MAC)地址、IP地址,等等。
人机接口组件可以是与客户端计算机200物理分离的外围设备,允许对于客户端计算机200的远程输入和/或输出。例如,在此描述的通过诸如显示器228或键区230之类的人机接口组件路由的信息可以替代地通过网络接口210路由到远程定位的适当的人机接口组件。可以是远程的人机接口外围组件的示例包括但不限于音频设备、点选设备、键区、显示器、相机、投影仪等。这些外围组件可以通过诸如BluetoothTM、ZigbeeTM等的微型网络进行通信。具有这种外围人机接口组件的客户端计算机的一个非限制性示例是可穿戴计算机,其可以包括远程微型投影仪以及与单独定位的客户端计算机远程通信的一个或多个相机,以感测用户对由微型投影仪投影到诸如墙壁或用户手的反射表面上的图像的各部分的手势。
存储器204可以包括随机存取存储器(RAM)、只读存储器(ROM)和/或其他类型的存储器。存储器204示出了用于存储诸如计算机可读指令、数据结构、程序模块或其他数据之类的信息的计算机可读存储介质(设备)的示例。存储器204可以存储用于控制客户端计算机200的低级操作的基本输入/输出系统(BIOS)246。存储器还可以存储用于控制客户端计算机200的操作的操作系统248。应当理解,该组件可以包括通用操作系统(例如UNIX版本或LINUX TM)或专用客户端计算机通信操作系统(例如Windows PhoneTM、或Symbian操作系统)。操作系统可以包括Java虚拟机模块或者与Java虚拟机模块接口,该Java虚拟机模块能够通过Java应用程序控制硬件组件和/或操作系统操作。
存储器204还可以包括一个或多个数据存储库250,客户端计算机200可以利用该数据存储库250来存储应用252和/或其他数据等。例如,数据存储库250还可以用于存储描述客户端计算机200的各种能力的信息。在各种实施例中的一个或多个中,数据存储库250可以存储跟踪信息251。然后可以基于各种方法中的各方法将信息251提供给另一个设备或计算机,包括在通信期间作为报头的一部分发送、根据请求发送等。数据存储库250还可以用于存储社交网络信息,包括地址簿、好友列表、别名、用户简档信息等。数据存储库250还可以包括程序代码、数据、算法等,供处理器(例如处理器202)使用以运行和执行动作。在一个实施例中,数据存储库250的至少一些也可以存储在客户端计算机200的另一个组件上,包括但不限于非暂态处理器可读固定存储设备212、处理器可读可移除存储设备214或者甚至在客户端计算机外部。
应用252可以包括计算机可执行指令,如果应用由客户端计算机200执行,则发送、接收和/或以其他方式处理指令和数据。应用252可以包括例如跟踪客户端引擎254、其他客户端引擎256、web浏览器258等。客户端计算机可以被布置为与应用服务器、网络文件系统应用和/或存储管理应用程序交换通信,诸如查询、搜索、消息、通知消息、事件消息、警报、性能度量、日志数据、API调用等、其组合。
Web浏览器引擎226可以被配置为接收和发送网页、基于网络的消息、图形、文本、多媒体等。客户端计算机的浏览器引擎226实质上可以采用各种编程语言,包括无线应用协议消息(WAP)等。在一个或多个实施例中,浏览器引擎258能够采用手持设备标记语言(HDML)、无线标记语言(WML)、WMLScript、JavaScript、标准通用标记语言(SGML)、超文本标记语言(HTML)、可扩展标记语言(XML)、HTML5等。
应用的其他示例包括日历、搜索程序、电子邮件客户端应用、IM应用、SMS应用、互联网协议语音(VOIP)应用、联系人管理器、任务管理器、转码器、数据库程序、字处理程序、安全应用、电子表格程序、游戏、搜索程序等。
另外,在一个或多个实施例中(图中未示出),客户端计算机200可以包括嵌入式逻辑硬件设备而不是CPU,例如专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程阵列逻辑(PAL)等或其组合。嵌入式逻辑硬件设备可以直接执行其嵌入式逻辑以执行动作。而且,在一个或多个实施例中(图中未示出),客户端计算机200可以包括硬件微控制器而不是CPU。在一个或多个实施例中,微控制器可以直接执行其自己的嵌入式逻辑以执行动作以及访问其自己的内部存储器和其自己的外部输入和输出接口(例如,硬件引脚和/或无线收发器)以执行动作,例如片上系统(SOC)等。
说明性的网络计算机
图3示出了示例性网络计算机300的一个实施例,其可以包括在实现各种实施例中的一个或多个实施例的示例性系统中。网络计算机300可以包括比图3中所示的组件更多或更少的组件。然而,所示组件足以公开用于实践这些创新的说明性实施例。网络计算机300可以包括台式计算机、膝上型计算机、服务器计算机、客户端计算机等。网络计算机300可以表示例如图1的系统100的膝上型计算机112,智能电话/平板电脑114和/或跟踪计算机110中的一个或多个的一个实施例。
如图3所示,网络计算机300包括处理器302,处理器302可以经由总线306与存储器304通信。在一些实施例中,处理器302可以包括一个或多个硬件处理器或一个或多个处理器核。在一些情况下,一个或多个处理器中的一个或多个处理器可以是被设计为执行一个或多个专用动作的专用处理器,例如本文所述的那些。网络计算机300还包括电源308、网络接口310、处理器可读固定存储设备312、处理器可读可移除存储设备314、输入/输出接口316、GPS收发器318、显示器320、键区322、音频接口324、点选设备接口326和HSM 328。电源308向网络计算机300提供电力。
网络接口310包括用于将网络计算机300耦合到一个或多个网络的电路,并且被构造用于与一个或多个通信协议和技术一起使用,这些通信协议和技术包括但不限于实现全球移动通信系统(GSM)、码分多址(CDMA)、时分多址(TDMA)、用户数据报协议(UDP)、传输控制协议/互联网协议(TCP/IP)、短消息服务(SMS)、多媒体消息服务(MMS)、通用分组无线服务(GPRS)、WAP、超宽带(UWB)、IEEE 802.16全球微波接入互操作性(WiMax)、会话发起协议/实时传输协议(SIP/RTP)或各种其他有线和无线通信协议中各种通信协议的开放系统互连(OSI)模型的各个部分的协议和技术。网络接口310有时被称为收发器、收发设备或网络接口卡(NIC)。网络计算机300可以可选地与基站(未示出)通信,或者直接与另一计算机通信。
音频接口324被布置成产生和接收音频信号,例如人声的声音。例如,音频接口324可以耦合到扬声器和麦克风(未示出)以实现与其他人的通信和/或为某些动作生成音频确认。音频接口324中的麦克风还可以用于向网络计算机300进行输入或控制网络计算机300,例如,使用语音识别。
显示器320可以是液晶显示器(LCD)、气体等离子体、电子墨水、发光二极管(LED)、有机LED(OLED)或可以与计算机一起使用的各种其他类型的反光或透光显示器。显示器320可以是能够将图像投影在墙壁或其他物体上的手持式投影仪或微型投影仪。
网络计算机300还可以包括输入/输出接口316,用于与图3中未示出的外部设备或计算机通信。输入/输出接口316可以利用一种或多种有线或无线通信技术,例如USBTM、FirewireTM、Wi-FiTM、WiMax、ThunderboltTM、红外线、蓝牙TM、ZigbeeTM、串行端口、并行端口等。
此外,输入/输出接口316还可以包括一个或多个传感器,用于确定地理定位信息(例如,GPS)、监控电力状况(例如,电压传感器、电流传感器、频率传感器等)、监测天气(例如,恒温器、气压计、风速计、湿度检测器、降水标尺等)。传感器可以是一个或多个硬件传感器,其收集和/或测量网络计算机300外部的数据。人机接口组件可以与网络计算机300物理分离,允许对于网络计算机300的远程输入和/或输出。例如,在此所描述的通过诸如显示器320或键区322之类的人机接口组件路由的信息可以替代地通过网络接口310路由到位于网络上其他地方的适当的人机接口组件。人机接口组件包括允许计算机从计算机的人类用户获取输入或向其发送输出的各种组件。因此,诸如鼠标、触笔、跟踪球等的点选备可以通过点选设备接口326进行通信以接收用户输入。
GPS收发器318可以确定网络计算机300在地球表面上的的物理坐标,其通常把位置输出为纬度和经度值。GPS收发器318还可以采用其他地理定位机制,包括但不限于三角测量、辅助GPS(AGPS)、增强观测时间差(E-OTD)、小区标识符(CI)、服务区域标识符(SAI)、增强的定时提前(ETA)、基站子系统(BSS)等,以进一步确定网络计算机300在地球表面上的物理位置。应当理解,在不同条件下,GPS收发器318可以确定网络计算机300的物理位置。然而,在一个或多个实施例中,网络计算机300可以通过其他组件提供可以用于确定客户端计算机的物理位置的其他信息,包括例如媒体访问控制(MAC)地址、IP地址,等等。
存储器304可以包括随机存取存储器(RAM)、只读存储器(ROM)和/或其他类型的存储器。存储器304示出了用于存储诸如计算机可读指令、数据结构、程序模块或其他数据之类的信息的计算机可读存储介质(设备)的示例。存储器304存储用于控制网络计算机300的低级操作的基本输入/输出系统(BIOS)330。存储器还存储用于控制网络计算机300的操作的操作系统332。应当理解,该组件可以包括通用操作系统(例如UNIX的版本或LINUXTM)或专用操作系统(例如Microsoft Corporation的操作系统、或Apple Corporation的操作系统)。操作系统可以包括Java虚拟机模块或者与Java虚拟机模块接口,该Java虚拟机模块能够通过Java应用程序控制硬件组件和/或操作系统操作。同样,可以包括其他运行时环境。
存储器304还可以包括一个或多个数据存储库334,网络计算机300可以利用该数据存储库334来存储应用336和/或其他数据等。例如,还可以采用数据存储库334来存储描述网络计算机300的各种能力的信息。在各种实施例中的一个或多个中,数据存储库334可以存储跟踪信息335。然后可以基于各种方法中的各方法将跟踪信息335提供给另一个设备或计算机,包括在通信期间作为报头的一部分发送、根据请求发送等。数据存储库334还可以用于存储社交网络信息,包括地址簿、好友列表、别名、用户简档信息等。数据存储库334还可以包括程序代码、数据、算法等,供一个或多个处理器(例如处理器302)使用以运行和执行诸如下面描述的那些动作之类的动作。在一个实施例中,数据存储库334的至少一些也可以存储在网络计算机300的另一个组件上,包括但不限于处理器可读固定存储设备312、处理器可读可移除存储设备314或网络计算机300内的或甚至在网络计算机300外部的各种其他计算机可读存储设备内的非暂态介质。
应用336可以包括计算机可执行指令,如果应用由网络计算机300执行,则发送、接收和/或以其他方式处理消息(例如,SMS、多媒体消息服务(MMS)、即时消息(IM)、电子邮件和/或其他消息)、音频、视频,并且能够与另一移动计算机的另一用户进行电信通信。应用程序的其他示例包括日历、搜索程序、电子邮件客户端应用、IM应用、SMS应用、互联网协议语音(VOIP)应用、联系人管理器、任务管理器、转码器、数据库程序、字处理程序、安全应用、电子表格程序、游戏、搜索程序等。应用336可以包括跟踪引擎346,其执行下面进一步描述的动作。在各种实施例中的一个或多个中,应用中的一个或多个可以实现为另一应用的模块和/或组件。此外,在各种实施例中的一个或多个中,应用可以实现为操作系统扩展、模块,插件等。
此外,在各种实施例中的一个或多个中,跟踪引擎346可以在基于云的计算环境中操作。在各种实施例中的一个或多个中,这些应用和其他应用可以在基于云的计算环境中可管理的虚拟机和/或虚拟服务器内执行。在各种实施例中的一个或多个中,在该上下文中,应用可以从基于云的环境内的一个物理网络计算机流向另一个,这取决于由云计算环境自动管理的性能和缩放考虑因素。同样,在各种实施例中的一个或多个中,可以自动提供和解除专用于跟踪引擎346的虚拟机和/或虚拟服务器。
此外,在各种实施例中的一个或多个中,跟踪引擎346可以在基于云的计算环境中运行。的虚拟服务器中,在各种实施例中的一个或多个中,这些应用以及其他应用可以在在基于云的计算环境中所管理的虚拟机和/或虚拟服务器中运行。在各种实施例中的一个或多个中,在此上下文中,应用可以从基于云的环境中的一个物理网络计算机流到另一计算机,这依赖于云计算环境所自动管理的性能和扩展性考量。类似地,在各种实施例中的一个或多个中,专用于跟踪引擎346的虚拟机和/或虚拟服务器可以被自动提供和委任。
此外,在各种实施例中的一个或多个中,跟踪引擎346或类似设备可以位于在基于云的计算环境中运行的虚拟服务器中,而不是绑定到一个或多个特定物理网络计算机。
此外,网络计算机300可以包括HSM 328,用于提供额外的防篡改安全措施,用于生成、存储和/或使用安全/加密信息,例如密钥、数字证书、密码、密码段、双因素认证信息等。在一些实施例中,可以采用硬件安全模块来支持一个或多个标准公钥基础结构(PKI),并且可以采用硬件安全模块来生成、管理和/或存储密钥对等。在一些实施例中,HSM 328可以是独立的网络计算机,在其他情况下,HSM 328可以被布置为可以安装在网络计算机中的硬件卡。
另外,在一个或多个实施例中(图中未示出),网络计算机可以包括一个或多个嵌入式逻辑硬件设备而不是一个或多个CPU,例如专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程阵列逻辑(PAL)等或其组合。嵌入式逻辑硬件设备可以直接执行其嵌入式逻辑以执行动作。而且,在一个或多个实施例中(图中未示出),网络计算机可以包括一个或多个硬件微控制器而不是CPU。在一个或多个实施例中,一个或多个微控制器可以直接执行它们自己的嵌入式逻辑以执行动作以及访问它们自己的内部存储器和它们自己的外部输入和输出接口(例如,硬件引脚和/或无线收发器)以执行动作,例如片上系统(SOC)等。
说明性传感系统
如图4所示,示例性像素序列三角测量三维感测系统400可包括示例性发射和接收(Tx-Rx)系统402。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统402可以包括发射系统404。发射系统404可以发射扫描光束406。发射系统404包括一个或多个亮源408。例如,一个或多个亮源408可以包括一个或多个二极管激光器。来自一个或多个亮源408的光可以准直到扫描光束406中。亮源408可以朝向光束扫描机构410发射扫描光束406。例如,光束扫描机构410可包括微机电系统(MEMS)镜、MEMS带激活的相控阵列、光学相控阵列(OPA)、电流镜或多边形旋转镜。光束扫描机构410可以通过发射系统404的视场在空间上旋转扫描光束406。例如,发射系统404可以经由扫描光束406将一个或多个像素大小的光斑投射到发射系统404的视场中的一个或多个对象C上。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统402可以包括接收系统412。接收系统412可以包括光接收器系统,其包含一个或多个位置传感器414(例如,半导体传感器)(图4示出了一行的一个或多个传感器414,但是一个或多个传感器414可以包括一个或多个更多行),位置传感器414检测来自准直光束406的被从接收器的视场中的一个或多个对象C的一个或多个表面反射的光416。接收系统412的光圈418可以捕获一部分反射光416。接收系统412的镜头或光学组件(例如,在光圈418处)可以将捕获的光聚焦到传感器414的表面上的光斑中。光斑的位置可以是对象C和在发射系统404和接收系统412之间延伸的基线420之间的扫描角度α和距离Z的几何函数。
发射和接收(Tx-Rx)系统可以采用发射系统404的一部分与接收系统412的一部分之间的偏移距离D。在各种实施例的一些中,偏移距离D可以在发射系统404的扫描镜(例如,光束扫描机构410)的扫描轴和接收系统412的接收光学器件的光学中心(例如,主射线(例如反射光416)穿过接收系统412的镜头系统的中心的点)之间延伸。水平偏移可以引起方位角视差Q(例如,沿水平偏移方向的位移)。如图5中更详细地示出的,方位角视差Q还可以取决于光学器件(例如,诸如接收系统412的光学器件的中心与接收系统的传感器414的表面之间的焦距f的距离)。
图5示出了示例性接收系统500。例如,接收系统500可以与图4的接收系统相同或相似。在各种实施例的一些中,角度β可以是由主射线502与基线504形成的角度。例如,角度β可以由光圈506的中心B处的主射线502和基线504形成(图5示出了基线504的局部视图)。在一些实施例中,接收系统502可包括避免放大的光学器件。例如,接收系统500可以使主射线502在点I处撞击传感器508,从而形成相同的角度β。在各种实施例中的一个或多个中,传感器508的每个像素可以具有与角度β成比例的列位置。例如,点I处的像素可以具有与角度β成比例的列位置(例如,列号)。
返回图4,发射和接收(Tx-Rx)系统402可以采用一个或多个发射系统404和一个或多个接收系统412。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统402可以采用一个以上的发射系统404。例如,多个发射系统404中的一个或多个可以共享一个或多个扫描机构410(例如,共享的扫描镜)。在其他实施例中,多个发射系统404中的一个或多个可以各自具有单独的扫描机构410(例如,单独的扫描镜)。在各种实施例的一些中,发射和接收(Tx-Rx)系统402可以采用多于一个接收系统412(例如,多个接收器)。
在各种实施例中的一个或多个中,发射系统404可以在二维中确定(例如,事前确定)扫描光束406的指向方向。在各种实施例的一些中,发射系统404可以确定扫描光束406的两个或更多个旋转角度。例如,“在离开时”,发射系统404可以知道水平指向角(例如,快速扫描方向)α和垂直仰角指向角ε(例如,从地平线422延伸到扫描光束406和/或反射光束416的角度)。
在各种实施例中的一个或多个实施中,接收系统412可以在一个维度上感测主射线416的入射角。在各种实施例的一些中,接收系统可以确定接收水平反射角β(例如,扫描光束406中由对象C的表面反射并且由接收系统412的光圈418捕获的反射光416的一部分的入射方位角)。在一些实施例中,接收系统412可以测量主射线416进入接收系统412的光圈418、光学器件或镜头表面的中心的角度。在各种实施例的一些中,接收系统412可以测量第二维度(例如,根据远离地平线422的垂直偏离角ε的高度)。在各种实施例的一些中,接收系统412可以在扫描光束406(例如,以角度ε)朝上(或朝下)指向系统400的地平线422上方(或下方)时测量第二维度。例如,扫描光束406的光可以从相同的高度向下(或向上)朝向接收器412反射回。光线416可以在同一平面中反射回接收器412(例如,由准直激光束406的出射中心射线和由接收光学器件捕获的返回射线束的主射线416形成的平面)。
在各种实施例中的一个或多个中,接收系统412的传感器414可以在两个维度上(例如,水平地(例如,β)和垂直地(例如,ε))感测反射光416的入射方向。在各种实施例的一些中,接收系统412可以通过确定每个激活像素的一个或多个瞬时列位置和一个或多个瞬时行位置来确定反射光416在二维中的输入射方向(如以下关于图6进一步详细说明的)。在一些实施例中,发射系统406可以在“离开”时记录一个维度(例如,水平指向方向a)。接收系统412可以确定仰角ε。虽然配置接收系统412以确定仰角ε可能需要稍微复杂一些,但是这种配置可以提供其他优点,如下面进一步详细说明的。
图6示出了示例性二维位置跟踪接收器600。例如,接收器600可以与上面解释的那些中的一个或多个接收器相同或相似。在各种实施例中的一个或多个中,接收器600可以确定检测捕获的光斑604的像素(例如,检测捕获的光斑604的中心的像素)的行602。在各种实施例的一些中,接收器600可以基于此像素的行602确定角度ε。在各种实施例中的一个或多个中,接收器600可以确定像素的列606。在各种实施例的一些中,接收器600可以基于此像素的列606确定角度β。
例如,主射线608可以进入接收器600的光圈610,其将主射线608引导到接收器600的传感器612上。在各种实施例中的一个或多个中,接收器600可以存储特定行614的标识符。特定行614可以包含一个或多个像素,这些像素可以响应于主射线608垂直于(从角度ε的角度来看)接收器600的基线而捕获光斑604(例如,当从基线测量时,角度ε可以是90度)。在各种实施例的一些中,接收器600可以存储特定列的标识符。特定列616可包含一个或多个像素,这些像素可以响应于主射线608垂直于(从角度α的角度来看)接收器600的基线而捕获光斑604(例如,当从基线测量时,角度α可以是90度)。
在各种实施例中的一个或多个中,接收器600可以测量行602和特定行614之间的第一偏差618。在一些实施例中,接收器600可以基于第一偏差618计算主射线608的入射方向(例如,根据角度ε)。在一些实施例中,接收器600可以测量列606和特定列616之间的第二偏差620。在一些实施例中,接收器600可以基于第二偏差620计算主射线608的入射方向(例如,根据角度β)。
另外,在本说明书和相应的附图中,接收(入射)方位角通常标记为β,传输方位角通常标记为α,仰角通常标记为ε(在任一方向)。
返回图4,在各种实施例中的一个或多个中,接收系统412的传感器414可以是双功能传感器。双功能传感器可以瞬时确定光斑的视差,从而通过在三维空间中创建连续的逐个体素轨迹来实现体素位置的实时计算。双功能传感器还可以捕获红色、绿色和蓝色(RGB)光强度值(例如,记录的原色的“灰度等级”值)。在各种实施例的一些中,接收系统412可以将捕获的颜色值与每个体素位置(例如,三维空间坐标)匹配,其中每个体素位置由发射和接收(Tx-Rx)系统402根据顺序记录的视差来计算。在各种实施例中的一个或多个中,接收系统412可以利用漫射低强度环境光来记录色调。在这种情况下,接收系统412可以实现更长的曝光时间段。在各种实施例的一些中,发射系统404可以使用高强度彩色扫描光束406。在这种情况下,接收系统412可以实现更短的曝光时间段。接收系统412的这种双功能版本可以包括更复杂的传感器作为传感器414(例如,如下面进一步详细解释的)。
在各种实施例的一些中,接收系统412可以实施RGB传感器功能以采用和捕获结构化光代码(例如,如下面进一步详细解释的)。接收系统412可以通过对RGB光强度进行连续的空间-时间测量来在三维空间中定位对象C。在各种实施例中的一个或多个中,通过对RGB光强度进行连续的空间-时间测量,接收系统412可以确定颜色和灰度等级像素值并且通过建立以每个入射光线416之间的直接颜色编码相关性并且使每个入射光线416与多个输出扫描投射光线406中的一个相匹配来实施这些值以在三维空间中定位对象C。例如,发射和接收(Tx-Rx)系统402可以实施De Bruijn编码。
在一些实施例中,接收系统412可以实施附加的RGB传感器功能,以提供可以采用高密度多色结构化光码序列的鲁棒系统。例如,接收系统412可以采用高密度多色结构化光码序列来创建被扫描对象C的精确且细粒度的三维表面等高线图。
在各种实施例的一些中,接收系统412可以实施模拟颜色灰度等级能力以检测和补偿挑战性的环境光条件。例如,响应于接收系统412检测到强非均匀照明,接收系统412可以向发射系统404提供一个或多个信号。在各种实施例中的一个或多个中,发射系统404可以响应于来自接收系统412的一个或多个信号调整投射光406以改善信噪比,从而增强系统400的鲁棒性。例如,响应于对投射光406的调整,接收系统412可识别镜面反射,从而防止错误。
在各种实施例中的一个或多个中,接收系统412可以检测一个或多个强非均匀、高度定向的环境光源。响应于检测到一个或多个强非均匀、高度定向的环境光源,接收系统412可以向发射系统404提供一个或多个信号。在各种实施例的一些中,一个或多个信号可以指示检测到的环境光源的一个或多个特征。响应于来自接收系统412的一个或多个信号,发射系统404可以在扫描光束406中或作为扫描光束406发射特定选择的、动态调整的R、G和B强度的混合。例如,发射系统404可以延迟发射扫描光束406一段足以允许接收系统412记录一个或多个图像的时间段。在该时间段期间,接收系统412可以响应于从环境光源接收的光记录一个或多个图像。在各种实施例的一些中,接收系统412的传感器414可以是双模传感器。接收系统412的双模传感器可以在该时间段期间采用毫秒长的曝光。接收系统412可以向发射系统404提供指示环境光的一个或多个特性的一个或多个信号。基于环境光的一个或多个特性,发射系统404可以动态地调整馈入扫描光束406的颜色源的混合和强度。在一些实施例中,发射系统404可以选通扫描光束406。在各种实施例的一些中,接收系统412可以通过使接收系统412的测量与选通光束406同步来精确地测量被扫描对象C的表面对比度(例如,色调、颜色、对比度)。在各种实施例中的一个或多个中,双模传感器可以进入扫描同步模式以使用选通光束406记录观察结果。在该模式中,逐线同步强聚光照明源(例如,接收系统412可以将传感器414的曝光时间设置为接收系统412在空间上和时间上与扫描光束406同步的曝光的时间段,例如数微秒)。在该模式中,同步光406的反射416可以比环境光具有500比1(或更大)的优势。因此,发射和接收(Tx-Rx)系统402可以克服挑战性的环境光条件,否则该环境光条件可以抑制精确的体素位置跟踪或高动态范围的表面颜色对比度检测。特别地,发射和接收(Tx-Rx)系统402可以改善动态系统性能。
在各种实施例中的一个或多个中,发射系统404可以事先确定光斑的高度。在各种实施例中的一些各种实施例中,发射光学器件(例如,光束扫描机构410)可以确定光斑的高度。例如,扫描光学系统、一个或多个MEMS扫描镜或OPA系统的已知偏转角可以指示光斑的高度。因此,对于由接收相机(例如,传感器414)记录的每个像素,可以计算视场中的对应体素位置。如前所述,三维表面结构以及高分辨率图像细节(对比度函数)都可以通过细粒度的时间分辨率进行运动捕捉,从而产生具有精细图像细节的无模糊高速图像(分别以微秒或者有时甚至是纳秒进行时间戳标记)。一个优点是使用这种更精确的帧内时间(在特定子帧区域中照明光斑的精确时间间隔)可以显着提高对于对象的位置、速度和加速度的估计的精度。
在传统相机中,典型的帧曝光时间是在几十毫秒内测量的。例如,30FPS相机可能具有长达33毫秒的帧曝光时间,从而引入显着的运动模糊和时间位置模糊。这种时间模糊导致速度模糊。例如,这种时间模糊可能导致关于对于碰撞避免至关重要的对象或结构的观察边缘或关于快速飞行自主无人机中的路径规划的速度模糊。相反,在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统402可以提供优越的冲突避免。例如,通过提供快速且准确的测量和计算,发射和接收(Tx-Rx)系统402可以提供快速和/或敏捷导航。从整个帧到单独的线和像素,缩小观察时间窗将观察到的事件的不确定性降低到明显更小的时间窗(聚光照明选通时间)。因此,它极大地提高了这种观察的准确性和基于它们的预测的准确性。这极大地改善了实时轨迹估计和避免碰撞的高速、低延迟计算,并实现了高速射弹的即时、瞬间“躲避”。
在各种实施例中的一个或多个中,高度准直的触发光束406可以具有一个像素的范围。例如,触发光束406的范围可以包括视场的大约百万分之一。在各种实施例的一些中,在高清晰度(HD)分辨率下,一个像素在视场上扫描大约一百万个连续位置。
在各种实施例的一些中,发射和接收(Tx-Rx)系统402可以采用具有体素大小的三维触发光束的选通搜索光作为扫描光束406。在各种实施例中的一个或多个中,广谱照明光束可以布置成与触发束406共中心。在其他实施例中,广谱照明光束可以布置成快速追踪触发光束406。在各种实施例的一些中,广谱照明光束可以具有更宽的光斑,其立体角大于触发光束406的1000倍。发射系统404可利用磷光体的漫射效应将例如高强度单色相干激光源(例如,445nm激光二极管)转换成广谱的、更漫射的光源。通过使用这种更加漫射的非相干光,并且具有更大的照明功率,可以扩展发射和接收(Tx-Rx)系统402的速度、精度和范围。
图7示出了示例性发射和接收(Tx-Rx)系统可用于扫描示例性扫描区域700的示例性选通搜索光(SSL)。例如,发射和接收(Tx-Rx)系统可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,选通搜索光(SSL)可以具有体素大小的触发光束(TB)702,其扫描三维表面704的落在扫描区域700内的一部分。在在各种实施例的一些中,发射和接收(Tx-Rx)系统可以使SSL具有针对搜索区域700飞溅的波前706。体素大小的触发光束702可以在扫描区域700内的体素大小的点708处撞击该三维表面704。
图8示出了示例性发射和接收(Tx-Rx)系统可用于扫描示例性扫描区域的示例性飞点式选通搜索光(SSL)800。例如,发射和接收(Tx-Rx)系统可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,飞点式选通搜索光(SSL)800可以围绕窄准直体素大小(例如,单像素大小)触发光束802。
图9示出了示例性发射和接收(Tx-Rx)系统可用于扫描示例性扫描区域的示例性飞点式选通搜索光(SSL)900。例如,发射和接收(Tx-Rx)系统可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,飞点式选通搜索光(SSL)900可以追踪窄准直的体素大小的触发光束902。在各种实施例的一些中,触发光束902可以确保存在小的但足够的时间量(在目标反射触发光束902之后)用于新激活的像素以检测SSL 900。例如,新激活的像素的激活可以由触发光束902的反射光的检测驱动并跟随此检测。
返回到图4,因为发射和接收(Tx-Rx)系统402可以使聚光灯(spotlight)照射像素一段短时间(例如,几微秒)并且因为发射和接收(Tx-Rx)系统402可以将曝光时段与一个或多个观察到的体素时间相关联,发射和接收(Tx-Rx)系统402可以将基本上无模糊和时间约束的PlanBow图像记录到非常窄的时间窗。例如,安装在汽车上的传统传感器(以每秒20米(72公里/小时或45英里/小时)的速度运行并且使用每秒100帧的全局快门)当俯视路面时可能会看到20厘米的像素模糊(大约三分之二英尺),使得相机分辨率毫无意义并且使得无法进行图像重建。各种实施例中的一个或多个的智能聚光照明可以将该运动模糊减小例如数量级(例如,减小至20微米),远低于各种相机的分辨率极限。例如,在各种实施例的一些中,发射和接收(Tx-Rx)系统402可以将传统的33毫秒窗缩小例如1000倍。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统402可以缩小传统的33毫秒窗以实现短至例如33微秒的曝光时间。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统402可以在采用智能聚光照明时选择指示从触发光束发射时间开始的选通搜索光的发射延迟的过渡时段。在各种实施例的一些中,过渡时段预先确定选通搜索光对像素的精确照射时间(相对于触发光束照射像素的时间)。在一些实施例中,因为选通搜索光的准确照射时间是相对于触发光束的照射时间预先确定的,所以发射和接收(Tx-Rx)系统402可以在无需快速像素门控的情况下在正确的时间激活像素,无需在相机传感器平面本身(例如,传感器414的平面)中的附加逻辑。相对地,传统的三维捕获系统(例如,由CanestaTM、SwissRangerTM、SoftkineticTM或其他公司生产的那些系统)在每个像素中需要复杂的逻辑,并且需要额外的晶体管来增加最小像素尺寸,这会对分辨率、尺寸、系统功率和成本产生负面影响。
可选地,在各种实施例中的一个或多个中,接收系统412的各个像素(或单独的高灵敏度接收器,例如SPAD)可以检测反射光束416。响应于该检测,接收系统412可以触发连续的单独曝光开关电路(例如,如下面进一步详细解释的)。
在各种实施例的一些中,发射和接收(Tx-Rx)系统402可以采用三维体素匹配的、激光飞行时间触发的RGB闪光和相应的逐像素自动曝光。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统402的触发双功能传感器可以检测由一个或多个强蓝光激光器和发射系统404的一个或多个磷光体发射的光。在各种实施例的一些中,一个或多个强蓝光激光器可以发射强蓝色激光的一个或多个强列闪光。在一些实施例中,强蓝色激光的一个或多个强列闪光可以激发一种或多种磷光体。例如,响应于强蓝色激光,磷光体可以将强蓝色激光的大部分蓝色光子能量转换为更加漫射的白色照明光斑。这种磷光体向下转换(例如,从较短波长到较长波长)可以以特定等待时间(例如,相移)响应。例如,磷光体可以在短暂延迟之后使白色宽光谱光波前跟随窄带蓝色激光闪光光波前在各种实施例的一些中,可以选择各种磷光体的磷光体自然滞后以及时扩散磷光体的各种波长的虹彩响应。例如,各种磷光体可以提供基于各种波长(例如,从蓝绿色到红色,其中较长波长可以具有较长的磷光体滞后时间)而变化的磷光体滞后时间。
在各种实施例的一些中,发射系统404可以发射以光速行进的尖锐的紫外(UV)或蓝色激光脉冲引起的彩虹波前。在各种实施例中的一个或多个中,到达传感器414的第一光(在飞行时间延迟之后)可以包括带蓝色的光。到达的最后光子可以提供微带红色的光。显示器中类似的时间延迟可能会导致称为“PlainBow”的现象。在各种实施例中的一个或多个中,快速像素可以检测前方运行的蓝光(例如,直接源自蓝色激光源)。拖尾磷光体到达的滞后使得能够实现新颖的触发功能。例如,触发像素可以首先记录由该像素首先接收的光线的原点(例如,反射该蓝光光线的表面上的体素位置(列标识符和/或行标识符))并且可以还通过例如解锁或打开用于光电二极管生成的要捕获的光电流的新路径(例如,在浮动扩散中)来触发第二积分感测功能。在各种实施例中的一个或多个中,脉冲激光器可以直接产生首先到达像素的窄带蓝光。响应于窄带蓝光,像素可以打开用于即将到达的光的路径以进行光谱记录。通过采用这种触发像素功能,像素可以区分具有或不具有光的像素。例如,响应于其中具有光的给定像素,给定像素可以捕获颜色信息。
在各种实施例的一些中,发射和接收(Tx-Rx)系统402可以采用无滤波器的彩色选通触发的时序智能像素。在各种实施例中的一个或多个中,接收系统412可以在时刻t0捕获入射波前的触发像素光电流。在各种实施例的一些中,行或列感测线可以测量触发的像素光电流。在一些实施例中,接收系统412可以使得附加的级联触发的相邻像素在稍微延迟的曝光时刻t1捕获入射波前的较晚的较长波长分量。通过使用级联延迟,接收系统412可以以像素颜色时序方法捕获频谱的各种子带,而无需例如需要滤波器。在各种实施例中的一个或多个中,各种级联光电二极管可以包括分层或堆叠的光电二极管,其具有更接近表面的蓝色灵敏度和更深的红色灵敏度(例如,图27的四个钉扎光电二极管(PDD)可以是一个在另一个之上)。
例如,当在范围内存在小对象时,接收系统412可以自动捕获发射系统404包括的扫描光束406的那些RBG像素值,同时抑制像素和时间(例如,纳秒)水平的各种环境/背景光。以这种方式,接收系统412可以创建强选择性像素功能,裁剪出前景中的三维对象,记录最短的可能曝光时刻。如下面进一步详细解释的,图28示出了非常快速的顺序触发和/或外部门控PDD的示例。
可选地,在各种实施例中的一个或多个中,用作触发器的像素可以是子像素,其中选择性窄带滤波器优先选择性地触发蓝光波长,门控或打开第二单独的彩色(例如RGB)像素。
发射系统404和接收系统412都可以包括快速实时位置点定位检测器。在PhotonJet(转让给PhotonJe)的美国专利No.8,282,222、8,430,512和8,696,141中描述了传感器的一维或二维的定位检测和可选的飞行时间直接时间和距离测量以及视野/相机视角估计。后来的PhotonJet专利申请(该专利申请将Gerard Dirk Smits命名为发明人)也更详细地解释了这种定位检测。
在各种实施例的一些中,发射和接收(Tx-Rx)系统402可以采用辅助立体声系统。在各种实施例中的一个或多个中,接收系统412可以包括以对极立体声扫描布置而布置的两个同步行扫描卷帘快门相机(例如,作为每个接收器的相应传感器414)。例如,偏移距离D可以分离两个对极立体声接收器(例如,左接收器和右接收器)。双接收器可以用作一维(ID)位置检测器,其可以检测沿着(例如,通过沿着特定高度瞄准发送的扫描光束406)预选的单个行的投影点的方位角视差列值。在各种实施例的一些中,发射系统404可以知道特定高度的仰角ε,例如,事前知道。在每个时刻,接收系统412可以读取两个值,各自来自两个对极立体声接收器的各传感器414。
从已知的高度,发射系统404或接收系统412中的一个或多个可以确定Y维度。根据双方位角α或X值中的一个或多个,发射系统404或接收系统412中的一个或多个可以确定X和Z坐标(或范围)。在各种实施例的一些中,对于每个时刻、扫描光束406从双光圈立体视场内的对象反射的每个位置(例如,测量到纳秒),发射和接收(Tx-Rx)系统402可以计算瞬间(X,Y,Z,t)体素位置-时间向量。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统402可以确定体素位置轨迹。在各种实施例的一些中,发射和接收(Tx-Rx)系统402可以确定包括多个这些位置-时间矢量的体素位置轨迹。例如,发射和接收(Tx-Rx)系统402可以每秒以最小(例如,微秒)延迟记录并作用于1亿或更多的这些位置时间向量。
图10示出了示例性快速跟踪系统1000,其采用三个示例性一维实时传感器来跟踪示例性飞点式SSL。例如,快速跟踪系统1000可以与上面解释的发射和接收(Tx-Rx)系统中的一个或多个相同或相似。在各种实施例中的一个或多个中,快速跟踪系统1000可以包括第一接收器1002、第二接收器1004以及可选地第三接收器1006。在各种实施例的一些中,第一接收器1002可包括第一传感器1008。第二接收器1004可以包括第二传感器1010。第三接收器1006可以包括第三传感器1012。在一些实施例中,第一接收器1002可包括在位置A处具有中心点的第一光圈1014。第二接收器1004可包括在位置B处具有中心点的第二光圈1016。第三接收器1006可包括在位置E处具有中心点的第三光圈1016。在一些实施例中,第一、第二和第三光圈1014、1016和1018可沿基线1020定向对齐。
在一些实施例中,两个传感器1008和1010可以在快速扫描方位角方向上记录瞬时逐像素立体声视差,沿着可选行选择线1022定向对准。虽然图10示出了沿基线1020定位的发射系统1024,但是发射系统1024可以驻留在基线1020之外的各种位置(例如,也适用于本文所解释的一个或多个其他各种实施例)。
在各种实施例中的一个或多个中,可选的第三传感器1012可以是一维传感器。在各种实施例的一些中,系统1000可以定向第三一维传感器1012以测量飞点的瞬时高度(ε)。例如,第三一维传感器1012可以具有与第一传感器1008和第二传感器1010的取向垂直(例如,相对于其旋转90度)的取向(例如,如图10所示)。在各种实施例的一些中,第三一维传感器1012可以与行选择线1022一致。
例如,光圈1014、1016和1018可以将从对象C反射的主射线引导到传感器1008、1010和1012中的相应传感器上。在各种实施例中的一个或多个中,行选择线1022可以激活第一传感器1008的像素行1026。在各种实施例的一些中,行选择线1022可以激活第二传感器1028的像素行1028。激活的行1026中的像素1030可以捕获主射线。第一接收器1002可以确定像素1030的列1032。激活的行1028中的像素1034可以捕获主射线。第二接收器1004可以确定像素1034的列1036。根据这些测量,系统1000可以确定对象C在第一维度中的位置。
在各种实施例中的一个或多个中,第三接收器1006可以经由例如列选择线(未示出)激活第三传感器1012的像素列1038。激活的列1038中的像素1040可以捕获主射线。第三接收器1006可以确定像素1040的行1042。根据这些测量,系统1000可以在第二维度上确定对象C的位置。在各种实施例的一些中,第一和第二维度可以是范围以外的维度。
在各种实施例的一些中,系统1000可以包括一个或多个双接收器作为第一传感器1008或第二传感器1010中的一个或多个。在一些实施例中,发射系统1024可以跟踪扫描光束1044的高度。在各种实施例的一些中,第三接收器1006可以与发射系统1024共位。
图11示出了示例性快速跟踪系统1100,其采用三个示例性一维实时传感器来跟踪示例性飞点式SSL。例如,快速跟踪系统1100可以与上面解释的发射和接收(Tx-Rx)系统中的一个或多个相同或相似。在各种实施例中的一个或多个中,快速跟踪系统1100可以包括左接收器、右接收器和可选的高度接收器。左接收器可包括第一传感器1102。右接收器可包括第二传感器1104。高度接收器可包括第三传感器1106。在一些实施例中,第三传感器1106可以是一维传感器。在各种实施例的一些中,系统1100可以定向第三传感器以测量对象C上的飞点1108的瞬时高度(例如,ε)。例如,第三传感器1106可以具有垂直于第一传感器1102和第二传感器1104的取向(相对于第一传感器1102和第二传感器1104的取向旋转90度)的取向(例如,如图11所示)。在各种实施例的一些中,系统1100可以安装第三传感器1106以产生额外的垂直视差。例如,系统1100可以将第三传感器1106安装在左接收器的垂直位置、右接收器的垂直位置和系统1100的发射器1110的垂直位置之上。在各种实施例的一些中,左接收器可包括第一光圈1112,其将反射光引导到第一传感器1102上。右接收器可包括第二光圈1114,其将反射光引导到第二传感器1104上。基线可以在第一光圈1112和第二光圈1114之间延伸。高度接收器可包括第三光圈1116。第三光圈1116可以位于沿着对于基线的垂直平面形成三角形的位置。在一些实施例中,系统1100可将第三传感器1106安装在基线的垂直位置上方。
图12示出了示例性快速跟踪系统1200,其采用三个示例性一维实时传感器来跟踪示例性飞点式SSL。例如,快速跟踪系统1200可以与上面解释的发射和接收(Tx-Rx)系统中的一个或多个相同或相似。在各种实施例中的一个或多个中,快速跟踪系统1200可包括左传感器1202、右传感器1204和可选的高度传感器1206。在各种实施例的一些中,高度传感器1206可以是一维传感器。在一些实施例中,高度传感器1206可以位于左和右传感器1202和1204之间。例如,高度传感器1206可以定位在基线上,该基线在左传感器1202和右传感器1204之间延伸。在各种实施例中的一个或多个中,基线可以具有Dx的长度。高度传感器1206可以定位在距离左和右传感器1202和1204中的每一个为Dx的一半的距离处。
在各种实施例的一些中,系统1200可以在照射对象C的一部分1208的同时提供额外的垂直视差。在各种实施例的一些中,发射系统1210可以安装在使扫描准直激光束取向为高于基线并俯视障碍物(例如,对象C)的位置处(例如,安装在障碍物上方)。这在车辆中可能是有利的。在一些实施例中,系统1200可以将发射系统1210定位在基线上方的Dy距离处。系统1200可以将发射系统1210垂直地定位在高度传感器1206上方。例如,系统1200可以提供最大水平基线Dx(例如,在车辆前灯中120cm至200cm)。系统1200还可以提供有效的垂直基线Dy(例如,80cm至120cm)。
图13示出了示例性接收系统1300,其包括示例性立体声接收器对。例如,接收系统1300可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,接收系统1300可以包括左接收器1302和右接收器1304。左接收器1302可包括第一传感器1306。右接收器1304可以包括第二传感器1308。左接收器1302可包括将光引导到第一传感器1306上的第一光圈1310。右接收器1304可以包括将光引导到第二传感器1308上的第二光圈1312。距离D可以将第一光圈1310和第二光圈1312彼此分开。左接收器1302和右接收器1304可以捕获发射波束1314的反射。
在各种实施例的一些中,接收系统1300可以确定可观察的视差(例如,光束角度之间的可观察的区别)。例如,随着目标和接收系统1300之间的距离增加,可观察到的视差可能减小。响应于确定可观察视差越过阈值(例如,低于阈值),接收系统1300可以减小潜在的Z范围误差。例如,接收系统1300可以通过飞行时间方法自动切换到测距(例如,如下面进一步详细说明的)。
在各种实施例的一些中,发射光束1314可以在第一位置1316处(例如,在近距离处)从对象反射。在一些实施例中,发射光束1314可以在第二位置1318处(例如,在中等距离处)从对象反射。在一些实施例中,发射光束1314可以在第三位置处(例如,在图13的位于外边的远处)从对象反射。左接收器1302可以接收在第一位置1316处从对象反射的光线1320。右接收器1304可以接收在第一位置1316处从对象反射的光线1322。例如,第一传感器1306的第一像素1324可以捕获反射光1320。第二传感器1308的第二像素1326可以捕获反射光1322。左接收器1302可以接收在第二位置1318处从对象反射的光线1328。右接收器1304可以接收在第二位置1318处从对象反射的光线1330。例如,第一传感器1306的第三像素1332可以捕获反射光1328。第二传感器1308的第四像素1334可以捕获反射光1330。左接收器1302可以接收从第三位置处的对象反射的光线1336。右接收器1304可以接收在第三位置处从对象反射的光线1338。例如,第一传感器1306的第五像素1340可以捕获反射光1336。第二传感器1308的第六像素1342可以捕获反射光1338。在各种实施例中的一个或多个中,第一传感器1306的第七像素1344可以捕获从距离第一传感器1306接近无限远的距离的各种对象反射的光。第二传感器1308的第八像素1346可以捕获从距第二传感器1308接近无限远的距离的各种对象反射的光。
在各种实施例中的一个或多个中,系统1300可以具有良好的视差1348(例如,在第一像素1324和第二像素1326之间),如在捕获从近对象反射的光时发生的那样。在各种实施例的一些中,系统1300可以具有减小的视差1350(例如,在第三像素1332和第四像素1334之间),如在捕获从增加的距离处的对象反射的光时发生的那样。例如,当捕获来自位于远距离(例如,第三位置)的对象的反射时,系统1300可能具有差的视差1352(例如,在第五像素1340和第六像素1342之间)。在一些实施例中,系统1300可能缺少(或实际上缺少)视差1354(例如,在第七像素1344和第八像素1346之间),如在捕获来自位于在接近无限远的距离处的对象的反射时发生的。
图14示出了示例性修改的逆向反射(MRR)目标1400,其可以增强对示例性发射和接收(Tx-Rx)系统1402(例如,上面解释的那些中的一个或多个)的跟踪。在各种实施例的一些中,修改的逆向反射目标1400可以提供扫描激光束1404的反射。修改的逆向反射目标1400可以显着增加辅助立体三角测量的范围。修改的逆向反射目标1400可以显着增加立体声接收器用于长距离飞行时间测量的范围。例如,在三角测量可能在远距离处缺乏足够的基线的情况下,修改的逆向反射目标1400可以以提供准确的三维检测的方式提供反射。
在各种实施例中的一个或多个中,修改的逆向反射目标1400可以使反射具有大的信号强度。例如,与朗伯反射或漫反射相比,修改的逆向反射目标1400可以使反射具有100倍的增益。在一些实施例中,修改的逆向反射目标1400可以反射LIDAR模式脉冲以提供使接收系统能够在很大范围内进行检测足够强的反射。
在各种变型实施例的一些中,修改的逆向反射目标1400可以将反射分成两个逆向反射射线束1406和1408。例如,修改的逆向反射目标1400可以将两个逆向反射射线束1406和1408瞄准接收系统的立体声接收器对(例如,两个逆向反射射线束1406和1408中的每一个可以瞄准立体声接收器对中相应的接收器1412和1414)。在一些实施例中,修改的逆向反射目标1400可以使两个逆向反射射线束1406和1408以约3α的对极(例如,水平)转向角瞄准立体声接收器对(例如,如下面进一步详细解释的)。例如,逆向反射目标1400可以将反射分成窄的扩散角反射光束对(例如,具有可以小于1度的光束扩展角)。在各种实施例中的一个或多个中,修改的逆向反射目标1400可以是贴花粘合剂MRR目标(例如,附着在车辆的周边,以通过远距离的机器视觉提供它们的准确感知)。通过MRR 1400实现对极(例如,水平)精确且有意的3α扩展,修改的逆向反射目标1400可以引起传统的逆向反射和其他显着表面(例如,通常用于牌照、背部信号、公路标志、“猫眼”车道标记的那些表面)对于接收系统的立体声接收器对(例如,在头灯组件中)可能看起来不那么明亮。通过将光精确地反射回目标(并且可选地,当发射系统1410以已知间隔脉冲发射光)时,修改的逆向反射目标1400可以允许发射系统1410减小所需的发射光的大小。此外,通过精确地将光反射回目标(并且可选地,当发射系统1410以已知间隔脉冲发射光)时,修改的逆向反射目标1400可以允许车辆的机器视觉引导系统的接收系统立即(或实际上立即)识别它自己的信号。
图15示出了可以分裂和反射示例性扫描光束的示例性立方逆向反射目标1500。例如,立方逆向反射目标1500可以与图16的经修改的逆向反射目标相同或相似。立方逆向反射目标可以是一个或多个上述系统的组件。在各种实施例中的一个或多个中,立方逆向反射目标1500可以具有提供水平反射分裂的修改后小平面(facet)1502。在各种实施例的一些中,修改后的小平面可以具有小的偏离角α。例如,角度α可以表示修改后的小平面1502和与立方逆向反射目标1500的每个其他小平面中的一个或多个小平面正交的平面之间的角度(例如,修改后的小平面1502与每个其他小平面中的一个或多个小平面之间的角度为90-/+小偏差角α)。如上面关于图14所解释的,立方逆向反射目标1500可以在偏差角α的三倍的两个反射光束之间提供角度分隔。
在各种实施例的一些中,当发射和接收(Tx-Rx)系统的立体声接收器每个同时接收相等量的光时,系统可以增加所接收的光来自系统的发射器的确定程度,如与寄生环境射线(可能在不同时间或以不同幅度到达立体声接收器)相对。
图16示出了示例性逆向反射目标1600,其可以将示例性扫描光束1602分离并反射成朝向示例性车辆1608的两个示例性单独光束1604和1606。例如,逆向反射目标1600可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,车辆1608可以包括发射和接收(Tx-Rx)系统。例如,发射和接收(Tx-Rx)系统可以与上面解释的那些中的一个或多个相同或相似。在各种实施例的一些中,发射和接收(Tx-Rx)系统可以包括发射系统1610。在一些实施例中,发射和接收(Tx-Rx)系统可以包括第一接收系统1612和第二接收系统1614。在各种实施例中的一个或多个中,发射系统1610可以发射发射扫描光束1602。
在各种实施例中的一个或多个中,车辆1608可以是超小型车辆(USV)。在各种实施例的一些中,车辆1608可以利用内置于车辆1608的前灯组件中的立体声接收器(例如,接收系统1612和1614)来保持逆向反射目标1600的精确范围。例如,逆向反射目标可以增加接收系统1612和1614检测发射光束1602的反射1604和1606的能力,从而允许发射系统1610发射非常弱的信号(例如,激光安全)而接收系统1612和1614提供精确的范围检测。在各种实施例的一些中,由于非常窄的反射,发射系统1610和逆向反射目标1600可以避免检测到其他车辆的接收器的反射。
在各种实施例中的一个或多个中,如在此描述的那样放置在USV上的高度方向选择性反射目标的系统(例如,特别是当被用作高速车道中的自主USV的标准时)可以允许非常接近和高速安全排队。在各种实施例的一些中,这些目标的高度方向选择性可以最小化由相对或相邻车道中的车辆的直接照明或LIDAR系统引起的潜在干扰效应。在一些实施例中,当系统同时检测到左反射和右反射时,系统可以将得到的计算的距离或位置估计与高置信度相关联,因为来自除了该系统自身扫描照明的逆向反射之外的任何源的光(例如,如图15所示的近似分离角为3α的双向逆向反射)不太可能导致同时接收到的左右反射(例如,另一个光源的寄生反射不太可能同时到达系统的左侧和右侧接收器)。
图17示出了示例性引导车辆1700和示例性跟随车辆1702。例如,引导车辆1700或跟随车辆1702中的一个或多个可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,跟随车辆1702可以包括发射和接收(Tx-Rx)系统1704,其与上面解释的那些中的一个或多个相同或相似。在各种实施例的一些中,发射和接收(Tx-Rx)系统1704可以包括发射系统1706。在一些实施例中,发射和接收(Tx-Rx)系统1704可以包括第一接收系统1708和第二接收系统1710。例如,第一接收系统1708或第二接收系统1710中的一个或多个可以定位在跟随车辆1702的前灯中。
在各种实施例中的一个或多个中,发射系统1706可以沿第一方向1712发射扫描光束。在各种实施例的一些中,发射系统1706可以沿第二方向1714发射扫描光束。在各种实施例中的一个或多个中,引导车辆1700可包括一个或多个逆向反射器1716和1718。一个或多个逆向反射器1716和1718可以与上面解释的那些中的一个或多个相同或相似。例如,一个或多个逆向反射器1716或1718可以定位在引导车辆1700的一个或多个尾灯中。在各种实施例的一些中,逆向反射器1718可以在第二位置1714处分离和反射扫描光束,作为第一和第二接收系统1708和1710捕获的第一和第二反射光束1720和1722。在一些实施例中,逆向反射器1718可以在第一位置1712处分离和反射扫描光束,作为第一和第二接收系统1708和1710捕获的第三和第四反射光束1724和1726。
在各种实施例中的一个或多个中,引导车辆1700和跟随车辆1702可以以高速度在精确的线路中进行结队和排对。在各种实施例的一些中,跟随车辆1702的发射和接收(Tx-Rx)系统1704可以检测并跟踪引导车辆1700的逆向反射器1716和1718。在一些实施例中,发射和接收(Tx-Rx)系统1704可以确定引导车辆1700的方位。在一些实施例中,发射和接收(Tx-Rx)系统1704可以确定跟随车辆1702的方位。在一些实施例中,发射和接收(Tx-Rx)系统1704可以确定引导车辆1700或跟随车辆1702相对于另一车辆的方位中的一个或多个。例如,发射和接收(Tx-Rx)系统1704可以标记引导车辆1700的多个逆向反射器的精确位置(例如,引导车辆1700背部的3或4个目标)。发射和接收(Tx-Rx)系统1704可以通过飞行时间、三角测量或摄影测量方法中的一个或多个来完全、精确地和瞬时地估计这些目标在六个自由度(DOF)中的距离或位置(例如,估计两辆车之间的相对位置或速度)。例如,发射和接收(Tx-Rx)系统1704可以在若干重复测量之后在六个DOF中定位引导车辆1700背部的三个或四个目标中的每一个(例如,提供用于自动防撞系统的信息))。
图18示出了用于从三角测量动态切换到飞行时间的示例性过程1800的示例性逻辑流程图。在各种实施例中的一个或多个中,过程1800可以组合三角测量和飞行时间。发射和接收(Tx-Rx)系统可以采用过程1800。例如,发射和接收(Tx-Rx)系统可以与上面解释的那些中的一个或多个相同或相似。
在开始框之后,在框1802处,发射和接收(Tx-Rx)系统的发射系统可以将一个或多个光束发射到位置C处的对象的表面。
在框1804处,发射和接收(Tx-Rx)系统可以确定发射和接收(Tx-Rx)系统的接收系统是否从位置C处的表面接收一个或多个光束的一个或多个反射(例如,如果位置C在接收系统的一定范围内)。例如,接收系统的一个或多个接收器可以检测反射。在各种实施例中的一个或多个中,发射和接收系统可以确定接收系统的一个或多个接收器的第一接收器是否从位置C处的表面接收一个或多个光束的一个或多个反射。响应于确定第一接收器未能从位置C处的表面接收一个或多个光束的一个或多个反射,发射和接收(Tx-Rx)系统可以进行到框1810。响应于确定第一接收器从位置C处的表面接收一个或多个光束的一个或多个反射,发射和接收(Tx-Rx)系统可记录第一接收器从位置C处的表面接收一个或多个光束的一个或多个反射的时间t,并且可以继续到框1806。
另外,在一个或多个实施例中,当距离对于连续光束来说太大时,一个或多个光束可以是脉冲的,如下面针对框1816所讨论的。此外,在一个或多个实施例中,为了确定三角测量,例如辅助立体声模式,两个接收器可以同时检测反射的块波束,如下面针对块1808所讨论的。
在框1806处,发射和接收(Tx-Rx)系统可以确定接收系统的一个或多个接收器中的第二接收器是否从位置C处的表面接收一个或多个光束的一个或多个反射。响应于确定第二接收器未能从位置C处的表面接收一个或多个光束的一个或多个反射,发射和接收(Tx-Rx)系统可以进行到框1810。响应于确定第二接收器从位置C处的表面接收一个或多个光束的一个或多个反射,发射和接收(Tx-Rx)系统可记录第二接收器从位置C处的表面接收一个或多个光束的一个或多个反射时间t,并且可以继续到框1808。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统可以并行地执行块1804和1806。例如,发射和接收(Tx-Rx)系统可以响应于第一或第二接收器中的一个或多个未能从位置C处的表面接收一个或多个光束的一个或多个反射而前进到框1810。
在框1808,发射和接收(Tx-Rx)系统可以将为第一接收器记录的时间t与为第二接收器记录的时间t进行比较。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统可以比较这些时间t以确定这些时间t是否指示第一和第二接收器接收到相同的一个或多个光束的一个或多个反射。例如,发射和接收(Tx-Rx)系统可以计算为第一接收器记录的时间t和为第二接收器记录的时间t之间的差。在各种实施例的一些中,发射和接收(Tx-Rx)系统可以确定差异是否落入预定阈值内。在一些实施例中,发射和接收(Tx-Rx)系统可基于这些时间t中的一个或多个的幅度来选择预定义阈值(例如,发射和接收(Tx-Rx)系统可以响应于这些时间t中的一个或多个具有低幅度而可选择低预定义阈值,或者可以响应于这些时间t中的一个或多个具有高幅度而可选择高预定阈值)。例如,发射和接收(Tx-Rx)系统可以基于查找表的内容来选择预定义阈值。响应于落入预定阈值内的差异,发射和接收(Tx-Rx)系统可以确定这些时间t指示第一和第二接收器接收到相同的一个或多个光束的一个或多个反射。响应于确定这些时间t未能指示第一和第二接收器接收到相同的一个或多个光束的一个或多个反射,发射和接收(Tx-Rx)系统可以进行到框1810。响应于确定这些时间t指示第一和第二接收器接收到相同的一个或多个光束的一个或多个反射,发射和接收(Tx-Rx)系统可以继续到框1812。
在框1810处,发射和接收(Tx-Rx)系统可以将框1802的迭代次数与阈值进行比较。例如,每当发射和接收(Tx-Rx)系统执行框1802时,发射和接收(Tx-Rx)系统可以递增计数器。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统可以响应于框1812-1822中的一个或多个的执行来重置迭代次数。响应于确定框1802的迭代次数超过阈值,发射和接收(Tx-Rx)系统可以进行到框1818。例如,在位置C离发射和接收(Tx-Rx)系统太远的情况下,两个接收器同时接收可能遵守人眼安全的曝光限制(例如,由国际电工委员会(IEC)文件号60825或62471或美国国家标准协会(ANSI)Z136(或在C位置没有对象的情况下)定义)的连续光束的反射,发射和接收(Tx-Rx)系统可以在框1818处以更高强度脉冲扫描光束(其也可以遵守对人眼安全的曝光限制)。响应于确定框1802的迭代次数未超过阈值,发射和接收(Tx-Rx)系统可以返回并重复框1802。
在框1812处,发射和接收(Tx-Rx)系统可从立体像素位置对(例如,如图13中所示的接收(Rx)系统的立体声接收器对的像素的位置)计算视差Δx的值。在各种实施例的一些中,当位置C远离发射和接收(Tx-Rx)系统时,发射和接收(Tx-Rx)系统可响应于小的视差而具有大距离测量误差(例如,如图13所示))。
在框1814处,发射和接收(Tx-Rx)系统可以确定视差Δx的值是否下降到某个最小值以下。响应于视差值Δx没有下降到某个最小值Δxmin以下,发射和接收(Tx-Rx)系统可以继续到框1816。响应于视差Δx的值低于特定最小值Δxmin,发射和接收(Tx-Rx)系统可以继续到框1818。
在框1816处,发射和接收(Tx-Rx)系统可以尝试三角测量。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统可以计算确定的Cx的范围(例如,Cz)。在各种实施例的一些中,发射和接收(Tx-Rx)系统可以通过查找表来计算范围。在一些实施例中,发射和接收(Tx-Rx)系统可以通过三角测量来计算范围。发射和接收(Tx-Rx)系统可以将范围提供给外部系统(例如,警报系统或自动驾驶系统),以进一步分析或控制一个或多个系统(例如,警报系统或自动驾驶系统)。响应于确定或提供范围中的一个或多个,发射和接收(Tx-Rx)系统可以返回到框1802。
在框1818处,发射系统可以低占空比脉冲发射(或以其他方式调制)扫描光束。在各种实施例中的一个或多个中,发射系统可以发射短的尖锐强烈的光子突发。替代地,发射和接收(Tx-Rx)系统可以切换到采用另一种形式的ToF测距。在一些实施例中,发射系统可以采用光脉冲的快速幅度或频率调制。在各种实施例中的一个或多个中,响应于发射和接收(Tx-Rx)系统从框1810前进到框1818,发射和接收(Tx-Rx)系统可以采用不同的传感器,例如,LIDAR或雷达,用于检测到位置C处对象的距离。例如,如上所述,从发射和接收(Tx-Rx)系统到位置C的距离可能离发射和接收太远(Tx-Rx))系统太远而难以基于安全幅度连续光束执行三角测量。
在框1818处,接收系统可以检测这些突发。发射和接收(Tx-Rx)系统可以确定这些突发的一个或多个观测飞行时间。
在框1820处,发射和接收(Tx-Rx)系统可以从观察到的飞行时间计算范围值Z。发射和接收(Tx-Rx)系统可以将范围提供给外部系统(例如,警报系统或自动驾驶系统),以进一步分析或控制一个或多个系统(例如,警报系统或自动驾驶系统)。响应于确定或提供范围中的一个或多个,发射和接收(Tx-Rx)系统可以返回到框1802。
在各种实施例中的一个或多个中,与发射和接收(Tx-Rx)系统将通过三角测量计算的值相比,从观察到的飞行时间的计算的范围值Z可以具有更准确的值(例如,当视差值Δx下降到某个最小值Δxmin以下时)。例如,发射和接收(Tx-Rx)系统可以包括GHz时钟计时器。利用GHz时钟计时器,发射和接收(Tx-Rx)系统可以测量例如200英尺范围,精度为1/2英尺(例如,0.25%误差范围),这可能比从立体视差计算的对应值更准确。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统可以将测量的具有准确度的范围提供为在接收脉冲之后立即(或实际上立即)可用的单触发值。在各种实施例的一些中,一个以上的接收器可以同时(或实际上同时)接收脉冲。在一些实施例中,发射和接收(Tx-Rx)系统可以比较多个接收器的信号和飞行时间以获得更高的准确度。在各种实施例的一些中,接收器可以接收具有略微偏移的相位延迟的调制信号。在这种情况下,发射和接收(Tx-Rx)系统可以使用相位差来增加测距计算的精度。
与发射和接收(Tx-Rx)系统的三角测量的计算误差不同,发射和接收(Tx-Rx)系统的飞行时间测量的计算误差取决于在测量时间间隔(例如,1纳秒)内具有足够大的反射信号。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统可以防止飞行时间测量的计算误差取决于传感器的分辨率或立体声接收器的基线分离。在各种实施例的一些中,发射和接收(Tx-Rx)系统可以在飞行时间模式中保持XY分辨率。在一些实施例中,发射和接收(Tx-Rx)系统的XY分辨率可以由一个或多个接收器、发射系统的扫描系统的指向准确度或光束尖端质量来确定。
此外,为了在所有距离(范围)上沿着传感器中的行精确地对准激光照射点的图像,可能需要扫描光束具有平面快速扫描轨迹(例如,扫描光束一次仅在一个方向中旋转)。在地平线上方或下方处的显着高度处 成角度的万向二维MEMS镜(例如,由MicrovisionTM生产的MEMS镜)可以在空间中追踪弯曲轨迹(例如,以为投影,MEMS镜可能表现出“枕形”失真)。这种类型的扫描失真在地平线上方或下方的显着高度处可能很强(例如,当ε≠0时,慢速轴旋转-万向节框架旋转-可能导致快速旋转轴-万向节上的内轴-显着倾斜在飞机外面)。第二快速旋转轴可以与入射的准直激光投影光束非正交,引入另外的不期望的复合角度分量。由于接收器的视角与三角测量系统中的发射器的角度不同,因此在三角测量系统中可能无法获得接收器对这种弯曲轨迹的光学校正(例如,使得弯曲轨迹看起来是平坦的)。因此,在传统扫描系统中的接收器传感器的顶部和底部区域处的快速共振扫描可能不能进行精确对准(例如,精确的逐行对应)。相反,在可以针对每个扫描位置控制两个扫描轴的慢速系统中,可以通过在扫描期间调整角度来补偿该枕形失真。然而,这可能严重地将扫描频率限制到较慢速轴调节可以实现的最大速度。在快速共振扫描系统中可能难以或不可能实现这一点。此外,这可能需要显着更多的功率来在强制非共振运动中在两个方向上同时驱动镜子。相反,在各种实施例的一些中,发射和接收(Tx-Rx)系统402可以防止例如发射系统404的MEMS扫描系统可能引起的针垫和桶形失真。
图19示出了示例性光束扫描机构1900。例如,光束扫描机构1900可以与上面解释的那些中的一个或多个相同或相似。光束扫描机构1900可以包括双MEMS结构1902,其组合第一一维万向扫描镜1904和第二二维万向扫描镜1906。在各种实施例中的一个或多个中,共同的外框架可以将第一和第二镜子1904和1906保持在两个相应的焦点1908和1910处。在各种实施例的一些中,共同的外框架可以旋转2ε。
在各种实施例的一些中,第一镜子1904可以在第一方向上机械地旋转ε并且在第一方向上光学地旋转(例如,来自光源的)入射光1912(例如,如偏转(2ε)所示))作为朝向中继表面1916(例如,椭圆形中继表面)的第一反射光1914。入射光1912的这种光学旋转可以被称为入射光1912的“预旋转”。中继表面1916可以将第一反射光1914反射为朝向第二反射镜1906的第二反射光1918。第二反射镜1906可以将第二反射光1918反射为扫描光束1920,光束扫描机构1900可以在视场上扫描扫描光束1920。
在各种实施例中的一个或多个中,如沿着慢速扫描轴1924(例如,角度ε的轴、高度轴或Y轴)截取的光束扫描机构1900的侧视图1922所示,第一反射光1914、第二反射光1918和扫描光束1920可以在2ε的预旋转之后在与快速扫描轴1926(例如,角度α的轴、水平轴或X轴)正交的平面中,而不管旋转是关于慢速轴1924进行的。例如,在中继表面1916上的反射之后,第二反射光1918可以沿着与快速扫描轴1926正交的路径行进。在各种实施例的一些中,当第二镜子1906围绕慢速扫描轴1924旋转时,这种正交性可以消除否则可能引起“枕形”效应的任何复合角。在各种实施例的一些中,第一反射镜1904可以具有第二反射镜1906的偏转1/2的偏转。
在各种实施例中的一个或多个中,接收系统可以包括其他中继机构和/或其他镜子配置,同时实现相同的原理,确保第二反射光束1906的方向保持与第二反射光束的快速扫描轴1926正交,而不论慢速轴旋转。在各种实施例的一些中,光束扫描机构1900可以实现“平坦”快速扫描线。例如,光束扫描机构1900可以在帧中的各种扫描线和传感器中的各种行之间提供完美或接近完美的双极对准。在各种实施例的一个或多个中,光束扫描机构1900可以补偿传感器光学器件引入的失真(例如,针垫和/或桶形失真)。这些优点可能以使光束扫描机构1900复杂化为代价。
图20示出了示例性传感器网格2000。在各种实施例中的一个或多个中,接收系统可以包括传感器网格2000作为一个或多个传感器的组件。例如,接收系统可以与上面解释的那些中的一个或多个相同或相似。在各种实施例的一些中,传感器网格2000可以通过一个或多个镜头调整光学畸变。在各种实施例中的一个或多个中,传感器网格2000可以调整传感器平面中的行的曲线,并且在一些实施例中,可选地调整一个或多个像素的尺寸、形状或纵横比中的一个或多个以补偿光学畸变。
在各种实施例中的一个或多个中,传感器网格2000可以具有与快速线扫描轨迹匹配的像素或行几何结构中的一个或多个。例如,一个或多个透镜可以是固定镜头系统的一部分。在各种实施例中的一个或多个中,一个或多个透镜的光学器件可以在传感器平面处引起枕形失真(例如,一个或多个透镜的放大率可以与距光学中心的径向距离成比例),从而使得角看起来“张开了”。在各种实施例的一些中,传感器网格2000可以调整像素网格以匹配失真。在一些实施例中,传感器网格2000可以调整像素网格以使传感器中的行与直扫描线匹配,以利用上述的一个或多个双极布置中的一个或多个。在各种实施例中的一个或多个中,线i和线i+1可以是弯曲的。在各种实施例的一些中,传感器网格2000可以调整像素几何形状以匹配失真。在一些实施例中,传感器网格2000可以调整像素几何形状以匹配直扫描线以利用上述一个或多个双极布置。在各种实施例中的一个或多个中,像素取向、尺寸或形状中的一个或多个可沿扫描线方向改变。
图21示出了示例性扫描系统2100。在各种实施例中的一个或多个中,扫描系统2100可以包括发射和接收(Tx-Rx)系统2102。例如,扫描系统2100可以与上面解释的那些中的一个或多个相同或相似(例如,发射和接收(Tx-Rx)系统2102可以与以上所解释的那些中的一个或多个相同或相似)。在各种实施例中的一个或多个中,扫描系统2100可以包括多焦点相机阵列。在各种实施例的一个或多个中,多焦点相机阵列可以提供重叠的视场。例如,扫描系统2100可以采用宽视场2104或窄视场2106。在各种实施例中的一个或多个中,扫描系统2100可以是车辆2108的一部分或安装到车辆2108。宽视场2104可以覆盖第一通道2110和第二通道2112的一个或多个部分。窄视场2106可以主要覆盖第二通道2112的一个或多个部分。
在各种实施例中的一个或多个中,多焦点相机阵列可以包括具有给定分辨率的传感器(例如,10M像素,5000列,2000行)。在各种实施例中的一些中,多焦点相机阵列可以被布置成选择性地支持宽视场2104或窄视场2106。例如,多焦点相机可以支持分布在给定数量的列(例如,5000列)上的宽视场2104(例如,具有83度的水平跨度的视场)。在支持宽视场2104的同时,多焦点相机可以具有给定的三角测量能力(例如,每度60列,其接近HD或20/20人类视觉)。在各种实施例的一些中,如果相同的传感器与较长的远摄镜头系统组合,则它可以跨越较小的度数(例如,20度),从而产生较高的分辨率(例如,是每度250像素的4倍高的分辨率,这近似于20/20人类视觉的4倍)。在一些实施例中,利用足够的光,传感器可以在关键的X和Z维度上解析大约4倍的细节。在各种实施例中的一个或多个中,对于给定的传感器尺寸(例如,像素和分辨率),可以实现各种水平的聚光。
图22示出了具有示例性多焦点相机阵列2202的示例性扫描系统2200,其具有示例性传感器2206和示例性光圈2208之间的示例性选择距离2204。例如,扫描系统2200可以与上面解释的那些中的一个或多个相同或相似。多焦点相机阵列2202可以选择性地采用所选择的距离2204以提供广角视场2210。
图23示出了具有示例性多焦点相机阵列2302的示例性扫描系统2300,其具有示例性传感器2306和示例性光圈2308之间的示例性选择距离2304。例如,扫描系统2300可以与上面解释的那些中的一个或多个相同或相似。多焦点相机阵列2302可以选择性地采用所选择的距离2304来提供窄角视场2310。对比图22和23示出了广角视场和窄角视场之间的折衷。在各种实施例中的一个或多个中,上述接收系统中的一个或多个可以包括可以具有更大光圈(例如,镜头直径)的望远镜光学系统,以收集更多光并扩展系统的范围。
返回图4,发射和接收(Tx-Rx)系统402可以提供鲁棒的高速4K分辨率三维视频运动捕捉。例如,对于1GHz时钟,接收系统412可以记录多达10亿个不同的像素对视差。在各种实施例中的一个或多个中,接收系统412可以每秒观察多达10亿个体素。例如,接收系统412可以连续地观察每行10,000个体素和高达100,000行/秒。在各种实施例的一些中,接收系统412可以以4K分辨率捕获高达50fps的三维视频。例如,即使在强环境光条件下,接收系统412也可以读取细粒度4K分辨率三维表面轮廓而没有运动伪影。
在各种实施例中的一个或多个中,接收系统412可以实现更高帧速度或更高线扫描分辨率中的一个或多个。在各种实施例的一些中,接收系统412可以避免加速扫描机制。例如,接收系统412可以实现50kHz镜子以对于单个飞点记录每秒100,000行或者以高达50FPS记录2,000行。在各种实施例的一些中,发射和接收(Tx-Rx)系统402可以采用多光束扫描来进一步增加图像投影和对象精细细节检测。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统402可以采用双扫描系统,其可以同时扫描接收系统412中的两条平行线(“双孪生匹配对极”),这可以使得分辨率加倍。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统402可以提供强大的三维运动捕捉。在各种实施例的一些中,接收系统412可以通过接收系统412的两个接收器即时(或实际上即时)找到体素范围(例如,如上所述的在对极立体声配置中的偏移)。例如,接收系统412可以使用硬件或软件查找表(LUT)来确定Z距离。在各种实施例的一些中,分离的第三传感器确定垂直尺寸(例如,如上所述)。在各种实施例的一些中,对极接收器之一可以提供二维瞬时读出。例如,接收系统412可以通过两个接收器(例如,一维接收器和二维接收器)确定垂直尺寸。
在各种实施例的一些中,发射系统404可以缺少位置传感器或反馈回路中的一个或多个以跟踪发射系统404的瞬时扫描角度。发射系统404可以包括超快开环MEMS激光扫描系统(例如,配置在中继光学器件布置中的两个快速谐振一维扫描镜,例如由STmicroelectronicsTM获得的BTendo双镜系统或由FraunhoferTM开发的Lissajous双镜扫描系统)。
在各种实施例中的一个或多个中,接收系统412可以提供超宽快速扫描。例如,接收系统412可以包括最近在日本筑波(Tsukuba)的研究实验室中展示的一个或多个“LambDrive”压电驱动的共振钢镜系统。在各种实施例的一些中,接收系统412可以以高达60kHz(每秒120,000行)的宽角度扫描。在一些实施例中,发射和接收(Tx-Rx)系统402可以提供双立体声或三重传感器布置,以提供各种这样的新颖扫描选项。在各种实施例中的一个或多个中,接收系统412可以通过N(其中N≥2)相机系统在三维中以针点精度记录和跟踪各种点、飞点或扫描线。在各种实施例的一些中,接收系统412可以这样做而不管发射系统412的光学系统的质量、轨迹或周期性。例如,发射和接收(Tx-Rx)系统402可以提供伪随机三维表面扫描,例如,如转让给PhotonJet Scanner的美国专利No.8,430,512所述。
在各种实施例中的一个或多个中,接收系统412可以在一对像素(例如,左接收器中的一个和右接收器中的一个)检测到一个或多个光脉冲时确定并提供每个体素位置。在各种实施例的一些中,发射和接收(Tx-Rx)系统402可以可选地以响应于发射和接收(Tx-Rx)系统402将一个或多个检测到的光脉冲与相应的高度值(例如,单独的接收器、二维左接收器、二维右接收器或发射系统404中的一个或多个可以立即计算Z值)之配对来确定并提供每个体素位置。
反射光束的一部分光场可以同时(或实际上同时)到达三个传感器中的每一个。三个结果信号可以自然地同步。在各种实施例中的一个或多个中,接收系统412可以明确地关联(例如,匹配)这些信号。当检测到立体声脉冲对时,接收系统412提供瞬时(或实际上瞬时)的三角测量,几乎立即产生体素的相应X和Z值。附加的高度传感器可以提供高度(例如,Y值),例如,如上所述。在各种实施例的一些中,接收系统412可以通过双接收器之一中的附加读出来确定高度。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统402可以保持顺序体素检测速度(例如,每纳秒最多一个体素),即使在较长距离(例如,不管观察滞后如何)。在各种实施例的一些中,接收系统412可以消除出射传输角度与入射接收角度的相关性。在一些实施例中,接收系统412可以消除由最初不可知的飞行时间(例如,输出和接收之间的未知经过时间)引起的模糊。对于更远的对象,响应于基线偏移变得太小的范围的一小部分,发射和接收(Tx-Rx)系统402可以实施飞行时间(例如,通过以已知码序列(例如AM或FM相位调制、灰度编码或敲击节拍)脉冲或调制激光源))。图18示出了发射和接收(Tx-Rx)系统402如何确定何时利用飞行时间测距(例如,对于远场)以及何时使用三角测量(例如,适用于中场或近场)测距的示例过程(例如,逻辑流程)。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统402可以提供高速三维运动捕捉。在各种实施例的一些中,发射和接收(Tx-Rx)系统402可以产生扫描对象的精确且细粒度的高速三维运动图。在一些实施例中,发射和接收(Tx-Rx)系统402可以可选地提供运动捕捉或全色运动图中的一个或多个。发射和接收(Tx-Rx)系统402可以包括各种鲁棒的高速彩色3D运动捕捉系统(例如,如上所述),其产生被扫描对象的精确且细粒度的高速3D运动图-可选地以全色表示。
在各种实施例中的一个或多个中,接收系统412可以包括用于快速异步三角测量的一个或多个相机。低成本所谓的“卷帘快门”移动相机可以在5到10个MP阵列中具有小的(例如,1到1.5微米)像素。每个像素(或单光子雪崩二极管(SPAD))可以用于相同的列检测电路。可以以类似于CMOS相机像素的方式选择行、主动关闭行。然而,在各种实施例中的一个或多个中,飞点的快速和二进制阈值检测可以具有高优先级。在各种实施例的一些中,发射和接收(Tx-Rx)系统402可以从一个或多个扫描仪的慢速角度的反馈(例如,垂直角或仰角ε)确定与快轴扫描方向基本正交的方向)。在一些实施例中,发射和接收(Tx-Rx)系统402可以利用这些特征来确定像素落在何处。例如,发射和接收(Tx-Rx)系统402可以利用这些特征来提供瞬时(或实际上是瞬时的)(可选地异步)列检测。
在各种实施例中的一个或多个中,接收系统412可以包括4路接收器传感器系统。在各种实施例的一些中,4路接收器传感器系统可包括四个光圈。在一些实施例中,光圈可以布置成正方形。在各种实施例中的一个或多个中,四接收器传感器系统可具有双正交视差。
在各种实施例中的一个或多个中,接收系统412可以捕获光斑并对光斑成像四次(例如,每次具有行和列检测)。在各种实施例的一些中,在每个光斑记录实例中,接收系统412可以记录四个方位角X值和四个εY值(例如,总共8个值,从而捕获四倍多的光)。在一些实施例中,接收系统412可以可选地应用R、G、B或NIR滤波器中的一个或多个。例如,四个象限中的每一个可以捕获NIR(例如,对于4倍信号强度,多达八个瞬时(或实际上是瞬时的)读出)。
在各种实施例中的一个或多个中,接收系统412可以通过扫描激光三角测量来确定深度估计。在各种实施例的一些中,接收系统412可以至少部分地基于以下公式确定深度信息:Z=hD/(Q-htanG)。该公式的变量可以表示图中所示的那些。
例如,如整个附图所示并且如上所述,Z可以表示到光束被反射的点的距离(例如,三角形ABC中的顶点C,其中Z可以是与基线正交的距离(例如,Z表示沿着与基部AB正交的路径从C到基部AB测量的三角形测量的高度))。在各种实施例的一些中,h可表示从光圈(例如,镜头)中心到传感器平面的正交距离。例如,如上所述并且如图4、5和图30所示,h可以表示镜头系统的焦距f。在各种实施例中的一些中,镜头系统可以将远处的光聚焦到传感器表面414上的小像素大小的光斑处。如整个附图所示并且如上所述,D可以表示基线偏移距离或基线距离。例如,在辅助立体声中,基线是立体声对的两个接收器(例如,左接收器和右接收器)之间的距离。如上所述并且如图4和5所示,Q可以表示横向(例如,方位角)视差,其通过例如沿着传感器平面从光学中心到投影在传感器414上的扫描图像点处的距离来测量。例如,可以沿快速扫描方向测量Q(例如,在各种实施例的一些中,接收系统412可以实现理想的对极布置,其中传感器414中的扫描行的方向和基线都是平行的)。如图4所示,θ可以表示入射光线偏离接收器的中心光轴的角度。例如,θ可以是接收器角度β的补角(例如,β+θ=90度)。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统402可以通过更精细地测量这些变量中的每一个来实现估计Z的更高精度。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统402可以具有固定的基线距离D。例如,可以在制造时通过某种校准以高精度建立基线距离D。在各种实施例的一些中,在大基线(例如,1.5米)是可行且期望的(例如,在汽车设置中)的情况中,可能存在一些重新校准以调整自然发生的机械运动或未对准。
在各种实施例中的一个或多个中,在组装镜头和传感器414之后,可以精确地测量焦距h(例如,以微米为单位)。
在各种实施例中的一个或多个中,可以通过测量传感器414中的相对光斑位置来确定入射光线偏离角度θ。在各种实施例的一些中,接收系统412可以基于最接近传感器中的光斑的最大照明质心(例如,最佳亮度的位置)的像素位置来近似入射光线偏离角度θ。在一些实施例中,发射和接收(Tx-Rx)系统402可以提供三维测量,而不管该光斑是否被清晰地聚焦。例如,发射和接收(Tx-Rx)系统402可以基于该光斑的清晰亮度中心提供三维测量。
在各种实施例中的一个或多个中,接收系统412可具有精确(例如,到纳米)和不变的像素位置。在各种实施例的一些中,接收系统412可以具有可以通过光刻和硅的固定来固定的像素位置。在一些实施例中,像素的大小和间隔可以定义离散位置测量的量化限值。
在各种实施例中的一个或多个中,接收系统412可受益于较小的像素大小与传感器大小的比率。例如,接收系统412可以受益于像素数量的增加。然而,较小的像素可以接收较少的光。在实践中,小型传感器(例如,如可能因较小像素引起)可能要便宜得多。然而,这些小型传感器可能限制光圈尺寸和视场。为了收集足够用于长程三角测量和测距的光,可能需要更大的光圈,但是它们的光学系统可以为更窄的视场提供更多支持(例如,由光展量定律、几何光学和镜头的实际f数)。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统402可以采用一种或多种方法来实现一定程度的“超分辨率”。例如,通过用表面上的已知速度(例如,连续表面轨迹速度)扫描,发射和接收(Tx-Rx)系统402可以非常精确地确定扫描光束的精确(或实际精确)到达时间。
大光圈可能导致具有较大像素的可能昂贵的大型传感器。例如,诸如来自SonyTM的42百万像素SLR的现代高分辨率相机可以适应具有大光圈的超低光捕获,但是可以使用3×3微米像素,其可能涉及数千美元的光学器件和传感器。CMOS传感器技术取得了巨大进步,这可以从可用消费者价格得到极其强大的光学器件得到证明。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统402可以以新颖的方式采用最新一代CMOS传感器,以创建具有最高速度、分辨率和灵敏度的机器视觉系统。例如,发射和接收(Tx-Rx)系统402可以提供三维度量和超快三维扫描系统(例如,LIDAR三角测量和混合LIDAR-三角测量)。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统402可以利用具有1.5或1微米像素的低成本移动相机像素技术来提供可以小10到100倍且更便宜的相机传感器。在各种实施例的一些中,发射和接收(Tx-Rx)系统402可以将精细间距像素定位在战略位置。在一些实施例中,发射和接收(Tx-Rx)系统402可以控制各个传感器的视场以提供大光圈。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统402可以使用多个廉价传感器和可大规模生产的光学器件,同时改善视场、焦距和景深。例如,发射和接收(Tx-Rx)系统402不是使用可包括成本超过1,000美元的传感器的一个大型聚集类型光学器件(例如,来自SonyTM的具有42.4M像素传感器的DSLR Alpha a7R II),而是可以使用低成本移动电话传感器(例如,5美元的衍射限制的1000万像素摄像头)或移动电话传感器阵列。在各种实施例的一些中,发射和接收(Tx-Rx)系统402可以包括这种传感器的阵列,其中传感器具有如本文所解释的略微修改的规范。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统402可以以低于100美元的价格检测100兆像素合成图像。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统402可以包括立体声或N个相机多视野布置。在各种实施例的一些中,发射和接收(Tx-Rx)系统402可以利用重叠区域来实现额外的三维(例如,Z范围)分辨率。在一些实施例中,发射和接收(Tx-Rx)系统402可以基准地锚定观察(例如,对象表面上的每个三维体素)和观察者(例如,相机)。例如,当由针刺闪光扫描激光器照射时,发射和接收(Tx-Rx)系统402可以利用视场中的每个像素作为“绝对基础事实”。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统402可以将观察者或观察者中的一个或多个锚定在三维空间中并且以时间上的纳秒精度锚定观察者或观察者中的一个或多个。
传感系统的说明性电路
在各种实施例中的一个或多个中,接收系统412的传感器414的每个像素可包括一个或多个光电二极管(PD)。例如,每个像素可以包括一个或多个钉扎光电二极管(PDD)。在各种实施例的一些中,接收系统412可以包括一个或多个传输门晶体管(TG)(例如,接收系统412可以包括用于每个光电二极管的传输门晶体管)。例如,可以响应于与光电二极管相关联的传输门晶体管从传输栅极使能线接收的传输信号而选择性地启用像素中的光电二极管。在一些实施例中,传输门晶体管可以向一行像素提供高(例如,启用)传输信号。该行像素的光电二极管可以被配置和布置成响应于高(例如,启用)传输信号而被设置为“喷射”光电子(例如,设置为源发光电流的瞬时尖峰),其触发运算放大器(例如,特殊配置的晶体管电路)“抖动”属于光电二极管的特定像素的列感测线。
例如,运算放大器逻辑或像素级晶体管逻辑中的一个或多个可具有阈值函数。在各种实施例的一些中,除非光电流超过瞬时峰值,否则逻辑可以防止发生抖动。例如,由弱上拉复位晶体管RST提供的弱上拉可以在没有光电流的情况下将传输门晶体管(例如,光电二极管输出)的输出保持为高,直到某个峰值瞬时光电子供应足够强(并且上拉电阻值足够大/足够弱)以将提供给运算放大器的电压降低足够长以提高要触发的抖动的时间(例如,运算放大器瞬间切换以连接VDD到列触发检测器,例如列感测线)。下面进一步详细说明这种电路功能的示例。
在各种实施例中的一个或多个中,传感器414可以采用瞬时异步二维行和列功能。在各种实施例的一些中,“抖动”信号可以被提供给对应于像素的行感测线和列感测线。例如,接收系统412可以包括在每个列和行处的快速检测逻辑(例如,X值(例如,方位角,β)和Y值(例如,epsilon))。在一些实施例中,接收系统412可以以最小等待时间在每纳秒确定每个体素,其速率高达每秒10亿XY对。
在各种实施例中的一个或多个中,接收系统412可以包括一个或多个双功能传感器,其提供异步峰值流检测和行时间曝光集成相机功能。在各种实施例的一些中,双功能传感器可以通过照明检测和/或对数旁路提供瞬时位置,其具有由四晶体管钉扎的光电二极管像素提供的更长的积分功能。例如,运算放大器可以暂时偏转(例如,重新路由)由强烈且瞬时(或实际上瞬时)(例如,时间上和空间上急剧的)光斑转变引起的冲击光电子,并且接收系统412可以保留四晶体管钉扎的光电二极管,以继续将亚阈值光电流流入浮动栅极,以保持同步卷帘或全局快门相机功能。
在各种实施例中的一个或多个中,接收系统412可以可选地包括NIR峰值检测电路和深埋在“较浅”RGB相机电路下方的感测线(例如,使用较低的子表面金属线,或者,在背光照明的情况下,较粗糙的表面结构)。
在各种实施例中的一个或多个中,接收系统412可以响应于检测到从三维对象反射的激光,提供与像素产生的瞬时光电流的自然对数成比例的像素特定输出。例如,接收系统412的光电二极管可以产生可以由以下关系表示的光电流:其中“IPh”表示光电二极管的光电流,“VPh”表示光电二极管两端的电压,“VT”表示热电压。在各种实施例的一些中,接收系统412的像素电路可以提供驱动列感测线的输出。例如,像素电路的输出可以与瞬时光电二极管电流IPh的自然对数成比例。
在各种实施例中的一个或多个中,接收系统412可以以多种角色实现4路接收器传感器系统。例如,接收系统412可以以传统的四晶体管PPD像素角色实现4路接收器传感器系统,在较长的曝光时段上积分光电流。在各种实施例的一些中,接收系统412可以以替代操作模式实现4路接收器传感器系统,以立即以具有最小延迟(例如,纳秒)将光子脉冲朝向给定像素的相邻列感测线中继。
图24示出了示例性传感器部分2400,其包括示例性的四晶体管钉扎光电二极管(PDD)像素2402。传感器部分2400可以是接收系统的传感器的传感器部分。例如,接收器可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,像素2402可以采用逻辑2404,其提供行选择或行控制中的一个或多个。在各种实施例的一些中,像素2402可以包括列感测线2406,像素2402在该列感测线2406上输出数据(例如,输出到列解码器或模数转换器)。
在各种实施例中的一个或多个中,像素2402可以包括传输门2408。在一些实施例中,传输门2408可以将像素2402的钉扎光电二极管2410连接到像素2402的浮动扩散阱2412。在各种实施例的一些中,PPD 2410可以响应于捕获光子而向传输门2408提供电荷。在实施例的一些中,传输门2408可以向浮动扩散阱2412提供电荷。在各种实施例中的一个或多个中,浮动扩散阱2412可以保持电荷。在各种实施例的一些中,当光电子通过传输门2408到达时,电压可能下降。例如,电压可以相对于先前接收的光子通量成反比地下降。
在各种实施例中的一个或多个中,包含或承载像素2402的像素行可包括复位电路2414。在各种实施例的一些中,复位电路2414可以响应于复位电路2414通过复位线2416接收的一个或多个脉冲将浮动扩散阱2412复位到VDD。例如,响应于一个或多个脉冲,复位电路2414可以在曝光之前复位整行像素。在各种实施例中的一个或多个中,传输门2408可以通过传输门使能线2418接收一个或多个信号。在各种实施例的一些中,响应于传输门2408在传输门使能线2418上接收一个或多个信号,可以启用像素积分(integration)。
在各种实施例中的一个或多个中,像素2402可以包括读使能电路2420。在各种实施例的一些中,读取使能电路2420可以在像素2402的列感测线2406上启用像素读取(例如,曝光后的降低的电压)。在各种实施例中的一个或多个中,读使能电路2420可以通过读使能线2422接收一个或多个信号。例如,读使能电路2420可以响应于通过读使能线2422接收一个或多个信号(例如,连接到列解码器或模数转换器)而启用像素读取。在一些实施例中,包含像素2402的像素行可包括读使能电路2420。在各种实施例的一些中,读使能电路2420可以响应于在读取使能线2422上接收一个或多个信号,为像素行的每个像素提供像素读取使能。例如,读使能电路2420可通过对应于行中的每一像素的相应列感测线(例如,连接到相应列解码器或模数转换器)来使得对于该行中每一像素的像素读取。
图25示出了示例性传感器部分2500,其包括示例性双晶体管光电二极管像素2502。传感器部分2500可以是接收系统的传感器的传感器部分。例如,接收器可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,像素2502可以采用逻辑2504,其提供行选择或行控制中的一个或多个。在各种实施例的一些中,像素2502可以包括列感测线2506,像素2502在列感测线2506上输出数据(例如,输出到列解码器或模数转换器)。
在各种实施例中的一个或多个中,像素2502可以包括传输门2508。在各种实施例的一些中,传输门2508可以将像素2502的钉扎光电二极管2510连接到像素2502的浮动扩散门2512。在各种实施例的一些中,与图24的复位电路2414相反,像素2502可以包括弱上拉电阻器(R)。在一些实施例中,当没有检测到光电子脉冲时,弱上拉电阻器可以将浮动扩散门2512保持上拉至VDD。替代地,可以设置第三复位晶体管以用作可以由外部复位控制线控制的弱上拉。在各种实施例中的一个或多个中,传输门2508可以通过传输门使能线2514接收一个或多个信号。在各种实施例的一些中,响应于传输门2508在传输门使能线2514上接收一个或多个信号,可以启用像素或行激活(例如,光感测)。
例如,在时刻t0,光子可以冲入像素光电二极管2510。光电二极管产生的电子的脉冲可以冲过传输门2508(例如,在t1处)。在t2处,列感测线2506可以被拉低(例如,峰值电子通量电流可以从光电二极管2510流过并且通过传输门2508并且可以比由上拉电阻器提供的弱上拉更强)以产生信号。在t3处,列感测电路2516可以放大信号。在各种实施例的一些中,每列可以具有对应的列感测电路(例如,对于列感测线2506到列感测线N,其连接到第N列感测电路2518)。基于该信号,接收系统可以立即(或实际上立即)知道光子脉冲发生在哪一列。在各种实施例中的一个或多个中,接收系统可具有低信号传播滞后(例如,纳秒级)。在各种实施例的一些中,接收系统可具有小像素结构、电容和阻抗。在一些实施例中,列感测线2506可具有其自己的放大器(例如,列感测电路2516)。
在各种实施例中的一个或多个中,接收系统可以用列号对信号进行编码。在各种实施例的一些中,接收系统可以将各列的信号组合成串行总线。在一些实施例中,接收系统可以实现感测线逻辑以用列号对信号进行编码。附加地或替代地,接收系统可以实现感测线逻辑以将用于各种列的信号组合到串行总线中。
在各种实施例中的一个或多个中,接收系统可以为每个检测到的扫描光束反射提供信号。例如,接收系统可以实现1GHz时钟以提供异步体素配准(例如,每秒高达10亿个体素)。
图26示出了采用示例性波前颜色分离的示例性闪光照明2600。示例性发射和接收(Tx-Rx)系统可以实现闪光照明2600。例如,发射和接收(Tx-Rx)系统可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统的发射系统可以在扫描方向2602上发射闪光照明2600。在各种实施例的一些中,闪光照明2600可以包括“PlainBow”闪光磷光体照射波前颜色分离,其具有短的(例如,UV或蓝色)波长2604前导和长的(例如,红色或NIR)波长拖尾2606。
图27示出了示例性级联触发像素系统2700,其采用示例性单独的感测线来顺序地捕获各种示例性的颜色分离和时间分离的分量。示例性接收系统的示例性传感器可包括级联触发像素系统2700。例如,接收系统可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,级联触发像素系统的单独感测线可以顺序地捕获图26的闪光照明2600的一个或多个颜色分离和时间分离的分量。
在各种实施例中的一个或多个中,级联触发像素系统2700可包括连接到第一光电二极管2704的第一传输门2702、连接到第二光电二极管2708的第二传输门2706、连接到第三光电二极管2712的第三传输门2710和连接到第四光电二极管2716的第四传输门2714。在各种实施例的一些中,在时刻t0,第一传输门2702可以在传输门使能线2718处接收一个或多个信号。在一些实施例中,响应于在传输门使能线2718上接收一个或多个信号和第一光电二极管2704捕获光斑,第一传输门2702可以在第一传输门输出线2720上传递来自第一光电二极管2704的第一信号。第一传输门输出线2720可以在t1(例如,t1可以等于t01)处将第一信号传递到第二传输门2706并且传递到一个或多个行或列感测线。响应于接收第一信号且第二光电二极管2708捕获光斑,第二传输门2706可以在第二传输门输出线2722上传递来自第二光电二极管2708的第二信号。第二传输门输出线2722可以在t2(例如,t2可以等于t12)将第二信号传递到第三传输门2710并传递到一个或多个行或列传感线。响应于接收第二信号并且第四光电二极管2712捕获光斑,第三传输门2710可以在第三传输门输出线2724上传递来自第三光电二极管2712的第三信号。第三传输门输出线2724可以在t3(例如,t3可以等于t23)处将第三信号传递到第四传输门2714并且传递到一个或多个行或列感测线。响应于接收第三信号并且第四光电二极管2712捕获光斑,第四传输门2714可以在第四传输栅极输出线2726上传递来自第四光电二极管2716的第四信号。第四传输栅极输出线2726可以在t4(例如,t4可以等于t34)处将第四信号传递到随后的传输门(未示出)并且传递到一个或多个行或列感测线。
图28示出了示例性闪光触发的四晶体管光电二极管像素2800(例如,钉扎光电二极管像素)。示例性接收系统的示例性传感器可以包括闪光触发的四晶体管光电二极管像素2800。例如,接收系统可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,闪光触发的四晶体管光电二极管像素2800可以采用逻辑2802,其提供行选择或行控制中的一个或多个。在各种实施例的一些中,像素2800可以包括列感测线2804,像素2800在列感测线2804上输出数据(例如,输出到列解码器或模数转换器)。
在各种实施例中的一个或多个中,像素2800可以包括传输门2806,其将电流从光电二极管2808传递到像素2800的浮动扩散阱2810。在各种实施例的一些中,包含或承载像素2800的像素行可以具有复位电路2812,其通过复位线2814接收一个或多个信号。在一些实施例中,传输门2806可以响应于在传输门使能线2816上接收一个或多个信号而启用。在各种实施例的一些中,像素2800可以包括复位使能电路2818,其响应于在读取使能线2820上接收一个或多个信号而使得能够在列感测线2804上读取像素。
在各种实施例中的一个或多个中,像素2800采用逻辑2802的一行或多行来顺序地捕获各种颜色分离和时间分离的分量。在各种实施例的一些中,相同的一条或多条线可以提供关于图26的闪光照明的一个或多个颜色分离和时间分离的分量的一个或多个捕获的快速顺序像素读出。
传感系统的其他说明性方面
如图29所示,示例性发射和接收(Tx-Rx)系统2900可以采用示例性LIDAR三角测量(例如,如上所述)。例如,发射和接收(Tx-Rx)系统2900可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统2900可以包括立体声三角测量LIDAR接收器2902和2904对。在各种实施例的一些中,发射和接收(Tx-Rx)系统2900可以包括扫描激光发射器2906。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统2900可以将两个接收器2902和2904从扫描激光发射器2906偏移(例如,沿着发射和接收(Tx-Rx)系统2900的基线))。在各种实施例的一些中,扫描激光发射器2906可以被布置为扫描发射和接收(Tx-Rx)系统2900的视场。在一些实施例中,扫描激光发射器2906可以被布置成在连续扫描中扫描扫描光束2908。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统2900可以将接收器2902和2904布置成具有彼此平行的相应中心光轴2910和2912。在各种实施例的一些中,中心光轴2910和2912可以垂直于发射和接收(Tx-Rx)系统2900的基线。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统2900可以是智能混合三角测量LIDAR系统。在各种实施例的一些中,智能混合三角测量LIDAR系统可以优化环境照明抑制。例如,智能混合三角测量LIDAR系统可以采用同步的时间选择性触发像素激活。在各种实施例中的一个或多个中,扫描器可以将扫描线的图像投影到视场中的表面上。在各种实施例的一些中,接收器2902和2904以及扫描器2906可以布置成使图像与接收器2902和2904的传感器中的行对齐。例如,接收器2902和2904以及扫描器2906可以以对极配置布置。
在各种实施例中的一个或多个中,扫描激光发射器2906可包括光源和扫描镜。在各种实施例的一些中,当扫描镜扫过视场时,光源可以发射短准直光子脉冲。在一些实施例中,接收器2902和2904以及扫描器2906可以被布置成使得这些脉冲的反射轨迹沿着每个传感器中的连续行追踪。在各种实施例中的一个或多个中,由扫描器发射的准直光子脉冲可包括例如“示踪子弹”(例如,如美国专利No.8,282,222、8,430,512、8,696,141和8,711,370以及美国专利申请No.14 823,668中所述,这些专利或专利申请都转让给PhotonJet)。在各种实施例中的一个或多个中,扫描激光发射器可以投射飞行时间示踪子弹。在各种实施例的一些中,立体声成对三角测量飞行时间接收器可以捕获飞行时间示踪子弹的反射。在一些实施例中,投射光可以在视场中的表面上反射。反射的一部分可能会返回系统。接收器可以捕获该部分的反射。
在各种实施例中的一个或多个中,智能混合三角测量LIDAR系统可以将三角测量与飞行时间测距相结合。在各种实施例的一些中,发射器2906可以沿着已知的轨迹轴(例如,具有角坐标α和ε的射线方向)以速度c(大约3×108m/sec)发射示踪子弹。在一些实施例中,发射器2906可以通过将示踪子弹反射离开扫描镜而沿着直线发射示踪子弹。
在各种实施例中的一个或多个中,响应于示踪子弹撞击距离Z(例如,第一距离2914,第二距离2918或第三距离2916)处的表面,示踪子弹的一部分光子可以如上所述,反射回三维感测系统900。在各种实施例的一些中,接收器2902和2904的光圈可以捕获这部分光子,如上所述。在一些实施例中,如上所述,接收器2902和2904可以在距离D处彼此偏移。在各种实施例中的一个或多个中,扫描源发射器2906可以位于基线的中心。在各种实施例的一些中,每个接收器可以位于距扫描源发射器2906的距离D/2处。
在接收器2902和2904偏离发射器2906的情况下,光子可以以三角形行进以到达接收器2902和2904。随着距离Z增加,这些三角形可能变得更加尖锐。在各种实施例中的一个或多个中,随着Z增加,返回光的主射线可以朝向消失点旋转。在各种实施例的一些中,当返回光的主射线朝向消失点旋转时,角度β可以增大。在一些实施例中,角度β的增大可使出射光束2908的方向和入射的反射光的主射线方向会聚而朝向平行(例如,随着Z向无穷大增大,α≈β)。在各种实施例中的一个或多个中,传感器中的一个或多个列可以捕获每个入射射线(例如,具有入射角β的每个射线)。例如,每个入射射线可以在交叉点处被一个或多个列捕获,该交叉点可以沿着行朝向传感器的中心(例如,沿着对极轴线)滑动。
在各种实施例中的一个或多个中,传感器可以识别出射射线沿着出射射线方向a行进的每个距离Z的唯一像素位置。在各种实施例的一些中,入射射线角度β可以是Z和α的函数。在一些实施例中,发射和接收(Tx-Rx)系统2900可以采用反射光子的飞行时间。例如,反射光子到达传感器位置的时间由tToF给出(例如,在光速下的往返时间,其中tToF=2*Z/c)。
在各种实施例中的一个或多个中,智能三维三角测量LIDAR系统可以知道光子返回的位置(例如,传感器中的预期位置)。在各种实施例的一些中,智能三维三角测量LIDAR系统可以知道何时期望光子返回。在一些实施例中,传感器中的预期位置可以是时间的函数。例如,预期位置可以是示踪子弹的飞行时间(其可以是Z的函数)的函数。在各种实施例中的一个或多个中,基于该固定的物理几何关系,智能LIDAR系统可以预先关联返回光子的瞬时时刻和位置。
在各种实施例中的一个或多个中,系统2900可以知道,对于每个可能的距离Z,在光束的路径中可能存在反射表面或障碍物。在各种实施例中的一个或多个中,对于每个这样的可能Z值,系统2900可以精确地(或实际上精确地)知道光子何时应该返回传感器中何地。实际上,每个示踪子弹可以反映Z的一个值并且在给定时间在传感器中的一个位置返回。因为系统2900可以预测每种可能性并且因为在传感器中的位置处的可能光子着陆可以在独特时刻(例如,在给定时间的一个可能位置)发生,所以系统2900可以随着时间打开“着陆”像素。在各种实施例中的一个或多个中,系统2900可以沿着传感器中的行非常快速地(例如,以纳秒为单位)滑动“着陆像素”的位置。
在各种实施例中的一个或多个中,系统2900可以在给定时间激活行的非常小的子部分(例如,一个像素或几个像素)。在各种实施例的一些中,系统2900可沿着行滑动激活像素的子部分窗(例如,在从最大视差dmax的点到最小视差的点dmin的微秒内)。
在各种实施例中的一个或多个中,发射器2906可以包括像素顺序发射器。在各种实施例的一些中,像素顺序发射器可以向目标(例如,Z英尺远)发射短的(100ps)、窄准直(<500微米)“喷射球”的光子。光子可以溅到目标上(例如,在发射后Z纳秒)。如上所述,一些光子可以在接收器2902和2904之一的方向上反射回来。在另一个Z ns之后,反射的光子可以进入接收器2902和2904的光圈。接收器2902和2904可以将反射的光子准直到可以与传感器表面上的像素的尺寸(例如,微米)近似匹配的点。
在各种实施例中的一个或多个中,当接收器2902和2904同时检测到光子子弹的反射光子时,发射和接收(Tx-Rx)系统2900可以将这种立体声检测(例如,如箭头2920所示)中的这些检测相互关联,确定接收器2902中的一个或多个像素与接收器2904中的一个或多个像素之间的对应关系。以这种方式,当发射和接收(Tx-Rx)系统2900使用像素顺序(例如,抖动像素,SPAD等)相机时,可以即时且明确地提供像素之间的对应关系。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统2900可能已经预期到反射的光子在特定时刻到达该点。在各种实施例的一些中,发射和接收(Tx-Rx)系统2900可以打开超快快门,其可以打开该点处的特定像素(例如,恰好在反射光子到达特定像素之前)。例如,发射和接收(Tx-Rx)系统2900可以沿着该行在滑动位置打开滑动激活的像素窗。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统2900可以立即(或实际上立即)将检测电路设置为精确(或实际上精确)的灵敏度,以正向检测到达特定像素的反射光子的量。在各种实施例的一些中,接收器2902和2904可以包括可以激活列感测逻辑的快速门控逻辑。在一些实施例中,该列感测逻辑在短暂的时间段内激活感测解码器(例如,在反射的示踪子弹激活的特定像素中产生的光电流尖峰到达的时刻)。在一些实施例中,发射和接收(Tx-Rx)系统2900可以在入射电子到达时同步地匹配入射电子。在一些实施例中,接收器2902和2904可以将对应信号放大到足以到达控制系统的强度。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统2900可以考虑哪个像素应当在何时捕获反射光子,如上所述。在各种实施例的一些中,发射和接收(Tx-Rx)系统2900可以进行小的调整(例如,到几纳秒),以例如考虑已知的系统等待时间(例如,光子到达和增强信号到达控制系统之间的滞后)。在一些实施例中,发射和接收(Tx-Rx)系统2900可以利用预期的飞行时间延迟和所确认的视差d,立即(或实际上立即)计算(例如,通过查找预先计算的三角测量矩阵)位置X、Y(反射光子激活的像素的列和行地址)的精确(或实际精确)距离Z。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统2900可以采用精确的空间-时间单像素限制。在各种实施例的一些中,发射和接收(Tx-Rx)系统2900可以恰好在反射的示踪子弹的光子到达像素之前激活像素(例如,在等于2*Z/c的飞行时间之后)。在一些实施例中,发射和接收(Tx-Rx)系统2900可以通过沿着活动列解码器支持的特定行顺序地激活像素来这样做。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统2900可以关闭(shutter out)其他光。在各种实施例的一些中,发射和接收(Tx-Rx)系统2900可以以预期方式顺序且非常短暂地激活沿着该行的像素,如上所述。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统2900可以预先选择(例如,在空间和时间上)传感器中潜在接收像素。例如,发射和接收(Tx-Rx)系统2900可以采用具有如上所述的滑动像素快门的对极布置。在各种实施例的一些中,发射和接收(Tx-Rx)系统2900可以精确地检测返回光子。在各种实施例的一些中,发射和接收(Tx-Rx)系统2900可以以预期的方式将反射光子的到达时刻和到达位置限制为如单个纳秒和单个像素那么小。
以下示例说明了上述内容。以下示例使用取整数字以方便、简单和清晰。如箭头2920所示,接收器2902和2904中的同时激活的像素可以具有相对于彼此的视差(例如,dmim、d(t)和dmax)。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统2900可以在在1纳秒中使用激光束来扫描等于系统视场(例如,10度视场)中的单个像素的区域。传感器可以在每行中包括10,000个像素。每个像素可以捕获视场的1/1000度。发射和接收(Tx-Rx)系统2900可以在10微秒内扫描视场的每一行。
例如,发射和接收(Tx-Rx)系统2900可以在ε和α的方向上“发射”强烈的100微微秒示踪子弹。不久之后,发射和接收(Tx-Rx)系统2900可以激活每个接收器2902和2904中的一个像素以持续大约1纳秒(例如,一个时钟)。发射和接收(Tx-Rx)系统2900可以基于像素的位置来选择像素。例如,发射和接收(Tx-Rx)系统2900可以选择此像素,因为该像素位置可以是最大视差dmax的位置(例如,最大立体差角β-α)并且可以对应于最小范围Zmin。发射和接收(Tx-Rx)系统2900可以再次关闭像素并且可以激活该像素的像素邻居(例如,可以激活下一列中的像素)大约一纳秒。发射和接收(Tx-Rx)系统2900可以顺序地前进到每个后续像素,直到在dmin达到最大检测范围位置。
如上所述,最大视差dmax可能在最小范围Zmin处发生,并且最小视差dmin可能在最大范围Zmax处发生。如上所述,光行进的距离越远,视差越小。在某时,达到最大可观察范围Zmax。响应于达到最大可观察范围Zmax,发射和接收(Tx-Rx)系统2900可以停止查看该行中的下一个像素。例如,如果在该范围内没有对象(例如,没有反射表面)或者如果表面反射了不充足的示踪子弹的光的一部分,则发射和接收(Tx-Rx)系统2900可能无法记录事件。响应于发射和接收(Tx-Rx)系统2900未能记录事件,系统可能“超时”。响应于发射和接收(Tx-Rx)系统2900超时(或接近超时),发射和接收(Tx-Rx)系统2900可以开射后续示踪子弹(例如,在最大范围时间1微秒之后、在500英尺范围之后)。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统2900可以采用快速动态扫描模式(例如,发射和接收(Tx-Rx)系统2900可以提供快速动态体素检测率的模式)。在动态扫描模式中,系统可以响应于记录给定子弹的反射而发送后续子弹。与向目标行进或来自目标的光子子弹中的能量相比(其中目标与发射和接收(Tx-Rx)系统2900间隔一个另外的单位距离,例如,附近的对象自动接收密集的低能示踪子弹),对于短程检测,平方反比定律可以指示发射和接收(Tx-Rx)系统2900可能在每个光子子弹中需要平方地减少的能量,同时仍然实现光子到达传感器的充足性。短距离允许快速发射低能量示踪子弹而不会引起传感器的模糊。
在较大距离处(例如,当检测被限制到相对窄的范围时,例如,在200’距离处的20’感测范围),系统可以更快地超时并且可以例如在达到子弹发射之间的时间段(该时间段可以对应于同时到达的反射可能引起模糊的时间间隔,例如,40纳秒)时发射随后的示踪子弹。例如,在20英尺的检测范围设置和200’的距离处,发射和接收(Tx-Rx)系统2900可以达到高达25M体素/秒的速率。
发射和接收(Tx-Rx)系统2900可以动态地放大信号。因为较近的对象可以比其他对象更强烈地反射(例如,根据平方反比定律),所以反射光子的入射信号可以更强并且更容易检测。因此,在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统2900因为可以为与近距离反射相关联的像素(例如,在那些像素和连接到那些像素的电路中)提供较少的信号放大。在各种实施例的一些中,发射和接收(Tx-Rx)系统2900可以包括内置于列(或行)感测线的放大电路。在一些实施例中,发射和接收(Tx-Rx)系统2900可以把连接到被设置为接收邻近反射的像素(例如,当前视差值d接近dmax的像素)的列感测线的放大设置为暂时以减小的倍数放大。在各种实施例的一些中,发射和接收(Tx-Rx)系统2900可以把与接收较长范围信号(例如,Z更接近Zmax)的像素(例如,当前视差接近dmin的位置的像素)相关联的列感测线的放大设置为临时以增大的倍数放大。在一些实施例中,发射和接收(Tx-Rx)系统2900可以实时调整像素电路本身(例如,通过调整像素逻辑中的可调增益电路或光电二极管偏置,如图38所示)。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统2900可以响应于检测到表面并建立近似范围,调整所有三个设置:光子子弹能量、重复频率、以及作为传感器灵敏度。在各种实施例的一些中,发射和接收(Tx-Rx)系统2900可以针对每种情况自动设置最佳设置。
表1
范围(R) 100’ 200’ 300’
d(1/R) 300 150 100
光子(1/R2) 900 300 100
tToF(以ns为单位) 200 400 600
表2
范围 10’ 20’ 40’ 100’
≌1/R2 1.00 .250 .0625 .010
光子 1000 250 62 10
增益 1 4 16 100
净信号 1.0 1.0 1.0 1.0
d(≈1/R) 100 50 25 10
tToF(以ns为单位) 20 40 80 200
在各种实施例中的一个或多个中,“抽动像素”可以立即(或实际上立即)报告反射示踪子弹光子的入射脉冲(例如,经由连接到像素中的光电二极管的高灵敏度感测放大器或源跟随器中的一个或多个)。在各种实施例的一些中,像素可以被布置成使得放大的脉冲经由列感测线行进到门控感测放大器。在一些实施例中,该放大器可以服务一列。发射和接收(Tx-Rx)系统2900可以当光子弹的反射到来时接通该放大器非常短暂的片刻(例如,在时间t=TToF=2*Z/c),例如,精确(或实际上精确)的片刻(一个纳秒)。在一些实施例中,系统可以在一英尺的1/2的精度内确定Z。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统2900可以在例如每个连续位置20纳秒的情况下提供近距离表面(例如,10英尺内的表面)的顺序体素扫描。在各种实施例的一些中,发射和接收(Tx-Rx)系统2900可以每秒扫描例如多达50百万体素(50MVps)。
图30示出了示例性LIDAR三角测量发射和接收(Tx-Rx)系统3000。例如,发射和接收(Tx-Rx)系统3000可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3000可以包括三角测量发射器-接收器对3002和3004。在各种实施例的一些中,发射和接收(Tx-Rx)系统3000可以包括在三角形ABC的基点A处的光子发射器3002。在一些实施例中,发射和接收(Tx-Rx)系统3000可以包括在偏移基点距离D处的另一个基点B处的接收器3004(例如,AB=D)。发射器3002可以发射扫描光束3012,其从表面3006反射作为反射光3014朝向接收器3004(例如,接收器3004的传感器的像素3016可以捕获反射光3014,像素3016处于列位置或列号与角度β成比例的点i处)。
在各种实施例中的一个或多个中,接收器3004可包括传感器3018。在各种实施例的一些中,传感器3018可以在与基部AB平行且相距距离f的平面中,其中f是在接收器的光圈处的镜头或聚焦系统3010的有效焦距。
在各种实施例中的一个或多个中,发射器3002可以在方向α上发射高度准直的光束。(虽然图30以二维示出了系统,示出了三角形ABC所在的平面,但是对于每个仰角ε存在另一个平面)。在各种实施例的一些中,发射和接收(Tx-Rx)系统3000可以是对极对准系统。在一些实施例中,发射器3002的快速扫描轴运动可以快速连续地扫描一系列点C。在一些实施例中,发射和接收(Tx-Rx)系统3000可以将这些点的反射成像为在传感器3018中沿着同一行的一系列成像反射点C。(由于诸如镜子的非理想运动和接收光学器件的失真等因素,可能会出现小的偏差)。
在各种实施例中的一个或多个中,传感器中的行可以由具有高度h=f和底角C’的三角形形成(例如,三角形的形状可以与三角形ABC相似)。在各种实施例的一些中,底边长度是d,其可以按比例缩小。在一些实施例中,底角可以是α和β(例如,与三角形ABC的底角相同)。在一些实施例中,发射和接收(Tx-Rx)系统3000可以基于相似三角形的定律确定d/f=D/Z。例如,发射和接收(Tx-Rx)系统3000可以知道,基于相似三角形的定律,如果Z是300英尺,D是3英尺,并且f是10毫米,那么d是10毫米1/100(100微米)。在具有1微米像素的2k传感器中,以像素测量的d可以是100个像素。在各种实施例的一些中,发射和接收(Tx-Rx)系统3000可确定行进大约600ns(例如,从发射机3002到目标的300ns,再返回到接收机3004的300ns)到达位置C’处的传感器的光子。对于更近的目标(例如,在200英尺处),光子可以400ns达到并且具有150微米(例如,150个像素)的显着更大的视差(d)。对于100英尺,值可以是200ns、300微米和300个像素(例如,如表1所示)。
在各种实施例中的一个或多个中,在光子到达的位置(例如,哪个像素,多少视差等)和时间之间可能存在关系。在各种实施例的一些中,光子行进得越长,光子行进的时间段越长,并且如上所述,视差越小。另外,根据平方反比定律,信号可以与飞行时间成比例地衰减(例如,越长的距离导致返回到光圈3010的光子越少)。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3000可以将这种类型的超快像素快门控制应用于各个像素以“及时”打开单个像素以捕获信号。在各种实施例的一些中,发射和接收(Tx-Rx)系统3000可以将环境光“泄漏”减少到绝对(或实际上绝对)最小值。例如,发射和接收(Tx-Rx)系统3000可以打开正确的像素(例如,选择性地启用列和行)持续少至10纳秒,从而捕获环境光的一部分的百万分之一(10-8),甚至在滤波(例如,使用布拉格型窄带通滤波器)之前。
在各种实施例中的一个或多个中,示例性系统可能不需要特殊的窄带通滤波器。在各种实施例的一些中,发射和接收(Tx-Rx)系统3000的测距功能可以添加到普通相机中。例如,可以通过添加快速列选通功能和异步二进制检测模式(例如,如本文所述的“抽动像素”电路)来修改具有四晶体管钉扎光电二极管的卷帘快门相机。在一些实施例中,抽动像素可以以最小(例如,纳秒)等待时间异步地发射光电二极管冲击电流到列感测线。在各种实施例的一些中,对于三维测距,现有颜色像素可以被配置为感测可见颜色编码(RG和B)的示踪子弹。在一些实施例中,像素可以被配置为顺序地激活列解码器电路感测线以记录所接收的脉冲。替代地,在一些实施例中,在二维模式中,可以支持全帧时间积分快门曝光(例如,每个连续的像素行被并行解码)。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3000可以采用颜色代码来增加对比度以增强立体声解码。在各种实施例的一些中,发射和接收(Tx-Rx)系统3000可以采用快速颜色切换(例如,“变色龙模式”)以防止在飞行时间三维模式中的模糊,从而支持例如三倍高的颜色体素检测率(例如,图40)。
在各种实施例中的一个或多个中,系统3000可以选择性地且瞬时地增加每个像素的灵敏度。例如,发射和接收(Tx-Rx)系统3000可以增加给定像素连接到的解码器电路的增益。作为另一示例,发射和接收(Tx-Rx)系统3000可以增加发射和接收(Tx-Rx)系统3000确定将要接收最大衰减的光(例如,与一个或多个其他像素即将接收的光形成对比)的位置中的像素的增益。在各种实施例的一些中,发射和接收(Tx-Rx)系统可以确定接收具有最低立体视差的射线的像素(例如,与其他像素接收的射线的立体视差形成对比)接收到已经行进最远的光子。在一些实施例中,发射和接收(Tx-Rx)系统3000可以响应于该确定放大多数来自那些像素的信号,以补偿由于距离引起的衰减。
在各种实施例中的一个或多个中,传感器可以具有额外的敏感光电二极管(例如,雪崩光电二极管(APD)或单光子雪崩二极管(SPAD)中的一个或多个)。在各种实施例的一些中,这些二极管可以是反向偏置的。在一些实施例中,当由光子触发时,这些二极管可能雪崩,产生强电流,然后可以被淬熄。在各种实施例的一些中,发射和接收(Tx-Rx)系统3000可以根据所选择的灵敏度和增益来实时管理各个像素的偏置。在一些实施例中,发射和接收(Tx-Rx)系统3000可以在小于一微秒的时间段内逐像素地改变该偏置。
在各种实施例中的一个或多个中,像素可以在临界偏压之下开始(例如,将偏压保持在APD线性模式之下)。在第一示踪子弹到达之前,发射和接收(Tx-Rx)系统3000可以将偏压升高到APD线性模式(例如,接近但低于击穿电压)以检测相对接近的反射(例如,最初用于第一次要激活的像素,例如,接近当前dmax位置的像素)。在各种实施例的一些中,系统3000可以继续快速增加对于更接近dmin位置(而不是dmax位置)的像素位置的偏压,其中例如甚至更高的灵敏度可以改善范围检测。在各种实施例的一些中,发射和接收(Tx-Rx)系统3000可以暂时将偏压提升到盖革(Geiger)模式。在各种实施例的一些中,在盖革模式中(例如,光电二极管上的反向偏压设置在击穿状态以上),像素变得高度不稳定。在一些实施例中,发射和接收(Tx-Rx)系统3000可以将盖革模式中的操作限制为最小(或实际上最小)的时间间隔。例如,发射和接收(Tx-Rx)系统3000可以在盖革模式中一次放置几个像素并且持续短暂的时间段(例如,大约一百纳秒)。作为另一示例,发射和接收(Tx-Rx)系统3000可以使像素按照时间和位置的函数来偏置。在一些实施例中,发射和接收(Tx-Rx)系统3000可以利用盖革模式来最小化由暗电流引起的错误检测、增加传感器的灵敏度、增加检测范围或避免环境光的干扰中的一个或多个。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3000可以快速改变各个像素的响应度以对应于每个像素处的特定预期飞行时间。例如,发射和接收(Tx-Rx)系统3000可以改变光电二极管的偏置电压,和/或选择性地使像素能够及时地激活像素并且具有针对预期衰减的适当的灵敏度。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3000可以包括快速扫描激光束系统。在各种实施例的一些中,对于多个发射扫描方向(例如,在多个方向α上发射的示踪子弹),接收器3004中的像素可以捕获在不同时间以不同的入射方向β从各种距离到达的光子。在一些实施例中,接收器3004可以首先捕获穿过最短距离的那些光子。接收器3004接下来可以捕获穿过更远距离的光子。在各种实施例的一些中,发射和接收(Tx-Rx)系统3000可以有效地对门控信号进行测距,以仅响应在某个延迟之后返回的光。在一些实施例中,发射和接收(Tx-Rx)系统3000可以这样做以滤除在期望范围之外的响应(例如,太近或太远中的一个或多个)。例如,发射和接收(Tx-Rx)系统3000可以快速且动态地改变像素的光电二极管电路的偏置。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3000可以采用范围选择功能(例如,空间范围选择)。在各种实施例的一些中,发射和接收(Tx-Rx)系统3000可以采用用于三维跟踪的范围选择功能,其中,例如,来自特定范围(例如,范围Zmin到Zmax)内的对象的反射被被记录。
图31示出了示例性发射和接收系统(Tx-Rx)系统3100。例如,(Tx-Rx)系统3100可以与上面解释的那些中的一个或多个相同或相似。(Tx-Rx)系统3000可以包括第一和第二接收器3102和3104(图31更详细地示出第二接收器3104)和发射器3106。第二接收器3104可包括光圈3108和传感器3110。
在各种实施例中的一个或多个中,发射器3106在t0沿方向α1发射脉冲。在各种实施例的一些中,脉冲可以在时刻t1在第一点3112处反射。在一些实施例中,反射可以在时刻t1 +到达传感器3110中的第一像素3116。替代地,相同的脉冲可以在时刻t2处在第二点3118处反射,并且导致第二像素3122在时刻t2 +处捕获反射。在各种实施例的一些中,发射和接收(Tx-Rx)系统3100可以确定TToF的差是Δt=ΔZ(或ΔR)/2c。在各种实施例中的一个或多个中,在某个时刻t3,发射器3106可以在扫描方向α2上发送另一脉冲。另一脉冲可以在时刻t4在第三点3124处反射。在各种实施例的一些中,反射可以在时刻t4 +到达传感器3110中的第三像素3126。或者,相同的脉冲可以在时刻t5在第四点3128处反射,并且导致第四像素在时刻t5 +处捕获反射。在一些实施例中,发射和接收(Tx-Rx)系统3100可以确定TToF的差再次是Δt=ΔZ(或ΔR)/2c。如图31所示,通过在不同时刻在传感器3110中的这些范围内依次激活像素,发射和接收(Tx-Rx)系统可以提供ΔZ(或ΔR)的检测范围(例如,从第一和第三点3112和3124驻留的弧到另一个弧3120)。
图32示出了示例性发射和接收(Tx-Rx)系统3200,其可以是示例性三维跟踪系统。例如,发射和接收(Tx-Rx)系统3200可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,三维跟踪系统3200可以对在视场空间的立体三维子部分上(例如,如三维范围选择、三轴立体空间选择所示)进行“凹滤波(foveate)”。例如,三维跟踪系统3200可以使扫描发射器3206照射水平(Δα)和垂直(Δε)方向上的某些范围。第一和第二接收器3202和3204的立体声对可以接收照明的反射。作为另一示例,三维跟踪系统可以到达第二接收器3204中的行(AY)和列(AX)子集。作为另一示例,三维跟踪系统3204可以选择检测范围ΔZ。在各种实施例的一些中,三维跟踪系统3204可以通过顺序地激活三维跟踪系统到达的那些行内的像素的窄子带来选择检测范围。
图33示出了管理示例性像素的示例性发射和接收(Tx-Rx)系统3300。例如,发射和接收(Tx-Rx)系统3300可以与上面解释的那些中的一个或多个相同或相似。发射和接收(Tx-Rx)系统3300可以包括发射器3302和接收器3304。接收器3304可以包括通过光圈3308接收反射的传感器。在各种实施例的一些中,传感器3306可包括一行或多行像素。例如,图33示出了传感器3306中的第i行像素。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3300可以偏置和设置沿着该像素行的一定范围的相邻像素行,以在视差减小的方向上打开(例如,快门)。在各种实施例的一些中,发射和接收(Tx-Rx)系统3300可以顺序地激活具有越来越敏感的检测(例如,斜坡增益)电路的子像素。在一些实施例中,发射和接收(Tx-Rx)系统3300可以通过激活像素3310来发起顺序激活以检测在Zmin范围3314处的对象3316。在一些实施例中,发射和接收(Tx-Rx)系统3300可以在顺序激活像素3310到像素3312的像素之后终止顺序激活,以响应于到达Zmax范围3318来检测对象3320。在一些实施例中,发射和接收(Tx-Rx)系统3300可以响应于发射和接收(Tx-Rx)系统3300确定反射已经停止被检测而终止顺序激活。在一些实施例中,发射和接收(Tx-Rx)系统3300可能超时。
在一些实施例中,发射和接收(Tx-Rx)系统3300可以响应于顺序激活的终止而对下一个示踪子弹重复上述过程。例如,发射和接收(Tx-Rx)系统3300可以发射下一个示踪子弹(例如,相邻的新α,下一个扫描线位置),这可使得当上述过程重复时该下一个示踪子弹可以到达该像素行。在一些实施例中,发射和接收(Tx-Rx)系统3300可以在当发射和接收(Tx-Rx)系统3300捕获先前的示踪子弹时在可能导致下一个示踪子弹已经“在其路上”的时刻发送下一个示踪子弹(一半飞行时间行进到目标,另一半飞行时间在其返回的路上)。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3300可以在可能使得从发射和接收(Tx-Rx)系统3300的角度来看下一个示踪子弹相对于先前的示踪子弹是分开的(例如,明确可检测的)时刻发送下一个示踪子弹。
在各种实施例中的一个或多个中,在特定时刻ti,第一光子可以在从最小范围Zmin3314处的表面3316反射之后到达传感器3306中的第i行rowi。这些“先头鸟”可以是最近在t0在某个传输方向αi传输的光子。它们中的很大一部分可能以最大视差dmax返回。在各种实施例的一些中,在明显稍后的时刻(例如,稍后达到一微秒)tj(Δt=tj-ti=ΔToF=2*AZ/c,从A点到B点进而到C点的另一往返的飞行时间,如图33中的箭头所示),来自同一传输的最后的光子(在方向αi中并在相同时刻t0发射的)可以到达传感器3306中的相同rowi中的完全不同的位置。这些“落后者”可以与传输成比例地明显更少(例如,与先头鸟的比例相比)并且可以到达具有最小视差的位置(例如,明显地远离先头到达者)。在一些实施例中,到达时间、视差和光子分值可以是Z距离的等同相关度量。
在各种实施例的一些中,发射和接收(Tx-Rx)系统3300可以在一定时刻发射下一个示踪子弹,该时刻可能导致来自虚假前景对象的下一个示踪子弹的先头鸟在发射和接收(Tx-Rx)系统3300负责的先前的示踪子弹的最后落后者之后到达(例如,发射和接收(Tx-Rx)系统3300可以确定先前的示踪子弹的先头鸟的飞行时间和/或可以确定先前的示踪子弹的先头鸟的到达与先前的示踪子弹的最后落后者的到达之间的时间差,并且发射和接收(Tx-Rx)系统3300可以基于这些确定的时间段中的一个或多个延迟发送下一个示踪子弹)。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3300可以降低示踪子弹的激光功率以防止落后者。在各种实施例的一些中,发射和接收(Tx-Rx)系统3300可以对来自非常接近的前景对象(例如,虚假前景对象)的先头鸟进行视差滤波(例如,阻止)。在一些实施例中,发射和接收(Tx-Rx)系统3300可以响应于一个或多个非常接近的前景对象(例如,虚假前景对象)和前景目标对象之间的部分重叠来检测阴影(例如,丢失的体素)。例如,发射和接收(Tx-Rx)系统3300可以在锁定到前景目标对象并对其进行测距时,检测关于来自前景目标对象的反射的较低“命中”率(例如,由于射炮(flack)、雪、雨或雾)。
图34示出了示例性发射和接收(Tx-Rx)系统3400。例如,发射和接收(Tx-Rx)系统3400可以与上面解释的那些中的一个或多个相同或相似。发射和接收(Tx-Rx)系统3400可以包括发射器3402和接收器3404。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3400可以在第一像素3412处相对背景3408来检测前景对象3406。在各种实施例的一些中,发射和接收(Tx-Rx)系统3400可以“移除”背景3408。在一些实施例中,发射和接收(Tx-Rx)系统3400可以通过为扫描光束选择适度(但足够)的强度来移除背景3408。在一些实施例中,发射和接收(Tx-Rx)系统3400可以通过为发射和接收(Tx-Rx)系统3400的接收系统3404的接收灵敏度选择适当的阈值(例如,floor)来移除背景3408。在一些实施例中,发射和接收(Tx-Rx)系统3400可以通过在短暂的飞行时间间隔之后“关闭”像素以使得在该间隔之后到达的光(例如,“抽动像素”、APD或SPAD)在范围dmin之外的较小视差(例如,像素位置)处可以不触发检测器来移除背景3408。例如,从位于比阈值距离3410远的距离处的表面反射的光可以到达传感器的第二像素3420的第一方向3418中的一个或多个像素处。发射和接收(Tx-Rx)系统3400可以不激活驻留在第二像素3420的第一方向3418上的像素,或者可以忽略来自那些像素的信号。
在各种实施例中的一个或多个中,小的虚假前景对象3416可能干扰发射和接收(Tx-Rx)系统3400检测前景对象3406的能力,如图34所示。在各种实施例的一些中,发射和接收(Tx-Rx)系统3400可以忽略来自小的虚假前景对象3416的扫描光束的反射(例如,发射和接收(Tx-Rx)系统3400可以消除虚假的前景光)。在一些实施例中,发射和接收(Tx-Rx)系统3400可忽略(例如,拒绝)从比第二距离3414更近的表面反射的先头到达的光子(“闯门者”)。在一些实施例中,发射和接收(Tx-Rx)3400系统可以通过延迟像素使能“点火”直到某个最小等待时间之后来忽略来自小的虚假前景对象3416的扫描光束的反射。例如,在光束在方向αi发射之后,发射和接收(Tx-Rx)系统3400可以延迟释放(例如,偏置)像素,直到最小飞行时间间隔之后。在一些实施例中,发射和接收(Tx-Rx)系统3400可以选择最小飞行时间间隔(Rmin/c),该最小飞行时间间隔是一个方向上的行进时间的两倍以上。例如,发射和接收(Tx-Rx)系统3400可以防止激活驻留在将从第二距离3414处的任何对象接收反射的像素的第二方向3424上的像素或者可以忽略来自那些像素的信号。
在各种实施例中的一个或多个中,前景对象3416可以部分地遮挡背景,但是发射和接收(Tx-Rx)系统3400可以避免记录前景图像体素。上述三维体素滤波器可用于例如抑制由雾、雨或雪引起的虚假反射。上述三维体素滤波器可以利用这种虚假噪声体素数据来减轻使接收系统3404的传感器致盲和/或使发射和接收(Tx-Rx)系统3400的总线、逻辑或VPU(视觉处理单元)中的一个或多个过载。
图35示出了示例性发射和接收(Tx-Rx)系统3500,其扫描示例性相对清晰的天空以用于示例性射弹。例如,发射和接收(Tx-Rx)系统3500可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3500可以包括发射器3502和接收器3504。在各种实施例的一些中,发射和接收(Tx-Rx)系统3500可以Z锁定到要映射的表面上。在各种实施例的一些中,发射和接收(Tx-Rx)系统3500可以Z锁定到要以高分辨率映射或者用于对高速移动物体3506的鲁棒跟踪的表面上。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3500可以对接收系统3504的传感器3524中的像素子集进行时间门控。在各种实施例的一些中,发射和接收(Tx-Rx)系统3500可以对要对Z的有限范围3508(例如,对于500英尺的Z范围)开放的像素子集进行时间门控。在一些实施例中,发射和接收(Tx-Rx)系统3500可以选择Z范围3508,用于扫描要监视的可疑飞弹发射场地上方的天空体积(例如,在5000英尺距离处,其范围可以是总距离的10%)。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3500可以在每次扫描期间以足够的像素视差范围(例如,从对应于远射程3512的第一像素3526到对应于近射程3510的第二像素3528)和足够的飞行时间范围将传感器3524中的每个像素设置为对于给定时间段(例如,数纳秒)开放。在各种实施例的一些中,发射和接收(Tx-Rx)系统3500可以在传感器3524中的扫描光束轨迹的图像之后将检测限制在一连串以纳秒顺序关闭的活动像素。在一些实施例中,发射和接收(Tx-Rx)系统3500可以(例如,当发射和接收(Tx-Rx)系统3500激活像素时)将像素的灵敏度设置为针对所选范围的适当增益3508。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3500可以响应于第一反射光子到达像素3530来检测对象3506。在各种实施例的一些中,发射和接收(Tx-Rx)系统3500可以(例如,在检测对象3506中)精确地观察第一反射光子的视差(例如,像素移位di)和时间(例如,ToFi延迟)。在一些实施例中,发射和接收(Tx-Rx)系统3500可以立即(或实际上立即)计算精确(或实际上精确)的范围。在一些实施例中,发射和接收(Tx-Rx)系统3500可以基于检测到的位置来调整灵敏度、视差(例如,通过将被利用的像素的范围减小到从对应于第一中间距离3520的第三像素3532到对应于第二中间距离3518的第四像素3534的那些像素)或飞行时间范围中的一个或多个。例如,发射和接收(Tx-Rx)系统3500可以将灵敏度、视差或飞行时间范围中的一个或多个优化为围绕该检测到的位置的最小包络3516。在一些实施例中,发射和接收(Tx-Rx)系统3500可以将扫描光束设置为校正的功率电平,可以设置传感器的增益,可以设置视差,并且可以设置像素定时(例如,每个基于检测到的位置)。在一些实施例中,在给定重复的成功检测的情况下,发射和接收(Tx-Rx)系统3500可以越来越准确地预测(例如,估计)轨迹3522。在一些实施例中,发射和接收(Tx-Rx)系统3500可以跟踪并越来越多地锁定在飞弹上。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3500可以采用该方法的一个或多个部分来帮助忽略某方可能故意发起以迷惑传统RADAR或者LIDAR系统的无用物(chaff)或其他对象(Osf)3514。在各种实施例的一些中,发射和接收(Tx-Rx)系统3500可以采用该方法的一个或多个部分以在对象被其他对象部分地或暂时地遮挡时更好地跟踪对象。
在各种实施例中的一个或多个中,当发射和接收(Tx-Rx)系统3500锁定到表面上时,发射和接收(Tx-Rx)系统3500可以为被设置用来检测下一个示踪子弹反射的每个连续的(例如,在时间和空间上相邻的)像素设置更尖锐、更窄的接受裕度(margin)。在各种实施例的一些中,发射和接收(Tx-Rx)系统3500可以减少可接受的飞行时间和视差范围的活动窗。例如,发射和接收(Tx-Rx)系统3500可以集中于检测具有10英尺或更小尺寸的感兴趣对象。在这样的示例中,发射和接收(Tx-Rx)系统3500可以设置20ns的飞行时间裕度和具有围绕预测的接下来的位置的视差的少许像素。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3500可以在进行该预测时考虑观察者和被跟踪对象之间的相对运动(例如,通过预测对象的三维运动轨迹的卡尔曼(Kalman)滤波技术)。在各种实施例的一些中,当发射和接收(Tx-Rx)系统3500已经获得这样的表面时,发射和接收(Tx-Rx)系统3500可以在锁定跟踪失败时自动“解锁”。例如,当发射和接收(Tx-Rx)系统3500已经获得这样的表面时,发射和接收(Tx-Rx)系统3500可以在扫描未能检测到相邻体素(例如,如果发射和接收(Tx-Rx)系统3500未能检测到较窄窗内的示踪子弹反射)之后自动“解锁”。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3500可以通过采用上述方法的一个或多个部分,锁定在视场中的不同Z范围和/或不同位置的多个对象上。在各种实施例的一些中,发射和接收(Tx-Rx)系统3500可以通过采用上述方法的一个或多个部分,在同一扫描内锁定在在视场中的不同Z范围和/或不同位置的多个对象上。在一些实施例中,发射和接收(Tx-Rx)系统3500可以通过采用上述方法的一个或多个部分,锁定在视场中的不同Z范围和/或不同位置处的多个对象上,其中传感器线中的像素被单独地预设到多个较窄的锁定范围中各范围(例如,如图39或40中的一个或多个所示)。在各种实施例中的一个或多个中,发射和接收Tx-Rx)系统3500可以重设更宽的对象之间的搜索范围,以检测新的先前未检测到的对象。
图36示出了示例性发射和接收(Tx-Rx)系统3600,其可以是示例性快速像素顺序扫描LIDAR系统。例如,发射和接收(Tx-Rx)系统3600可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3600可以包括发射系统3602和接收系统3604。在各种实施例的一些中,发射系统3602可以布置在可能接近接收系统3604的位置的位置处。在一些实施例中,发射系统3602和接收系统3604可以位于彼此相同的轴上。在一些实施例中,发射系统3602和接收系统3604可以被光学地组合。
在各种实施例中的一个或多个中,发射系统3602可以在时刻td(离开)在方向α开射。在各种实施例的一些中,接收系统3604可以在时间td之后的飞行时间(例如,x纳秒)之后在ta(到达)处接收离开对象3608反射信号。在一些实施例中,接收系统3604可以将反射信号检测为来自方向β。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3600可以估计反射信号的光子在飞行中的持续时间。在各种实施例的一些中,发射和接收(Tx-Rx)系统3600可以基于D为零(或接近零)并且α等于(或近似等于)β的假设进行该估计。例如,发射和接收(Tx-Rx)系统3600可以基于所确定的光子到达的地方(例如,列)和所确定的光子到达传感器中的时间来进行该估计。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3600可以针对每个入射方向β知道在最近扫描期间在相应方向α(=β)上的离开时间。在一些实施例中,发射和接收(Tx-Rx)系统3600可以足够快以采用连续照射的激光扫描光束,因为可以在检测到反射之后确定每个瞬时发射方向α(例如,通过关联方向α和观察到的被检测反射的返回方向β)。在各种实施例的一些中,接收系统3604可以记录到达时间和飞行时间。在一些实施例中,发射和接收(Tx-Rx)系统3600可以基于R=c(ta-td)/2来计算范围R。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3600可以采用快速扫描(例如,50kHz)。在各种实施例的一些中,发射和接收(Tx-Rx)系统3600可以在采用快速扫描的同时,把每第100度与纳秒相关联。例如,发射和接收(Tx-Rx)系统3600可以使用具有10,000列的SPAD接收器或“抽动像素”来这样做。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3600可以包括单线(例如,线性传感器)接收器。在各种实施例的一些中,发射和接收(Tx-Rx)系统3600可以包括倾斜镜,其在垂直方向上旋转扫描。在一些实施例中,接收系统3604的“反ε镜”可以匹配发射系统3602的ε(例如,仰角)镜。在一些实施例中,发射和接收(Tx-Rx)系统3600可以通过在扫描期间减少有效像素子窗来进行范围锁定。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3600可以使用小范围预料或位置确定性中的一个或多个来对入射的光子进行范围锁定。在各种实施例的一些中,发射和接收(Tx-Rx)系统3600可以使用小范围或位置确定性中的一个或多个来对连续的入射光子进行快门控制。在一些实施例中,发射和接收(Tx-Rx)系统3600可以锁定到具有特定体积的三维表面并对其进行测距。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3600可以利用缺乏视差(例如,由于“Z/d像素重叠”而缺乏模糊性)。在各种实施例的一些中,发射和接收(Tx-Rx)系统3600可以将行中的像素位置(例如,列号)直接映射到视场位置。在一些实施例中,发射和接收(Tx-Rx)系统3600可以提供快速扫描(例如,通过50kHz谐振MEMS镜)。例如,发射和接收(Tx-Rx)系统3600可以提供每体素一纳秒的扫描。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3600可以通过将检测范围减小到例如10英尺(例如,表面上的自动锁定)来实现这种快速扫描。在各种实施例的一些中,发射和接收(Tx-Rx)系统3600可以响应于减小范围而同时激发多个列解码器。例如,发射和接收(Tx-Rx)系统3600可以通过抽动像素、APD或SPAD驱动列解码器。
图37示出了具有示例性快速滑动窗逻辑对极并行立体声解码器的示例性发射和接收(Tx-Rx)系统3700(例如,示例性辅助立体扫描系统)。例如,发射和接收(Tx-Rx)系统3700可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3700可以包括发射器3702、第一接收器3704和第二接收器3706。在各种实施例的一些中,两个接收器3704和3706可以以纯整流对极布置适当地对准。在一些实施例中,两个接收器3704和3706可以补偿镜头效应(例如,通过它们的对准)。在一些实施例中,发射和接收(Tx-Rx)系统3700可以包括滑动寄存器比较器,其可以找到立体对像素对应(例如,基于两个接收器3704和3706的对准)。
在各种实施例中的一个或多个中,发射系统3702可以投影DeBruijn颜色代码(例如,7种可能的二进制颜色23-1:RGBCMY&W)。为清楚起见,图37将颜色代码显示为十进制数字1-7。在各种实施例的一些中,对象可以反映代码“14527”。例如,“1”可以反射对象的第一部分3708。“4”可以反射对象的第二部分3710。“5”可以反射对象的第三部分3712。“2”可以反射对象的第四部分3714。“7”可以反射对象的第五部分3716。在一些实施例中,两个接收器3704和3706的左和右相机可以反向看到这些代码(例如,如“72541”)(假设没有遮挡)。例如,第一像素3718和第二像素3720可以接收“1”的反射。第三像素3722和第四像素3724可以接收“4”的反射。第五像素3726和第六像素3728可以接收“5”的反射。第七像素3730和第八像素3732可以接收“2”的反射。第九像素3734和第十像素3736可以接收“7”的反射。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3700可以基于颜色代码估计到对象的表面的距离。在各种实施例的一些中,发射和接收(Tx-Rx)系统3700可以估计在左相机和右相机之间匹配的代码(例如,颜色)的视差。在一些实施例中,发射和接收(Tx-Rx)系统3700可以至少部分地由于调整的(rectifiled)对极对准,用右相机中的匹配代码查找在左相机中捕获的给定代码,然后确定匹配(例如,相同)代码之间的像素视差的大小。例如,左相机和右相机可包括具有1微米像素(例如,4mm阵列宽度)的4K传感器。如上面关于图30所解释的(例如,使用公式d/f=D/Z),发射和接收(Tx-Rx)系统3700可以确定,如果代码之间的视差是100个像素(例如,100)微米)并且左右相机的焦距是10毫米,则d/f=1/100。发射和接收(Tx-Rx)系统3700还可以确定,如果左相机和右相机之间的基线距离是3英尺,则Z是100×3英尺=300英尺。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3700可以包括辅助立体扫描系统。辅助立体扫描系统可以例如在几纳秒内在卡车的背面上投射五个连续的德布鲁因(De Bruijn)颜色。在各种实施例的一些中,左相机和右相机可各自具有卷帘快门。在一些实施例中,左相机的卷帘快门可以与右相机的卷帘快门同步。在一些实施例中,发射和接收(Tx-Rx)系统3700可以包括为左相机和右相机中的每一个存储捕获的代码。
例如,发射和接收(Tx-Rx)系统3700可以包括一个或多个硬件寄存器,其存储每个捕获的颜色的二进制等价物(为简单起见,图37显示十进制1-7--而不是001,010,011,100,101,110,111)。在一些实施例中,发射和接收(Tx-Rx)系统3700可以排除000的二进制组合(例如,黑色)。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3700可以在存储等于代码的预期长度(例如,20微秒之后)的一定量的颜色代码之后,读取两个同步的卷帘快门。例如,发射和接收(Tx-Rx)系统3700可以在两个硬件寄存器填充捕获的代码的二进制等效值之后(例如,20微秒之后)读取两个硬件寄存器3738和3740。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3700可以将左相机的rowi的值与右相机中的等效rowi的值进行比较。
在各种实施例中的一个或多个中,代码(例如,“72541”)可以出现在左相机和右相机的同一行I中。在各种实施例的一些中,发射和接收(Tx-Rx)系统3700可以将相同行I的这些左和右版本都加载到相应的寄存器3738和3740中。在一些实施例中,发射和接收(Tx-Rx)系统3700可以利用特定量(例如,dmax)的偏移(例如,像素移位)将行I的右版本加载到相应寄存器中。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3700可以从左相机的寄存器37338中减去右相机的寄存器3740。在各种实施例的一些中,发射和接收(Tx-Rx)系统3700可以确定匹配,或者另外地或替代地,确定“接近匹配”(例如,发射和接收(Tx-Rx)系统3700确定偏移位置的差异低于某个阈值)。例如,当两个寄存器3738和3740的比较导致零(例如,“00000”)时,发射和接收(Tx-Rx)系统3700可以确定存在匹配(或接近匹配)。在一些实施例中,发射和接收(Tx-Rx)系统3700可以将所确定的匹配(或接近匹配)与当前像素移位(例如,那些匹配的视差)进行记录。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3700然后可以在右寄存器3740中左移值(例如,朝向较低的视差)并重复该过程。在各种实施例的一些中,发射和接收(Tx-Rx)系统3700可以在确定是否存在匹配(或接近匹配)之前多次移位寄存器3738和3740中的一个或多个(例如,以对齐两个“72541”代码,如图37所示)。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3700可以提供非常快速的立体声匹配(例如,足够快以足以支持每秒高达1百万条线(line)的4K立体声解码器)。在各种实施例的一些中,发射和接收(Tx-Rx)系统3738和3740可以包括两个4K相机(例如,每个具有4K乘2K像素=每个800万像素)。在一些实施例中,发射和接收(Tx-Rx)系统3738和3740可以解码例如每秒250k条线(例如,每秒以全彩色提供4K分辨率的125帧=8M RBG体素/帧,或者速率高达每秒1千兆体素)。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3700可以,即使传感器中的每行可以包含例如4000个像素值,也可以考虑潜在视差的某个子范围(例如,dmin到dmax)。例如,发射和接收(Tx-Rx)系统3700可以具有40度视角,在视场上具有4K像素(例如,每度100个像素)。在该示例的情况下,发射和接收(Tx-Rx)系统3700可以,对于1)左右相机之间3英尺的基线偏移,2)10mm焦距,以及3)200'Zmin到400'Zmax的深度范围,考虑150像素到75像素的范围视差(例如,分别对于dmax和dmin)(例如,净75个像素)。在该示例的情况下,发射和接收(Tx-Rx)系统3700可以将硬件寄存器中的值移位75次以找到该范围内的可能匹配。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3700可以在以硬件实现寄存器3738和3740的情况中,在75个时钟(例如,1GHz系统的75ns)中这样做。在各种实施例的一些中,发射和接收(Tx-Rx)系统3700可以花费不到一微秒来找到像素中的匹配。例如,发射和接收(Tx-Rx)系统3700可以从具有左传感器像素值的左寄存器3738减去具有右传感器像素值的右寄存器3740并且将横向移位递增一个像素进行75次。在一些实施例中,发射和接收(Tx-Rx)系统3700可以以最大视差开始并朝向最小视差运作。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3700可以包括存储代码的一个或多个存储器,当发射和接收(Tx-Rx)系统3700的一个或多个处理器执行代码,执行上述过程。这种代码的一个示例如下。
(步骤0)
加载Rxl值rowi到寄存器regL(4k像素_值)
加载RxR值rowi到寄存器regR(4k像素_值_)
设定d为d=dmax
(步骤1)把regR相对regL偏移d个像素(参见例如图37)
在每列中相互减去非零值
如果差为零,
或者,可选地,如果差低于噪声阈值,
则对于那些像素,请注意视差值
并且,可选地,利用基于差的置信度值
将视差d递减1个像素
并且重复步骤1,直到d=dmin
具有非零值的所有像素应具有视差值
(可选地,利用基于最小不匹配的置信度值)
对每一行重复此过程(步骤0)。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3700可以在大约10-20微秒内读取一个相机中的行。在各种实施例的一些中,发射和接收(Tx-Rx)系统3700可以花费少于1微秒(例如,1GHz的1000个时钟)来在硬件中运行上述过程。在一些实施例中,发射和接收(Tx-Rx)系统3700可以通过实时提取最佳可能的像素匹配的硬件块流送两个接收器输出。例如,发射和接收(Tx-Rx)系统3700可以以高达100fps的速度逐行地顺序地流送两个接收器输出。在一些实施例中,发射和接收(Tx-Rx)系统3700可以以最小(或实际上最小)的等待时间计算所有Z值。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3700可以是非常快速的辅助立体声混合LIDAR系统。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3700可以包括一对高分辨率传感器,与如上所述的对极布置的快速像素顺序扫描系统组合。在各种实施例的一些中,发射和接收(Tx-Rx)系统3700可以检测、定位和跟踪例如每秒多达10亿个颜色体素。在一些实施例中,系统可以在硬件中对两个对比度增强视频流进行三角测量。在一些实施例中,发射和接收(Tx-Rx)系统3700可以利用扫描激光照射来跟踪高速对象而没有模糊并具有很大的对比度。在一些实施例中,发射和接收(Tx-Rx)系统3700可以提供高分辨率彩色三维图像和高度精确的运动轨迹。在一些实施例中,发射和接收(Tx-Rx)系统可以使用对增益的严格控制、使用对灵敏度的严格控制、以及使用单个像素的超短激活,来进行跟踪同时保持对环境光的高度鲁棒性。
图38示出了可以顺序地设置和激活示例性像素的示例性发射和接收(Tx-Rx)系统3800。例如,发射和接收(Tx-Rx)系统3800可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3800可以包括发射器3802和接收器3804。接收器3804可以包括传感器3806。接收器3804可以设置增益幅度3808,其对于传感器3806的不同像素可以是不同的。例如,接收机3804可以基于增益包络3810设置增益。在各种实施例中的一个或多个中,接收器3804可以为第一像素3814设置第一增益幅度3812,为第二像素3818设置第二增益幅度3816,以及为第三像素3822设置第三增益幅度3820。
在各种实施例中的一个或多个中,接收器3804可以在各个像素3814、3818和3822中顺序地设置增益3812、3816和3820。在各种实施例的一些中,发射和接收(Tx-Rx)系统3800可以通过分别在时间t1、t2、t3设置增益3812、3816和3820来顺序地设置和激活像素3814、3818和3822。在一些实施例中,发射和接收(Tx-Rx)系统3800可以采用智能系统逻辑。例如,发射和接收(Tx-Rx)系统3800可以预期光子信号在给定时刻到达像素3814、3818和3822中的一个,如上所述(例如,来自第一位置3824的反射可以在来自第二位置3826的反射之前到达,来自第二位置3826的反射可以在来自第三位置3828的反射之前到达)。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3800可以根据这种预期激活连续像素。在各种实施例的一些中,发射和接收(Tx-Rx)系统3800可以补偿预期的衰减(例如,基于步进通过每个连续像素时的增量Z值)。例如,发射和接收(Tx-Rx)系统3800可以应用斜坡增益函数GR(t)来确定包络3810,将增益3812、3816和3820在时间上快速斜升作为函数时间(tToF)。
图39示出了示例性发射和接收(Tx-Rx)系统3900,其可以采用连续的示例性射线来获得示例性的对应视差。例如,发射和接收(Tx-Rx)系统3900可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统3900可以包括发射器3902和接收器3904。在各种实施例的一些中,发射器3902可以以第一扫描角α1连续发射第一光束3906,以第二扫描角α2连续发射第二光束3908,以第三扫描角α3连续发射第三光束3910。
在各种实施例中的一个或多个中,第一光束3906可以从第一对象3912反射。接收器3904的第一像素3914可以捕获第一光束3906的偏转。在一些实施例中,发射和接收(Tx-Rx)系统3900可以在接收器3904的传感器中的像素周围设置小范围的视差Δd1(例如,对应于从第一距离3918到第二距离3920的深度范围3916)。第二光束3908可能未命中,并且发射和接收(Tx-Rx)系统3900可能无法捕获第二光束3908的反射。第三光束3910可以撞击并偏离第二对象3922。接收器3904的第二像素3924可以捕获第三光束3910的反射。在一些实施例中,发射和接收(Tx-Rx)系统3900可以设置传感器中的像素周围的视差范围Δd2(例如,对应于从第三距离3928到第四距离3930的深度范围3926)。
图40示出了示例性发射和接收(Tx-Rx)系统4000,其可以采用示例性颜色编码(例如,飞行时间颜色编码)来防止示例性模糊和/或增加示例性扫描速率(例如,飞行时间扫速率)。例如,发射和接收(Tx-Rx)系统可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4000可以包括发射器4002和接收器4004。
在各种实施例中的一个或多个中,发射器4002可以在从第一距离4006到第二距离4008(例如,Z1到Z2)的相当大的范围内,于不同的时间在不同方向α(例如,α1和α2)发射连续的示踪子弹。在各种实施例的一些中,示踪子弹可以无序地返回到发射和接收(Tx-Rx)系统4000。例如,点4012处的反射可以在第一时间到达像素4014,点4016处的反射可以在第二时间到达像素4018,点4020处的反射可以在第三时间到达像素4022,并且点4024处的反射可以在第四时间到达像素4026(例如,其中第一到第四时间是连续的时间顺序-像素可以在捕获更近距离的反射之后捕获来自更远距离的反射)。在一些实施例中,发射和接收(Tx-Rx)系统4000可能经历一定程度的模糊(例如,发射和接收(Tx-Rx)系统4000的扫描器已经避免了在特定方向上的如这里所示的增量(例如Δα)那样大的移动。例如,来自较远的点的这些反射可能在传感器4010中重叠(例如,混合)(例如,在时间上,例如第三时间可以在第二时间之前发生,并且在空间上)。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4000可以提供更小的角度增量(例如,小于所示的角度增量)而不会引起模糊。例如,发射和接收(Tx-Rx)系统4000可以这样做以用于体素的高速、高分辨率扫描。在各种实施例的一些中,发射和接收(Tx-Rx)系统4000可以改变扫描光束信号。在一些实施例中,发射和接收(Tx-Rx)系统4000可以实时快速地改变扫描光束的颜色。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4000可以在较小的扫描镜旋转增量(例如,Δα/2)之后,开射示踪子弹,该示踪子弹从点4028反射(其指示在第五时间到达小苏4030的反射),从点4032反射(其指示在第六时间到达像素4034的反射)。在各种实施例的一些中,发射和接收(Tx-Rx)系统4000可以针对每个连续的示踪子弹改变扫描光束的颜色(例如,从蓝色示踪子弹到红色示踪子弹)。在一些实施例中,发射和接收(Tx-Rx)系统4000可以利用每个连续示踪子弹的不同颜色来避免检测中的模糊。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4000可以检测经由红色像素(例如,代替经由蓝色像素)在第五和第六时间到达的反射光。例如,如上所述,发射和接收(Tx-Rx)系统4000可以包括RGB混合传感器(例如,三维和/或二维混合传感器)。在各种实施例的一些中,发射和接收(Tx-Rx)系统4000可以切换一个或多个其他光属性(例如,偏振、强度、相位)和/或同时混合的颜色。在一些实施例中,发射和接收(Tx-Rx)系统4000可以响应于确定模糊度超过阈值(例如,由发射和接收(Tx-Rx)系统4000的逻辑或者监视发射和接收(Tx-Rx)系统4000的由基于CPU的控制系统确定)来切换一个或多个光属性。如上所示,发射和接收(Tx-Rx)系统4000可以通过采用该过程的一个或多个部分来减少模糊和/或提供更大的检测速度(例如,更大的体素范围)。
传感系统的附加说明性电路
图41示出了包括示例性的示例性传感器部分4100“抽动像素”4102。示例性发射和接收(Tx-Rx)系统的示例性传感器可包括传感器部分4100。例如,发射和接收(Tx-Rx)系统可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,抽动像素4102可以采用实时像素快门控制。在各种实施例的一些中,抽动像素4102可以采用实时列快门控制。在一些实施例中,抽动像素4102可以采用实时行快门控制。在各种实施例的一些中,抽动像素4102可以采用动态灵敏度调节。
在各种实施例中的一个或多个中,抽动像素4102可以包括钉扎光电二极管4104。PDD 4104可以捕获t0时扫描点4106的反射。在各种实施例的一些中,光子电流可以通过传输门4108(例如,在t1处)冲击。在一些实施例中,有源行控制线4110可以激活传输门(transfer gate)4108。例如,有源行控制线4110可以激活传感器的第一行4112中的各个像素。
在各种实施例中的一个或多个中,冲击电流然后可以到达放大电路4114(或源极跟随器)的输入。在各种实施例的一些中,该输入可以用电阻器R弱连接到VDD。弱上拉电阻器R可以将放大电路4114的输入保持在VDD,直到冲击电流暂时将输入拉低。在一些实施例中,该突然“抽动”可被放大并在t2处被传输到列感测线4116。在各种实施例的一些中,放大的“抽动”信号可以被传输到行感测线。替代地,放大的“抽动”信号可以同时传输到行和列感测线,使得“抽动”像素的垂直和水平位置都瞬时传输到检测系统。
在各种实施例中的一个或多个中,放大的传输可以在t3处到达列解码器/放大器4120的晶体管4118。在各种实施例的一些中,有源列控制线4122可以激活列解码器/放大器CDA的晶体管4118。在一些实施例中,列解码器/放大器4120可以在t4处再次放大传输。在各种实施例中的一个或多个中,列解码器/放大器4120可以在时间t5传送再次放大的传输(例如,通过输出线4124将放大的检测信号传送到远程处理系统)。在一些实施例中,输出线4124可以为列4126中的每个像素提供输出。
图42示出了示例性像素4204的示例性激活和增益控制电路4200。例如,像素4204可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,激活和增益控制电路4200可以由列像素增益控制线4206控制。在各种实施例的一些中,除了行选择线4208之外,列像素增益控制线4206可以确保可以实时地改变各个像素的激活和灵敏度(例如,经由一个或多个上述过程和/或在一个或多个上述过程期间)。例如,通过列像素增益控制线4206传输的一个或多个信号可以使增益控制电路4210改变施加到像素4204输出到列感测线4212的信号的放大量。
图43示出了示例性像素4302的示例性激活和增益控制电路4300。例如,像素4302可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,增益控制电路4300可以内置在列感测线放大器4304中,列感测线放大器4304经由列感测线4306从像素4302获得输出信号。
传感系统的进一步说明性方面
图44示出了示例性发射和接收(Tx-Rx)系统4400。例如,发射和接收(Tx-Rx)系统4400可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4400可以包括发射器4402和接收器4404。在各种实施例的一些中,发射和接收(Tx-Rx)系统4400可以被配置和布置成使发射器4402和接收器4404彼此偏移距离D。在各种实施例的一些中,接收器4404可以包括SPAD(单光子雪崩检测器)阵列传感器4406。在一些实施例中,传感器4406可以包括有源列控SPAD阵列,其包括多列和多行的SPAD像素。在一些实施例中,发射和接收(Tx-Rx)系统4400可以推测性地激活SPAD阵列的列。
在各种实施例中的一个或多个中,发射器4402可以发射窄准直的一维剑状光子突发(“剑”)4408。例如,突发4408可以具有短持续时间(例如,100皮秒)。在各种实施例的一些中,发射器4402可以以横向角度α向外发射剑4408。在一些实施例中,这些剑4408的光可以垂直地延伸跨越视场(例如,沿Y方向)。在一些实施例中,这些剑4408的光可以在扫描方向上保持锋利聚焦的光剑边缘(例如,在X方向上,与剑4408中的给定剑的边缘正交)。在各种实施例中的一个或多个中,接收器4404可以捕获反射的剑。在一些实施例中,传感器4406处的反射剑的图像的宽度可以窄于SPAD阵列中的SPAD列的宽度。
在各种实施例中的一个或多个中,发射器4402可以采用一维(例如,圆柱形)激光准直光学器件应用于一个或多个强力条纹边缘发射二极管激光源,以通过强烈的突发产生剑4408,同时保持锋利的边缘。例如,发射器4402可以采用连续运动一维扫描系统,其包括一维MEMS镜、电流镜、相控阵列或旋转多边形镜轮反射器中的一个或多个。在各种实施例的一些中,发射和接收(Tx-Rx)系统4400可以采用偏移距离D以确保以给定扫描角α发射并从不同Z范围反射的剑4408的光被SPAD阵列的不同列中的SPAD像素捕获。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4400可以采用剑4408(而不是光子子弹)实现较慢发射器,因为发射器4402可以跨越水平维度(而不是水平和垂直维度)扫描剑4408。
例如,剑4408可以在朝向第一对象4410和第二对象4412行进的同时在整个视场上垂直展开。第二对象4412可以位于比第一对象4410更远离发射和接收(Tx-Rx)系统4400距离ΔZ的位置。第二对象4412可以位于比第一对象4410在视场中更高增量仰角ΔE的位置。给定剑内的第一射线可以从第一对象4410反射,而给定剑的第二射线可以继续朝向第二对象4412并从第二对象4412反射。在SPAD阵列中具有第一视差的第一列4414中的一个或多个像素可以检测第一射线的光子。在SPAD阵列中具有第二视差的第二列4416中的一个或多个像素可以检测第二射线的光子。至少由于偏移距离D,发射和接收(Tx-Rx)系统4400可基于第一视差确定第一对象4410处于第一距离Z并且可基于第二视差确定第二对象4412处于第二距离Z(例如,通过采用基于视差或扫描角α中的一个或多个的查找表,例如,下面进一步详细解释)。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4400可以提供有源列控扫描LIDAR系统。在各种实施例的一些中,发射和接收(Tx-Rx)系统4400可以采用飞行时间作为测距方法。发射和接收(Tx-Rx)系统4400可以通过采用三角形光路几何结构作为空间-时间滤波器来抑制环境光。如上所述,反射的剑的部分可以或迟或早地到达接收器4404,这取决于反射剑部分的对象的Z范围。覆盖不同距离所需的飞行时间的变化也可以与横向位移成比例(例如,如上所述)。如上所述,发射和接收(Tx-Rx)系统4400可以基于哪个列包含捕获反射的剑的光的一个或多个像素来检测横向位移。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4400可以采用编排的一系列即时激活列。在各种实施例的一些中,发射和接收(Tx-Rx)系统4400可以连续地激活SPAD像素列。在各种实施例的一些中,发射和接收(Tx-Rx)系统4400可以调整连续激活的列的激活时段。在一些实施例中,发射和接收(Tx-Rx)系统4400可以随着连续的列激活的进行而增大激活时段。例如,发射和接收(Tx-Rx)系统4400可以将激活时段与给定剑的更大时段的飞行时间延迟相匹配(其中,对于给定的Z范围的增加,连续减小列位置视差移位)。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4400可以改变激活时段以减少SPAD阵列的像素对环境光的捕获(例如,如下面进一步详细解释的)。
图45示出了示例性发射和接收(Tx-Rx)系统的示例性SPAD阵列传感器4500。例如,发射和接收(Tx-Rx)系统可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,传感器4500可以包括有源列控SPAD阵列4502。在各种实施例的一些中,发射和接收(Tx-Rx)系统可以使用SPAD阵列4502来提供精确的、有源列控扫描LIDAR系统。
在各种实施例中的一个或多个中,SPAD阵列4502可以具有多列和多行的SPAD像素。例如,SPAD阵列传感器4500可以具有500列且200行的SPAD像素,总共10,000个SPAD像素。在各种实施例的一些中,每个SPAD像素可具有5微米乘5微米(或6微米乘6微米或8微米乘8微米)的尺寸,其面积是廉价现代卷帘快门相机中发现的1微米像素的64倍大)。在一些实施例中,SPAD阵列4502可具有1mm的高度和2.5mm的宽度。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统可以连续地激活SPAD阵列4502的各个列。在各种实施例的一些中,发射和接收(Tx-Rx)系统可以在顺序激活的开始时间之后的特定时间连续地激活每个列达特定时间段。在一些实施例中,发射和接收(Tx-Rx)系统可以基于所确定的发射和接收(Tx-Rx)系统的发射器和接收器之间的的偏移距离,为每个单独的列确定相应的特定时间(例如,通过查找表,如下面进一步详细说明的)。附加地或替代地,发射和接收(Tx-Rx)系统可以基于所确定的扫描角α为每个单独的列确定相应的特定时间(例如,通过查找表)。
例如,SPAD阵列4502可以捕获在两个相应的Z范围和两个相应的高度处从两个对象反射的特定光子剑的反射(例如,如上面关于图44所解释的)。发射和接收(Tx-Rx)系统可以在第一时间激活SPAD像素的第一列4504达第一激活时段。发射和接收(Tx-Rx)系统可以在第二时间激活SPAD像素的第二列4506达第二激活时段。第二时间可以在第一时间之后经过特定时间间隔Δt。在各种实施例中的一个或多个中,第二激活时段可以超过第一激活时段。第一行4510且第一激活列4504中的第一SPAD像素4508可响应于第一SPAD像素4508在第一激活时段期间捕获反射中的第一反射而触发第一雪崩4511。第二行4514且第二激活列4506中的第二SPAD像素4512可响应于第二SPAD像素4512在第二激活时段期间捕获反射中的第二反射而触发第二雪崩4515。每行像素可以通信地耦合到相应的信号线。第一SPAD像素4508可以将第一雪崩输出到第一信号线4516。第二SPAD像素4512可以将第二雪崩输出到第二信号线4518。第一SPAD像素4508输出第一雪崩到第一信号线4516和第二SPAD像素4512输出第二雪崩到第二信号线4518之间的时间间隔可以等于或基本等于特定时间段Δt。发射和接收(Tx-Rx)系统可以。基于第一时间、第二时间或第一时间和第二时间之间的特定时间间隔Δt中的一个或多个确定第一信号线4516上的第一雪崩是从第一激活列4504输出的,并且第二信号线4518上的第二雪崩是从第二激活列4506输出的。发射和接收(Tx-Rx)系统可以基于所确定的第一和第二激活列4504、4506确定两个对象的两个相应Z范围(例如,如上所述)。发射和接收(Tx-Rx)系统可以基于第一和第二SPAD像素4508、4512的第一和第二行4510、4514确定两个对象的两个相应高度(例如,如上所述)。
图46示出了由示例性发射和接收(Tx-Rx)系统激活的示例性编排的连续SPAD像素列。例如,发射和接收(Tx-Rx)系统可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统可以在第一时间4600激活SPAD阵列中的第一列。在各种实施例的一些中,发射和接收(Tx-Rx)系统可以在第二时间4602激活SPAD阵列中的第二列。在一些实施例中,发射和接收(Tx-Rx)系统可以激活第一列持续第一时间段4604并且可以激活第二列持续第二时间段4606。响应于第一列中的一个或多个SPAD像素捕获足够数量的光子以在第一时间段4604期间触发,第一列中的一个或多个SPAD像素可以在第三时间4608进行雪崩。响应于第二列中的一个或多个SPAD像素捕获足够数量的光子以在第二时间段4606期间触发,第二列中的一个或多个SPAD像素可以在第四时间4610雪崩。在各种实施例的一些中,第四时间4610可以在第三时间4608之后持续时间Δt(例如,如上所述)。
图47示出了示例性发射和接收(Tx-Rx)系统4700,其采用示例性系列的光剑和捕获光剑的反射的示例性SPAD阵列4702。例如,发射和接收(Tx-Rx)系统4700可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4700可以包括发射器4704和接收器4706。在各种实施例的一些中,发射和接收(Tx-Rx)系统4700可以被配置和布置成使发射器4704和接收器4706彼此偏移距离D。在一些实施例中,发射和接收(Tx-Rx)系统4700可以采用偏移距离D来测量将光反射到接收器4706的一个或多个对象的一个或多个Z范围。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4700可以选择SPAD阵列4702中的列序列。在各种实施例的一些中,发射和接收(Tx-Rx)系统4700可以确定列序列中连续列的视差之间的差根据偏移距离D、相应Z范围(对应于每个连续列)和扫描角α中的一个或多个而变化。例如,发射和接收(Tx-Rx)系统4700可以针对给定行像素中的每个给定SPAD像素,关联发射和接收(Tx-Rx)系统4700的视场中由给定的SPAD像素观察到的独特窄(例如,远望(telescopic))部分(例如,光子剑的轨迹的窄部分,例如水平薄片)。在一些实施例中,发射和接收(Tx-Rx)系统4700可以确定由给定SPAD像素捕获的光子指示与给定像素相关联的窄区域中的对象的反射(例如,基于活动智能像素的自我报告,诸如SPAD像素输出以揭示体素位置的雪崩)如上所述。
例如,发射和接收(Tx-Rx)系统4700可以针对潜在Z范围序列中的每个给定Z-范围确定在特定时间发射的给定剑的光可以是从给定Z范围处的给定物体反射并在相应的预期到达时间到达SPAD阵列4702(例如,基于如上所述的飞行时间)。在一些实施例中,发射和接收(Tx-Rx)系统4700还可以针对潜在Z范围序列中的每个给定Z范围,确定SPAD阵列4702的哪一个或多个列包含可捕获在特定时间发射并从给定对象反射的给定剑的光的一个或多个像素。在一些实施例中,发射和接收(Tx-Rx)系统4700可以针对多个扫描角度α中的每一个进行这些确定中的一个或多个。发射和接收(Tx-Rx)系统4700可以选择性地在列序列中包括所确定的一个或多个列。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4700可以将列序列中的第一列4708与Z范围序列中的第一Z范围4710相关联,将列序列中的第二列4712与Z范围序列中的第二Z范围4714相关联,将列序列中的第三列4716与Z范围的序列中的第三Z范围4718相关联,将列序列中的第四列4720与Z范围序列中的第四Z范围4722相关联,将列序列中的第五列4724与Z范围序列中的第五Z范围4726相关联,并且将列序列中的第六列4728与Z范围序列中的第六Z范围4730相关联。对于第一Z范围4710处的给定对象反射出的给定剑的光反射,第一列4708中的一个或多个像素的预期到达时间可以在列序列中每个后续列的预期到达时间之前。从潜在Z范围序列中的每个给定Z范围到潜在Z范围序列中的紧接的后续Z范围的Z范围增量可以等于从潜在Z范围序列中紧接在前的Z范围到该给定Z范围的Z范围增量。相反,列序列中的第一连续列对之间的视差增量可以不同于列序列中的第二连续列对之间的视差增量。
图48示出了示例性发射和接收(Tx-Rx)系统的示例性SPAD阵列4800。例如,发射和接收(Tx-Rx)系统可以与上面解释的那些中的一个或多个相同或相似。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统可以确定对于接收处于相同增量的Z范围处的对象的反射的列,这些列的视差之间的差是不相等的(例如,如图48所示)中。在各种实施例的一些中,发射和接收(Tx-Rx)系统可以确定这些视差之间的差根据偏移距离D、对应于连续列中的每个列的Z范围、扫描角度α中的一个或多个而变化(例如,如上所述)。
返回到图44,发射和接收(Tx-Rx)系统4400可以确定,对于给定的扫描角度α,接收角度β随着Z范围的增加而增加(例如,从第一对象4410的Z范围处的β1增加到第二对象4412的Z范围处的β2)。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4400可以确定,对于给定的Z范围,接收角度β随着扫描角度α的增加而减小。在各种实施例的一些中,传感器4406可以感知由剑的反射引起的图像中的视差随着来自处于更大Z范围处的对象反射出的剑的光而减小。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4400可以推测性地激活SPAD阵列传感器4406的每列。在一些实施例中,发射和接收(Tx-Rx)系统4400可以针对给定对象的多个潜在Z范围中的每一个,确定在特定时间发射的给定剑的光可以是从给定对象反射并在相应的预期到达时间(例如,基于如上所述的飞行时间)到达SPAD阵列传感器4406。在一些实施例中,发射和接收(Tx-Rx)系统还可以针对多个潜在Z范围中的每一个,确定SPAD阵列传感器4406的哪一个或多个列包含应捕获在特定时间被发射并从给定对象反射出的给定剑的光的一个或多个像素。在一些实施例中,发射和接收(Tx-Rx)系统4400可以针对多个扫描角度α中的每一个进行这些确定中的一个或多个。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4400可以紧接在SPAD阵列传感器4406的给定列的一个或多个像素应该从对应于该给定列的潜在Z范围处的给定对象的反射中捕获的给定剑的光的预期到达时间之前推测性地激活该给定列。在各种实施例的一些中,一旦SPAD像素捕获足够数量的光子(例如,少至一个),发射和接收(Tx-Rx)系统4400可以通过将给定列中的每个SPAD像素设置为雪崩来推测性地激活该给定列。在一些实施例中,发射和接收(Tx-Rx)系统4400可以通过将高压反向偏置信号同时短暂地连接到推测性激活的列中的每个SPAD像素来设置推测性激活的列中的SPAD像素。例如,发射和接收(Tx-Rx)系统4400可以施加反向偏置信号,该反向偏置信号具有使SPAD像素达到盖革模式的电压。在盖革模式中,每个SPAD像素中的雪崩二极管可响应于捕获足够数量的光子而输出强瞬时信号(例如,高达10,000个电子)。强瞬时信号可以提供易于检测、低延迟、低抖动时间的信号。该信号可具有约100ps范围内的时间精度。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4400可以推测性地激活对应于感兴趣的Z范围的列范围(例如,100到200列)中的列。在各种实施例的一些中,发射和接收(Tx-Rx)系统4400可以快速连续地发射多个剑(例如,在SPAD阵列传感器捕获先前发射的剑的反射之前发射一个或多个剑)。在一些实施例中,发射和接收(Tx-Rx)系统4400可以针对感兴趣的Z范围,在每个预测的飞行时间范围发射多个剑。例如,发射和接收(Tx-Rx)系统4400可以以相同的扫描角度α发射十个剑,每个剑具有10ps的持续时间并且与紧接在先发射的剑间隔100ns。发射和接收(Tx-Rx)系统4400可以每100ns地推测性地顺序地激活对应于感兴趣的Z范围中的Z范围的每一列。对于该示例,具有200行感测线的SPAD阵列传感器可支持高达10Mhz的突发输出数据速率,导致总系统峰值数据速率为每秒20亿个体素。发射和接收(Tx-Rx)系统4400可以允许采用大SPAD像素,同时提供小传感器占地和高精度(例如,通过飞行时间测量中的亚纳秒定时)。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4400可以动态地调整阈值、发射图样、列激活控制或增益中的一个或多个。在各种实施例的一些中,发射和接收(Tx-Rx)系统4400可以采用那些动态调整中的一个或多个来过滤或优先化一个或多个数据流(例如,提供可编程数据优先级和/或数据置信水平)。在一些实施例中,发射和接收(Tx-Rx)系统4400可以基于诸如范围选择、凹滤波(foveation)、对象锁定或Z锁定之类的一个或多个设置来进行那些动态调整中的一个或多个(例如,如上所述)。例如,发射和接收(Tx-Rx)系统4400可以基于各个列的激活持续时间来改变应用于每个单独列的增益。在各种实施例的一些中,发射和接收(Tx-Rx)系统4400可以平衡给定列中的SPAD像素的偏置与给定列的激活持续时间(例如,增益可以与激活持续时间成反比:对于更长的激活持续时间减小增益,或对于更短的激活持续时间增加增益),以管理给定列中的一个或多个SPAD像素的自发性雪崩(例如,响应于环境光)的可能性,从而提供错误检测。例如,当激活给定列持续10ns时,发射和接收(Tx-Rx)系统4400可以将给定列中的SPAD像素偏置为20伏特。发射和接收(Tx-Rx)系统4400可以在激活给定列持续较长激活持续时间时将偏压从20伏减小,或者可以在激活给定列持续较短激活持续时间时将偏压从20伏增加。另外或替代地,发射和接收(Tx-Rx)系统4400可以基于每列中的SPAD像素的数量来调整应用于列的增益。在一些实施例中,与发射和接收(Tx-Rx)系统4400可以应用于具有较低行数的SPAD阵列传感器的列的较小增益相比,发射和接收(Tx-Rx)系统4400可以将更大的增益应用于具有大量行的SPAD阵列传感器的列。在各种实施例的一种或多种中,发射和接收(Tx-Rx)系统4400可以激活每列达10-50ns。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4400可以在结束先前推测性顺序激活之前发起后续推测性顺序激活。在一些实施例中,发射和接收(Tx-Rx)系统4400可以并行地推测性地激活多个列范围(例如,对应于多个感兴趣的Z范围的多个范围)中的列。例如,发射和接收(Tx-Rx)系统4400可以为多个列范围中的每一个应用不同范围的激活时间。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4400可以动态地编排推测性顺序激活。在各种实施例的一些中,发射和接收(Tx-Rx)系统4400可以基于扫描角度α动态地编排推测性顺序激活。在一些实施例中,发射和接收(Tx-Rx)系统4400可以调整发射和接收(Tx-Rx)系统4400可以顺序激活的列范围中的一个或多个列的激活持续时间。在一些实施例中,发射和接收(Tx-Rx)系统4400可以调整列的范围。例如,发射和接收(Tx-Rx)系统4400可以针对多个Z范围中的每一个,确定针对一个或多个列的一个或多个新预期飞行时间或新预期视差。在各种实施例中的一个或多个中,可以预先计算这样的值。例如,发射和接收(Tx-Rx)系统4400可以在校准例程期间做出这些中的一个或多个确定并将一个或多个结果存储在快速查找表中(例如,上面解释的一个或多个查找表)。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4400可以基于捕获反射光的激活列中的像素行数量(例如,激活列中的所有行可以具有捕获反射光的SPAD像素)来确定反射来自剑的光的对象具有平坦表面。在各种实施例的一些中,发射和接收(Tx-Rx)系统4400可以基于捕获反射光的不同激活列中的SPAD像素来确定对象具有多个倾斜表面。
在各种实施例中的一个或多个中,在直接飞行时间方法的情况下,发射和接收(Tx-Rx)系统4400可具有Z分辨率,该Z分辨率是剑脉冲的到达时间的函数。相反,在通过三角测量导出Z范围的情况下,发射和接收(Tx-Rx)系统4400可以具有Z分辨率,该Z分辨率是列位置(例如,相对位移的精度、像素视差异、X方向等)的函数。在各种实施例的一些中,发射和接收(Tx-Rx)系统4400可以通过飞行时间确定Z范围。在一些实施例中,发射和接收(Tx-Rx)系统4400可以采用额外的三角形光路几何结构作为空间-时间滤波器来抑制环境光。
在各种实施例中的一个或多个中,推测性顺序激活可以提供比VelodyneTM或QuanergyTM的现有系统(例如,VelodyneTM或QuanergyTM的关注于一个或多个自主的车载LIDAR或三维感知域的系统)的能力高10-100倍的性能。在各种实施例的一些中,发射和接收(Tx-Rx)系统4400可以操作一个或多个异步传感器阵列(例如,异步相机或抽动像素)来代替SPAD阵列传感器4406,同时采用上述解释的空间滤波线扫描和飞行时间检测。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4400可以发射包含多种颜色的给定光剑。在各种实施例的一些中,发射和接收(Tx-Rx)系统4400可以采用并行或顺序无滤波器彩色LIDAR。在一些实施例中,SPAD阵列传感器4406可以对多个光频率(例如,从NIR到UV)敏感。在一些实施例中,发射和接收(Tx-Rx)系统4400可以在总环境黑暗中操作。例如,通过快速改变剑脉冲的照射波长(例如,在原色之间切换),发射和接收(Tx-Rx)系统4400可以确定发射和接收(Tx-Rx)系统4400扫描的的三维表面的颜色和色调。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4400可以通过采用上述顺序有源列控,将激活列中给定SPAD像素经历的环境光减少到该SPAD像素否则会经历的环境光的百万分之一(例如,将100,000勒克斯(lux)减少到0.1勒克斯或将太阳光干扰减少到月光干扰)。在各种实施例的一些中,与传统系统的发射相比,发射和接收(Tx-Rx)系统4400可以通过发射更低的瞬时功率密度的剑来改善眼睛安全性。
在各种实施例中的一个或多个中,如上所述,发射和接收(Tx-Rx)系统4400可以调整连续列的激活时段以匹配随着Z范围增加或增量列视差减小而递增飞行时间延迟。在各种实施例的一些中,发射和接收(Tx-Rx)系统4400可以通过调整激活时段来确保检测一个或多个像素的反射光并沿着一个或多个像素的视线进行瞬时范围测量。如上所述,发射和接收(Tx-Rx)系统4400可以从单个剑脉冲在短时间段(例如,1μs)内提供大量的即时分离体素测量(例如,200个),其可以是与传感器给定列中的垂直像素数一样高。在一些实施例中,发射和接收(Tx-Rx)系统4400可以利用SPAD阵列提供每秒2亿个体素的数据速率(例如,远远优于市场上的昂贵LIDAR系统,诸如来自VelodyneTM的那些或“固态”LIDAR系统(例如来自QuanergyTM的那些))。在一些实施例中,发射和接收(Tx-Rx)系统4400可以将最大光子往返飞行时间设置为1,000ns或1μs,从而将观察到的Z范围限制到500ft。相反,在传统的SPAD检测器中,可以仅支持每微秒一次观察。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4400可以在采用Z范围的飞行时间测量时具有Z范围分辨率,该Z范围分辨率是一个或多个脉冲的到达时间的函数。相反,发射和接收(Tx-Rx)系统4400可以在采用三角测量时具有Z范围分辨率,该Z范围分辨率是列位置的分辨率的函数(例如,X方向上的像素视差或相对位移的精度)。在各种实施例的一些中,发射和接收(Tx-Rx)系统4400可以在采用上述利用剑脉冲的顺序有源列控具有Z范围分辨率,该Z范围分辨率是一个或多个列位置的函数。在一些实施例中,发射和接收(Tx-Rx)系统4400可以在通过上述利用剑脉冲的顺序有源列门控进行飞行时间测量时,在水平X方向上具有分辨率,该分辨率是光剑的锐度和确定扫描角度α的精度的函数。例如,发射和接收(Tx-Rx)系统4400可以通过预先预测或插值(例如,运动插值)确定扫描角度α,如关于美国专利No.8,282,222的图4B所解释的。在一些实施例中,发射和接收(Tx-Rx)系统4400可以在采用上述顺序有源列选通时使用叶片脉冲具有垂直Y方向分辨率,该分辨率是SPAD质量的函数。行光学器件和SPAD传感器4406的行分辨率。在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4400可以对给定列采用十分之一纳秒(100ps)的激活时段,从而将长距离对象解析为一个厘米。
在各种实施例中的一个或多个中,发射和接收(Tx-Rx)系统4400可以采用每个刀片作为扫描线,如上所述。在一些实施例中,发射和接收(Tx-Rx)系统4400可以采用刀片来提供顺序像素扫描系统的清晰度和闪光激光雷达系统的宽度,如上所述。例如,顺序像素扫描系统可以采用光子针刺,每个单独的体素具有一个单独的针刺。连续像素扫描系统需要极快的扫描速率。作为另一个例子,闪光激光雷达系统可以不使用扫描仪,而是可能需要极高的瞬时功率源以确保足够的瞬时光子计数,并且对于传感器阵列中的每个像素具有统计确定性。与这两个示例相反,发射和接收(Tx-Rx)系统4400可以发射刀片脉冲,其垂直地覆盖传感器4406中的给定列的所有行,从而启用发射和接收(Tx-Rx)系统4400。采用较慢的扫描速率(例如,100Hz,每秒100帧),在单一方向上扫描,并在脉冲之间使用较大的时间间隙,同时提供高的体素吞吐量。在一些实施例中,发射和接收(Tx-Rx)系统4400可以在4ms内发射横跨在30度视场上横向扩散的2,000个刀片脉冲,同时提供高达每秒250帧的HD横向体素分辨率。例如,发射和接收(Tx-Rx)系统4400可以采用250行垂直分辨率来提供每秒1.25亿个体素的原始体素计数(例如,250行×250帧/秒×2,000个刀片脉冲)。
将理解,流程图图示的每个块以及流程图图示中的块的组合(或以上关于一个或多个系统或系统的组合解释的动作)可以由计算机程序指令实现。可以将这些程序指令提供给处理器以产生机器,使得在处理器上执行的指令创建用于实现在一个或多个流程图块中指定的动作的装置。计算机程序指令可以由处理器执行以使得处理器执行一系列操作步骤以产生计算机实现的过程,使得指令在处理器上执行以提供用于实现在流程图块或块。计算机程序指令还可以使流程图的框中所示的至少一些操作步骤并行执行。此外,一些步骤也可以跨多个处理器执行,例如可能在多处理器计算机系统中出现。另外,在不脱离本发明的范围或精神的情况下,流程图图示中的一个或多个块或者块的组合也可以与其他块或块的组合同时执行,或者甚至以与所示的不同的顺序执行。
另外,在一个或多个步骤或块中,可以使用嵌入式逻辑硬件来实现,例如,专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程阵列逻辑(PAL)等,或者它们的组合,而不是计算机程序。嵌入式逻辑硬件可以直接执行嵌入式逻辑以在一个或多个步骤或块中执行动作中的一些或全部动作。而且,在一个或多个实施例中(图中未示出),一个或多个步骤或块中的一些或全部动作可以由硬件微控制器而不是CPU执行。在至少一个实施例中,微控制器可以直接执行其自己的嵌入式逻辑以执行动作并访问其自己的内部存储器和其自己的外部输入和输出接口(例如,硬件引脚和/或无线收发器)以执行动作,例如系统片上(SOC)等。
以上说明书,实施例和数据提供了本发明组合物的制造和使用的完整描述。由于可以在不脱离本发明的精神和范围的情况下做出本发明的许多实施例,因此本发明存在于下文所附的权利要求中。

Claims (20)

1.一种用于测量距目标的三维范围的方法,包括:
由发射器向目标发射光;
通过光圈接收来自所述目标对所述光的一个或多个反射;
通过所述光圈引导所述一个或多个反射朝向传感器,该传感器包括布置在具有多个列的一行或多行中的多个像素,其中所述传感器位于偏离所述发射器的位置预定距离的另一位置处;
由一个或多个处理器设备确定朝向所述目标所发射的光的一个或多个离开时间;
基于所述一个或多个离开时间和预定偏离距离,由所述一个或多个处理器设备确定所述一个或多个光反射到所述传感器上的一个或多个预期到达时间;并且,
基于所述一个或多个预期到达时间,由所述一个或多个处理器设备顺序激活布置在所述一个或多个行中的所述多个像素中的一个或多个部分,其中,所述目标的三维范围测量基于由所述多个像素的所述一个或多个部分检测到的一个或多个光反射。
2.根据权利要求1所述的方法,还包括:
由所述一个或多个处理器设备确定所述一行或多行的像素中包含指示捕获了所述一个或多个光反射的一个或多个像素的第一部分;并且
由所述一个或多个处理器设备确定距所述目标的范围是基于所述一行或多行的像素中所确定的第一部分的特定距离。
3.根据权利要求1所述的方法,还包括:
由所述一个或多个处理器设备确定所述一行或多行的像素中指示捕获了所述一个或多个反射的第一部分的视差;
由所述一个或多个处理器设备确定距所述目标的范围是基于所述一行或多行的像素中所确定的所述第一部分的视差的特定距离。
4.根据权利要求1所述的方法,还包括:
由所述一个或多个处理器设备确定所述一行或多行的像素中包含指示捕获了所述一个或多个反射的一个或多个像素的第一部分;
由所述一个或多个处理器设备确定所述一行或多行的像素中的所述第一部分的视差;以及
由所述一个或多个处理器设备将所述一行或多行的像素中的所述第一部分的视差与视差阈值进行比较。
5.根据权利要求1所述的方法,还包括:
当所述一行或多行的像素的所述第一部分的视差超过视差阈值时,由所述一个或多个处理器设备确定距所述目标的范围是基于所述一行或多行的像素中的所述第一部分的视差的特定距离。
6.根据权利要求1所述的方法,还包括:
当所述一行或多行的像素的所述第一部分的视差低于视差阈值时,由所述一个或多个处理器设备确定所发射的光的飞行时间;以及
由所述一个或多个处理器设备确定距所述目标的范围是基于所确定的所发射的光的飞行时间的特定距离。
7.根据权利要求1所述的方法,还包括:
当所述一行或多行的像素的所述第一部分的视差低于视差阈值时,由所述发射器发射一个或多个光突发;
由所述一个或多个处理器设备基于所述传感器指示所述一个或多个光突发的一个或多个反射的捕获来确定所述一个或多个光突发的一个或多个飞行时间;以及
由所述一个或多个处理器设备确定距所述目标的范围是基于所确定的所述一个或多个光突发的一个或多个飞行时间的特定距离。
8.根据权利要求1所述的方法,还包括:
由所述发射器发射在时间上分开的光突发,其中每个光突发包括与在时间上分开的光突发中的的每个其他光突发相比具有不同颜色的光;
由所述一个或多个处理器设备针对不同颜色中的每种颜色确定所述一行或多行的像素中包含指示捕获了具有所述不同颜色中的一种或多种颜色的光的一个或多个像素的各相应部分;
针对所述一行或多行的像素中每个包含指示捕获了具有所述不同颜色中的一种或多种颜色的光的一个或多个像素的各相应部分,由所述一个或多个处理器设备确定所述一行或多行的像素中的各相应部分的各自的视差;以及
由所述一个或多个处理器设备确定距所述目标的范围是基于所述一行或多行像素中包含指示捕获了具有所述一种或多种不同颜色的光的一个或多个像素的各相应部分的各自视差的特定距离。
9.一种测量距目标的三维范围的系统,包括:
发射器,向目标发射光;
光圈,接收来自所述目标对所述光的一个或多个反射,其中所述光圈将所述一个或多个反射引导朝向传感器;
传感器,包括布置在具有多个列的一行或多行中的多个像素,其中所述传感器位于偏离所述发射器的位置预定距离的另一位置处;
存储指令的一个或多个存储器设备;
执行所存储的指令以执行动作的一个或多个处理器设备,所述动作包括:
确定朝向所述目标所发射的光的一个或多个离开时间;
基于所述一个或多个离开时间和预定偏离距离来确定所述一个或多个光反射到所述传感器上的一个或多个预期到达时间;
基于所述一个或多个预期到达时间顺序激活布置在所述一个或多个行中的所述多个像素中的一个或多个部分,其中,所述目标的三维范围测量基于由所述多个像素的所述一个或多个部分检测到的一个或多个光反射。
10.根据权利要求9所述的系统,还包括:
确定所述一行或多行地像素中包含指示捕获了所述一个或多个光反射的一个或多个像素的第一部分;并且
确定距所述目标的范围是基于所述一行或多行的像素中所确定的第一部分的特定距离。
11.根据权利要求9所述的系统,还包括:
确定所述一行或多行的像素中指示捕获了所述一个或多个反射的第一部分的视差;
确定距所述目标的范围是基于所述一行或多行的像素中所确定的所述第一部分的视差的特定距离。
12.根据权利要求9所述的系统,
确定所述一行或多行的像素中包含指示捕获了所述一个或多个反射的一个或多个像素的第一部分;
确定所述一行或多行的像素中的所述第一部分的视差;以及
将所述一行或多行的像素中的所述第一部分的视差与视差阈值进行比较。
13.根据权利要求9所述的系统,还包括:
当所述一行或多行的像素的所述第一部分的视差超过视差阈值时,确定距所述目标的范围是基于所述一行或多行的像素中的所述第一部分的视差的特定距离。
14.根据权利要求9所述的系统,还包括:
当所述一行或多行的像素的所述第一部分的视差低于视差阈值时,确定所发射的光的飞行时间;以及
确定距所述目标的范围是基于所确定的所发射的光的飞行时间的特定距离。
15.根据权利要求9所述的系统,还包括:
当所述一行或多行的像素的所述第一部分的视差低于视差阈值时,发射一个或多个光突发;
基于所述传感器指示所述一个或多个光突发的一个或多个反射的捕获来确定所述一个或多个光突发的一个或多个飞行时间;以及
确定距所述目标的范围是基于所确定的所述一个或多个光突发的一个或多个飞行时间的特定距离。
16.根据权利要求9所述的系统,还包括:
发射在时间上分开的光突发,其中每个光突发包括与在时间上分开的光突发中的每个其他光突发相比具有不同颜色的光;
针对不同颜色中的每种颜色,确定所述一行或多行的像素中包含指示捕获了具有所述不同颜色中的一种或多种颜色的光的一个或多个像素的各相应部分;
针对所述一行或多行的像素中每个包含指示捕获了具有所述不同颜色中的一种或多种颜色的光的一个或多个像素的各相应部分,确定所述一行或多行的像素中的各相应部分的各自的视差;以及
确定距所述目标的范围是基于所述一行或多行的像素中包含指示捕获了具有所述一种或多种不同颜色的光的一个或多个像素的各相应部分的各自视差的特定距离。
17.一种非暂态处理器可读存储介质,包括用于测量距目标的三维范围的指令,其中所述指令在由一个或多个处理器设备执行时使得所述一个或多个处理器设备执行动作,所述动作包括:
由发射器向目标发射光;
通过光圈接收来自所述目标对所述光的一个或多个反射;
通过所述光圈引导所述一个或多个反射朝向传感器,该传感器包括布置在具有多个列的一行或多行中的多个像素,其中所述传感器位于偏离所述发射器的位置预定距离的另一位置处;
由一个或多个处理器设备确定朝向所述目标所发射的光的一个或多个离开时间;
基于所述一个或多个离开时间和预定偏离距离,由所述一个或多个处理器设备确定所述一个或多个光反射到达所述传感器的一个或多个预期到达时间;并且,
基于所述一个或多个预期到达时间,由所述一个或多个处理器设备顺序激活布置在所述一个或多个行中的所述多个像素中的一个或多个部分,其中,所述目标的三维范围测量基于由所述多个像素的所述一个或多个部分检测到的一个或多个光反射。
18.根据权利要求17所述的介质,还包括:
由所述一个或多个处理器设备确定所述一行或多行的像素中包含指示捕获了所述一个或多个光反射的一个或多个像素的第一部分;并且
由所述一个或多个处理器设备确定距所述目标的范围是基于所述一行或多行的像素中所确定的第一部分的特定距离。
19.根据权利要求17所述的介质,还包括:
由所述一个或多个处理器设备确定所述一行或多行的像素中指示捕获了所述一个或多个反射的第一部分的视差;
由所述一个或多个处理器设备确定距所述目标的范围是基于所述一行或多行的像素中所确定的所述第一部分的视差的特定距离。
20.根据权利要求17所述的介质,还包括:
由所述发射器发射在时间上分开的光突发,其中每个光突发包括与在时间上分开的光突发中的每个其他光突发相比具有不同颜色的光;
由所述一个或多个处理器设备针对不同颜色中的每种颜色确定所述一行或多行像素中包含指示捕获了具有所述不同颜色中的一种或多种颜色的光的一个或多个像素的各相应部分;
针对所述一行或多行像素中每个包含指示捕获了具有所述不同颜色中的一种或多种颜色的光的一个或多个像素的各相应部分,由所述一个或多个处理器设备确定所述一行或多行的像素中的各相应部分的各自的视差;以及
由所述一个或多个处理器设备确定距所述目标的范围是基于所述一行或多行的像素中包含指示捕获了具有所述一种或多种不同颜色的光的一个或多个像素的各相应部分的各自视差的特定距离。
CN201680082143.9A 2015-12-18 2016-12-19 对象的实时位置感测 Active CN108885264B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201562386991P 2015-12-18 2015-12-18
US62/386,991 2015-12-18
US201662391637P 2016-05-03 2016-05-03
US62/391,637 2016-05-03
US201662495667P 2016-09-19 2016-09-19
US62/495,667 2016-09-19
PCT/US2016/067626 WO2017106875A1 (en) 2015-12-18 2016-12-19 Real time position sensing of objects

Publications (2)

Publication Number Publication Date
CN108885264A true CN108885264A (zh) 2018-11-23
CN108885264B CN108885264B (zh) 2022-07-22

Family

ID=63556049

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680082143.9A Active CN108885264B (zh) 2015-12-18 2016-12-19 对象的实时位置感测

Country Status (2)

Country Link
EP (1) EP3391085B1 (zh)
CN (1) CN108885264B (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109581294A (zh) * 2018-11-29 2019-04-05 中国船舶工业系统工程研究院 一种基于脉冲激光的定位装置及方法
CN109752702A (zh) * 2019-03-18 2019-05-14 深圳市镭神智能系统有限公司 一种激光雷达
CN109799817A (zh) * 2019-01-15 2019-05-24 智慧航海(青岛)科技有限公司 一种基于光反射特性的无人船全局路径规划方法
CN109916829A (zh) * 2019-03-21 2019-06-21 衢州华友钴新材料有限公司 溶液颜色检测系统及检测方法
CN110389352A (zh) * 2019-08-16 2019-10-29 国网内蒙古东部电力有限公司电力科学研究院 光学三维动作捕捉方法及系统
CN110646807A (zh) * 2019-09-19 2020-01-03 上海兰宝传感科技股份有限公司 一种基于激光三角测量系统抗环境光干扰的处理方法
CN110988892A (zh) * 2019-12-09 2020-04-10 北京信息科技大学 一种激光主动探测系统
CN111327365A (zh) * 2020-03-05 2020-06-23 中国科学技术大学 基于非周期同步光的星地量子密钥分发同步方法与装置
CN112213730A (zh) * 2019-07-10 2021-01-12 睿镞科技(北京)有限责任公司 三维测距方法和装置
WO2021016829A1 (en) * 2019-07-30 2021-02-04 Shenzhen Genorivision Technology Co., Ltd. Image sensors for lidar systems
CN112388621A (zh) * 2019-08-13 2021-02-23 北京海益同展信息科技有限公司 对接装置、移动机器人和对接装置的对接方法
CN112445333A (zh) * 2019-08-28 2021-03-05 通用汽车环球科技运作有限责任公司 与平视显示器集成的眼睛定位跟踪装置
CN112558089A (zh) * 2019-09-26 2021-03-26 深圳市速腾聚创科技有限公司 闪光雷达和距离信息检测方法
CN112738430A (zh) * 2020-12-30 2021-04-30 长春长光辰芯光电技术有限公司 可切换像素结构
CN112990247A (zh) * 2019-12-02 2021-06-18 埃森哲环球解决方案有限公司 具有5g阵列的多模态对象检测系统
CN113022759A (zh) * 2019-12-06 2021-06-25 格科特有限公司 用于微移动性车辆的碰撞警报系统和方法
TWI757213B (zh) * 2021-07-14 2022-03-01 神煜電子股份有限公司 具線性電偏移校正的近接感測裝置
CN114428233A (zh) * 2021-12-23 2022-05-03 西安电子科技大学 基于多时间多分辨率的雷达目标轨迹检测方法
CN115327510A (zh) * 2022-07-28 2022-11-11 广州晨日电子技术有限公司 自适应漫反射物体检测方法以及漫反射式物体检测装置
CN115479755A (zh) * 2022-09-13 2022-12-16 农业农村部南京农业机械化研究所 一种高空虫情测报灯灯光有效射程及光束角测试方法和系统
WO2023231314A1 (zh) * 2022-05-30 2023-12-07 神盾股份有限公司 距离感测装置及其感测方法
CN117255179A (zh) * 2023-11-14 2023-12-19 北京灵赋生物科技有限公司 基于图像标签识别导向的轨迹监测系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7408303B2 (ja) * 2019-06-18 2024-01-05 株式会社ミツトヨ 測定装置
EP3885797A1 (de) * 2020-03-25 2021-09-29 ZKW Group GmbH Fahrzeugumfelderfassungssystem mit variablem sichtfeld
CN115694792A (zh) * 2021-10-09 2023-02-03 科大国盾量子技术股份有限公司 可检测强脉冲光致盲攻击的方法、装置及接收端

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045381A (ja) * 1999-08-02 2001-02-16 Sony Corp 画像処理装置および方法、並びに媒体
US20060197936A1 (en) * 2005-03-01 2006-09-07 Liebman Lionel D Single detector receiver for multi-beam LADAR systems
EP2711667A1 (de) * 2012-09-21 2014-03-26 Baumer Electric AG Vorrichtung zur Entfernungsmessung
US20150285625A1 (en) * 2014-04-07 2015-10-08 Samsung Electronics Co., Ltd. High resolution, high frame rate, low power image sensor
DE102015205826A1 (de) * 2014-04-04 2015-10-08 Ifm Electronic Gmbh Entfernungsmesssystem mit Lichtlaufzeitpixelzeile
CN105066953A (zh) * 2009-09-11 2015-11-18 罗伯特·博世有限公司 光学距离测量装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245398A (en) * 1991-06-21 1993-09-14 Eastman Kodak Company Time-multiplexed multi-zone rangefinder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045381A (ja) * 1999-08-02 2001-02-16 Sony Corp 画像処理装置および方法、並びに媒体
US20060197936A1 (en) * 2005-03-01 2006-09-07 Liebman Lionel D Single detector receiver for multi-beam LADAR systems
CN105066953A (zh) * 2009-09-11 2015-11-18 罗伯特·博世有限公司 光学距离测量装置
EP2711667A1 (de) * 2012-09-21 2014-03-26 Baumer Electric AG Vorrichtung zur Entfernungsmessung
DE102015205826A1 (de) * 2014-04-04 2015-10-08 Ifm Electronic Gmbh Entfernungsmesssystem mit Lichtlaufzeitpixelzeile
US20150285625A1 (en) * 2014-04-07 2015-10-08 Samsung Electronics Co., Ltd. High resolution, high frame rate, low power image sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F. BLAIS 等: "Range Error Analysis of an Integrated Time-of-Flight, Triangulation, and Photogrammetry 3D Laser Scanning System", 《IN LASER RADAR TECHNOLOGY AND APPLICATIONS》 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109581294A (zh) * 2018-11-29 2019-04-05 中国船舶工业系统工程研究院 一种基于脉冲激光的定位装置及方法
CN109799817A (zh) * 2019-01-15 2019-05-24 智慧航海(青岛)科技有限公司 一种基于光反射特性的无人船全局路径规划方法
CN109752702A (zh) * 2019-03-18 2019-05-14 深圳市镭神智能系统有限公司 一种激光雷达
CN109916829A (zh) * 2019-03-21 2019-06-21 衢州华友钴新材料有限公司 溶液颜色检测系统及检测方法
CN112213730B (zh) * 2019-07-10 2024-05-07 睿镞科技(北京)有限责任公司 三维测距方法和装置
CN112213730A (zh) * 2019-07-10 2021-01-12 睿镞科技(北京)有限责任公司 三维测距方法和装置
WO2021016829A1 (en) * 2019-07-30 2021-02-04 Shenzhen Genorivision Technology Co., Ltd. Image sensors for lidar systems
CN112388621B (zh) * 2019-08-13 2023-04-07 京东科技信息技术有限公司 对接装置、移动机器人和对接装置的对接方法
CN112388621A (zh) * 2019-08-13 2021-02-23 北京海益同展信息科技有限公司 对接装置、移动机器人和对接装置的对接方法
CN110389352A (zh) * 2019-08-16 2019-10-29 国网内蒙古东部电力有限公司电力科学研究院 光学三维动作捕捉方法及系统
CN112445333A (zh) * 2019-08-28 2021-03-05 通用汽车环球科技运作有限责任公司 与平视显示器集成的眼睛定位跟踪装置
CN110646807A (zh) * 2019-09-19 2020-01-03 上海兰宝传感科技股份有限公司 一种基于激光三角测量系统抗环境光干扰的处理方法
CN112558089A (zh) * 2019-09-26 2021-03-26 深圳市速腾聚创科技有限公司 闪光雷达和距离信息检测方法
CN112558089B (zh) * 2019-09-26 2024-02-27 深圳市速腾聚创科技有限公司 闪光雷达和距离信息检测方法
CN112990247A (zh) * 2019-12-02 2021-06-18 埃森哲环球解决方案有限公司 具有5g阵列的多模态对象检测系统
CN112990247B (zh) * 2019-12-02 2024-01-05 埃森哲环球解决方案有限公司 具有5g阵列的多模态对象检测系统
CN113022759A (zh) * 2019-12-06 2021-06-25 格科特有限公司 用于微移动性车辆的碰撞警报系统和方法
US11878761B2 (en) 2019-12-06 2024-01-23 Gekot, Inc. Collision alert systems and methods for micromobility vehicles
US11623707B2 (en) 2019-12-06 2023-04-11 GEKOT Inc. Collision alert systems and methods for micromobility vehicles
CN110988892A (zh) * 2019-12-09 2020-04-10 北京信息科技大学 一种激光主动探测系统
CN110988892B (zh) * 2019-12-09 2022-04-26 北京信息科技大学 一种激光主动探测系统
CN111327365B (zh) * 2020-03-05 2021-07-09 中国科学技术大学 基于非周期同步光的星地量子密钥分发同步方法与装置
CN111327365A (zh) * 2020-03-05 2020-06-23 中国科学技术大学 基于非周期同步光的星地量子密钥分发同步方法与装置
CN112738430B (zh) * 2020-12-30 2023-05-26 长春长光辰芯微电子股份有限公司 可切换像素结构
CN112738430A (zh) * 2020-12-30 2021-04-30 长春长光辰芯光电技术有限公司 可切换像素结构
TWI757213B (zh) * 2021-07-14 2022-03-01 神煜電子股份有限公司 具線性電偏移校正的近接感測裝置
CN114428233A (zh) * 2021-12-23 2022-05-03 西安电子科技大学 基于多时间多分辨率的雷达目标轨迹检测方法
CN114428233B (zh) * 2021-12-23 2024-05-17 西安电子科技大学 基于多时间多分辨率的雷达目标轨迹检测方法
WO2023231314A1 (zh) * 2022-05-30 2023-12-07 神盾股份有限公司 距离感测装置及其感测方法
CN115327510A (zh) * 2022-07-28 2022-11-11 广州晨日电子技术有限公司 自适应漫反射物体检测方法以及漫反射式物体检测装置
CN115327510B (zh) * 2022-07-28 2023-10-27 广州晨日电子技术有限公司 自适应漫反射物体检测方法以及漫反射式物体检测装置
CN115479755A (zh) * 2022-09-13 2022-12-16 农业农村部南京农业机械化研究所 一种高空虫情测报灯灯光有效射程及光束角测试方法和系统
CN117255179A (zh) * 2023-11-14 2023-12-19 北京灵赋生物科技有限公司 基于图像标签识别导向的轨迹监测系统
CN117255179B (zh) * 2023-11-14 2024-02-02 北京灵赋生物科技有限公司 基于图像标签识别导向的轨迹监测系统

Also Published As

Publication number Publication date
EP3391085B1 (en) 2023-04-19
EP3391085A1 (en) 2018-10-24
CN108885264B (zh) 2022-07-22
EP3391085A4 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
CN108885264A (zh) 对象的实时位置感测
US11714170B2 (en) Real time position sensing of objects
US11137497B2 (en) Three-dimensional triangulation and time-of-flight based tracking systems and methods
US11709236B2 (en) Systems and methods for machine perception
US10935659B2 (en) Fast scanning lidar with dynamic voxel probing
US10325376B2 (en) Machine vision for ego-motion, segmenting, and classifying objects
US10725177B2 (en) Hyper-resolved, high bandwidth scanned LIDAR systems
Gordon et al. Advanced 3D imaging lidar concepts for long range sensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant