CN108880315B - 一种电压源变流器新型死区补偿方法 - Google Patents

一种电压源变流器新型死区补偿方法 Download PDF

Info

Publication number
CN108880315B
CN108880315B CN201810781628.8A CN201810781628A CN108880315B CN 108880315 B CN108880315 B CN 108880315B CN 201810781628 A CN201810781628 A CN 201810781628A CN 108880315 B CN108880315 B CN 108880315B
Authority
CN
China
Prior art keywords
converter
dead
current
voltage source
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810781628.8A
Other languages
English (en)
Other versions
CN108880315A (zh
Inventor
梁营玉
许冠军
王聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology Beijing CUMTB
Original Assignee
China University of Mining and Technology Beijing CUMTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology Beijing CUMTB filed Critical China University of Mining and Technology Beijing CUMTB
Priority to CN201810781628.8A priority Critical patent/CN108880315B/zh
Publication of CN108880315A publication Critical patent/CN108880315A/zh
Application granted granted Critical
Publication of CN108880315B publication Critical patent/CN108880315B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Abstract

死区效应是引起电压源变流器非线性特性的主要因素之一,恶化了变流器的运行性能。为了抑制死区效应,提高变流器的运行性能,本发明公开了一种电压源变流器新型死区补偿方法。本发明建立了电压源变流器离散数学模型,在此基础上提出基于电流观测器的无差拍控制,然后嵌入重复控制器抑制变流器的死区效应。本发明公开的新型死区补偿方法克服了传统死区补偿方法存在的补偿精度不高、需要复杂的电流极性检测算法等缺点,实验结果表明死区补偿效果良好。

Description

一种电压源变流器新型死区补偿方法
技术领域
本发明涉及一种电压源变流器新型死区补偿方法,属于变流器控制技术领域。
背景技术
电压源变流器可作为整流器、逆变器、变频器、有源滤波器、静止同步补偿器等装置的主电路和高压直流输电的换流器单元,已广泛应用于电力系统和工业用户。死区效应是引起电压源变流器非线性特性的主要因素之一,会导致电压源变流器运行性能变差,例如,控制目标偏离预期目标、输出电流含较多谐波分量。因此,有必要对电压源变流器的死区效应进行有效补偿。
传统的死区补偿方法大体可分为平均电压误差补偿法和基于脉冲调整的补偿法两大类。平均电压误差补偿法是指在掌握死区时间对变流器输出电压影响的基础上,采用一定的方法生成相应的电压误差信号,对变流器原始参考电压进行校正,以实现死区补偿,抑制死区效应对变流器的影响。基于脉冲调整的补偿法是根据死区时间引起的电压误差,通过改变开关占空比时间、调整触发脉冲等手段实现死区补偿。平均电压误差补偿法和基于脉冲调整的补偿法归根结底都是开环补偿方法,补偿精确不够高。此外,多数死区补偿方法依赖电流极性的判断,电流极性判断方法的准确性会直接影响死区补偿的效果。为了提高电流极性判断的准确性,往往需要额外的硬件检测电路或复杂的电流极性检测算法。
发明内容
针对现有死区补偿方法存在的诸多问题,本发明提供了一种电压源变流器新型死区补偿方法。
一种电压源变流器新型死区补偿方法,包括以下步骤:
步骤一:建立电压源变流器的连续数学模型,将其离散化得到离散数学模型;
步骤二:基于离散数学模型设计电流观测器,根据第k-1个控制周期计算得到的变流器指令电压ux(k)、kTs时刻变流器输出电流采样值ix(k)、kTs时刻电网电压采样值ex(k)和电流观测器的计算公式得到(k+1)Ts时刻变流器输出电流的观测值
Figure BDA0001732732900000011
Ts为控制周期;x=a,b,c,表示电力系统的A、B、C三相;
步骤三:kTs时刻的指令电流
Figure BDA0001732732900000012
与变流器输出电流采样值ix(k)之差经过重复控制器得到电流误差校正信号yrp(k);
步骤四:kTs时刻的指令电流
Figure BDA0001732732900000013
与电流观测值
Figure BDA0001732732900000014
之差叠加上电流误差校正信号yrp(k)作为输入信号,经过无差拍控制后得到在第k+1个控制周期应用于变流器的指令电压ux(k+1),延时一个控制周期得到ux(k);
步骤五:ux(k)根据相应的公式计算得到占空比,采用相应的调制方法对占空比进行调制得到变流器中电力电子开关器件的原始驱动信号,原始驱动信号经过驱动电路得到最终的驱动信号发送给对应的电力电子开关器件。
与现有死区补偿方法相比,本发明提供的新型死区补偿方法具有如下优势:
1、补偿精度高,输出电流波形质量好;
2、不需要判断电流极性;
3、不需要额外的硬件检测电路和复杂的电流极性检测算法。
附图说明
图1为电压源变流器主电路结构图;
图2为基于无差拍和重复控制的新型死区补偿方法框图;
图3为未采用死区补偿时的实验结果;
图4为采用本专利提供的新型死区补偿方法时的实验结果。
具体实施方式
下面结合附图对本发明作更进一步的说明。
一种电压源变流器新型死区补偿方法,包括以下步骤:
步骤一:根据图1所示的参考方向,建立电压源变流器的连续数学模型:
Figure BDA0001732732900000021
其中,Lc为变流器的连接电抗器;ex(t)表示x相电网电压,x=a,b,c,表示电力系统的A、B、C三相;ux(t)表示变流器x相输出电压;ix(t)表示变流器x相输出电流。
采用一阶前向欧拉法将公式(1)离散化得到离散数学模型:
Figure BDA0001732732900000022
其中,Ts为控制周期。
步骤二:基于离散数学模型设计电流观测器,如图2所示。根据第k-1个控制周期计算得到的变流器指令电压ux(k)、kTs时刻变流器输出电流采样值ix(k)、kTs时刻电网电压采样值ex(k)和电流观测器的计算公式得到(k+1)Ts时刻变流器输出电流的观测值
Figure BDA0001732732900000023
电流观测器的公式为:
Figure BDA0001732732900000024
步骤三:如图2,kTs时刻的指令电流
Figure BDA0001732732900000025
与变流器输出电流采样值ix(k)之差经过重复控制器得到电流误差校正信号yrp(k);
重复控制器的输入为:
Figure BDA0001732732900000026
重复控制器的传递函数表达式为:
Figure BDA0001732732900000031
其中,krc为重复控制的增益;Q(z)为内模系数,Q(z)=Q1·Q2(z)。Q1为小于1的常数,Q2(z)=0.25z+0.5+0.25z-1
重复控制器的差分方程为:
Figure BDA0001732732900000032
步骤四:如图2,kTs时刻的指令电流
Figure BDA0001732732900000033
与电流观测值
Figure BDA0001732732900000034
之差叠加上电流误差校正信号yrp(k)作为输入信号,经过无差拍控制后得到在第k+1个控制周期应用于变流器的指令电压ux(k+1),具体计算公式为:
Figure BDA0001732732900000035
其中,
Figure BDA0001732732900000036
为电网电压(k+1)Ts时刻的估计值,
Figure BDA0001732732900000037
可采用线性插值公式计算得到,具体计算公式为:
Figure BDA0001732732900000038
ux(k+1)延时一个控制周期得到ux(k);
步骤五:如图2,ux(k)根据相应的公式计算得到占空比,具体公式为:
Figure BDA0001732732900000039
其中,udc(k)为直流侧电压采样值。
如图2,采用相应的调制方法对占空比进行调制得到变流器中电力电子开关器件的原始驱动信号,原始驱动信号经过驱动电路得到最终的驱动信号发送给对应的电力电子开关器件。
图3为未采用死区补偿方法时的实验结果。从图中可以看出,未采用死区补偿时,变流器发出的电流波形出现明显畸变,总谐波畸变率(total distortion harmonic,THD)高达11.2%。此外,变流器输出电流的基波分量有效值约为50A,而指令电流为60A,电流偏差较大。
图4给出了采用本专利提供的新型死区补偿方法时的实验结果。从图中可以看出,采用新型死区补偿方法后,变流器输出电流的波形质量得到明显改善,接近正弦波,THD约为3.8%。变流器输出电流的基波分量有效值约为59.9A,非常接近指令电流60A,控制精度较高。实验对比结果说明了本专利公开的新型死区补偿方法的优越性。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理和宗旨的的前提下,还可以做出若干改进、替换、变型和润饰,这些改进、替换、变型和润饰也应视为本发明的保护范围。

Claims (3)

1.一种电压源变流器新型死区补偿方法,其特征在于,包括以下步骤:
步骤一:建立电压源变流器的连续数学模型,将其离散化得到离散数学模型;
步骤二:基于离散数学模型设计电流观测器,根据第k-1个控制周期计算得到的变流器指令电压ux(k)、kTs时刻变流器输出电流采样值ix(k)、kTs时刻电网电压采样值ex(k)和电流观测器的计算公式得到(k+1)Ts时刻变流器输出电流的观测值
Figure FDA0002639576520000011
Ts为控制周期;x=a,b,c,表示电力系统的A、B、C三相;
所述电流观测器表达式为:
Figure FDA0002639576520000012
其中,Lc为变流器的连接电抗器;
步骤三:kTs时刻的指令电流
Figure FDA0002639576520000013
与变流器输出电流采样值ix(k)之差经过重复控制器得到电流误差校正信号yrp(k);
所述重复控制器的差分方程为:
Figure FDA0002639576520000014
其中,xrp表示重复控制器的输入信号;yrp表示重复控制器的输出信号;krc为重复控制的增益;Q1为内模系数;
步骤四:kTs时刻的指令电流
Figure FDA0002639576520000015
与电流观测值
Figure FDA0002639576520000016
之差叠加上电流误差校正信号yrp(k)作为输入信号,经过无差拍控制后得到在第k+1个控制周期应用于变流器的指令电压ux(k+1),延时一个控制周期得到ux(k),所述无差拍控制的具体计算公式为:
Figure FDA0002639576520000021
其中,
Figure FDA0002639576520000022
为电网电压(k+1)Ts时刻的估计值,
Figure FDA0002639576520000023
可采用线性插值公式计算得到,具体计算公式为:
Figure FDA0002639576520000024
步骤五:ux(k)根据相应的公式计算得到占空比,采用相应的调制方法对占空比进行调制得到变流器中电力电子开关器件的原始驱动信号,原始驱动信号经过驱动电路得到最终的驱动信号发送给对应的电力电子开关器件。
2.根据权利要求1所述的一种电压源变流器新型死区补偿方法,其特征在于:所述电压源变流器的主电路拓扑包括两电平电压源变流器、三电平电压源变流器、H桥级联多电平电压源变流器、模块化多电平换流器。
3.根据权利要求1所述的一种电压源变流器新型死区补偿方法,其特征在于:步骤一所述离散数学模型表达式为:
Figure FDA0002639576520000025
其中,Ts为控制周期;Lc为变流器的连接电抗器;ex表示x相电网电压,x=a,b,c,表示电力系统的A、B、C三相;ux表示变流器x相输出电压;ix表示变流器x相输出电流;k表示kTs时刻的采样值,k+1表示(k+1)Ts时刻的采样值。
CN201810781628.8A 2018-07-17 2018-07-17 一种电压源变流器新型死区补偿方法 Active CN108880315B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810781628.8A CN108880315B (zh) 2018-07-17 2018-07-17 一种电压源变流器新型死区补偿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810781628.8A CN108880315B (zh) 2018-07-17 2018-07-17 一种电压源变流器新型死区补偿方法

Publications (2)

Publication Number Publication Date
CN108880315A CN108880315A (zh) 2018-11-23
CN108880315B true CN108880315B (zh) 2020-10-16

Family

ID=64302440

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810781628.8A Active CN108880315B (zh) 2018-07-17 2018-07-17 一种电压源变流器新型死区补偿方法

Country Status (1)

Country Link
CN (1) CN108880315B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111342695B (zh) * 2018-12-17 2021-04-16 广州汽车集团股份有限公司 逆变器的死区补偿方法和装置
CN111541367B (zh) * 2020-05-07 2021-06-29 上海交通大学 一种变频调速逆变器及其死区引起相移补偿方法
CN114123751B (zh) * 2021-11-26 2023-10-10 珠海格力电器股份有限公司 死区补偿方法、逆变器控制电路、装置及逆变器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611289A (zh) * 2012-03-21 2012-07-25 东北大学 一种瞬时谐波估算及补偿型单相逆变电源及其控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326609B (zh) * 2012-03-22 2016-06-29 张家港智电柔性输配电技术研究所有限公司 一种三相电压型并网变流器控制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611289A (zh) * 2012-03-21 2012-07-25 东北大学 一种瞬时谐波估算及补偿型单相逆变电源及其控制方法

Also Published As

Publication number Publication date
CN108880315A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
CN108880315B (zh) 一种电压源变流器新型死区补偿方法
Bode et al. An improved robust predictive current regulation algorithm
Chang et al. Digital-signal-processor-based DC/AC inverter with integral-compensation terminal sliding-mode control
Xue et al. Closed-loop SPWM control for grid-connected buck-boost inverters
CN110086367B9 (zh) 用于控制dc-ac转换器的设备
CN110492774B (zh) 一种大功率分数阶阻抗元件实现电路及其控制方法
EP2582033A2 (en) Control for a multi-level active rectifier
Hur et al. A two-degrees-of-freedom current control scheme for deadtime compensation
EP3396831B1 (en) Phase compensation for power factor correction circuit to reduce zero-crossing distortion
CN110545033A (zh) 用于补偿逆变器中死区的方法及系统
CN110855169B (zh) 一种无电压传感器的单相逆变器模型预测控制方法
US10666131B2 (en) Dead-time voltage compensation apparatus and dead-time voltage compensation method
CN111316558B (zh) 电力变换装置
WO2017033428A1 (ja) 電力変換装置
Zahira et al. SPWM technique for reducing harmonics in three-phase non-linear load
CN113258615B (zh) 并网逆变器频率自适应控制方法、装置、设备及存储介质
CN111628643B (zh) 一种在pfc控制中预测电流采样方法
WO2019026141A1 (ja) 電力変換装置
O'Driscoll et al. Combining peak current mode control with average current mode control using digitally assisted analog
CN108919154B (zh) 一种用于交流恒流源电流反馈信号的动态数据校正方法
CN108631638B (zh) 一种单相逆变器的改进模型预测控制方法
Suzdalenko et al. Single-loop Current Sensorless Control with Self-detection of Conduction Losses Applied to Neutral Point Clamped Multilevel Converter
JP2009142005A (ja) 系統連係型インバータ制御装置及び制御方法
CN110829432A (zh) 一种apf的限幅方法
CN113328648B (zh) 一种逆变器pwm调制方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant