CN108880300A - A kind of double-fed blower rectifier impedance calculation method based on double-closed-loop control - Google Patents

A kind of double-fed blower rectifier impedance calculation method based on double-closed-loop control Download PDF

Info

Publication number
CN108880300A
CN108880300A CN201810844397.0A CN201810844397A CN108880300A CN 108880300 A CN108880300 A CN 108880300A CN 201810844397 A CN201810844397 A CN 201810844397A CN 108880300 A CN108880300 A CN 108880300A
Authority
CN
China
Prior art keywords
control
circuit
impedance
loop
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810844397.0A
Other languages
Chinese (zh)
Other versions
CN108880300B (en
Inventor
刘志刚
刘静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201810844397.0A priority Critical patent/CN108880300B/en
Publication of CN108880300A publication Critical patent/CN108880300A/en
Application granted granted Critical
Publication of CN108880300B publication Critical patent/CN108880300B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/12Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

本发明公开了一种基于双闭环控制的双馈风机整流器阻抗计算方法,根据电路拓扑及控制框图建立电气量、控制量之间的关系式,推导出闭环阻抗的表达式并对其进行验证:根据电路拓扑建立电气量之间的关系式,分别包括占空比信号、直流侧电压、网侧电压和网侧电流,根据控制框图建立电流内环控制和电压外环控制部分的数学模型,然后根据电路与控制之间的联系建立锁相环部分的数学模型,联合以推导出闭环阻抗表达式;最后通过输入不同频率下的扰动、计算阻抗值的方法,验证了阻抗计算方法的正确性。本发明为双馈风机整流器的稳定性研究奠定了基础,可以通过阻抗的分析以调节参数来避免出现谐波不稳定等危害电力系统的现象。

The invention discloses a method for calculating the impedance of a double-fed fan rectifier based on double-closed-loop control. According to the circuit topology and the control block diagram, the relationship between the electrical quantity and the control quantity is established, and the expression of the closed-loop impedance is derived and verified: According to the circuit topology, the relationship between the electrical quantities is established, including the duty cycle signal, the DC side voltage, the grid side voltage and the grid side current, and the mathematical model of the current inner loop control and the voltage outer loop control part is established according to the control block diagram, and then According to the relationship between the circuit and the control, the mathematical model of the phase-locked loop part is established, and the closed-loop impedance expression is derived jointly; finally, the correctness of the impedance calculation method is verified by inputting disturbances at different frequencies and calculating the impedance value. The invention lays a foundation for the research on the stability of the double-fed fan rectifier, and can avoid phenomena harmful to the power system such as harmonic instability by adjusting parameters through impedance analysis.

Description

一种基于双闭环控制的双馈风机整流器阻抗计算方法A Method for Impedance Calculation of Double-fed Fan Rectifier Based on Double Closed-loop Control

技术领域technical field

本发明涉及双馈风机网侧整流器稳定性分析技术领域,具体为一种基于双闭环控制的双馈风机整流器阻抗计算方法。The invention relates to the technical field of stability analysis of a double-fed fan grid-side rectifier, in particular to a method for calculating the impedance of a double-fed fan rectifier based on double closed-loop control.

背景技术Background technique

风能作为一种清洁环保的绿色能源,近年来受到越来越多的关注。双馈感应风力发电机以其并网稳定性好,可以实现有功和无功的解耦控制等优势,成为目前风力发电领域主流机型之一。但是整流器作为电力电子元件,它的结构上存在一些固有缺陷,可能会严重影响系统的电能质量和稳定性,其中就出现了如谐波不稳定这样的现象,不仅会使电网系统的供应环境恶化,造成控制系统紊乱,还会降低系统的电压或电能质量,引发严重的谐波过电压和过电流等问题。为了对双馈风机的整流器部分进行稳定性分析,基于阻抗的稳定性分析是目前广泛应用的方法。As a clean and environmentally friendly green energy, wind energy has received more and more attention in recent years. Doubly-fed induction wind turbine has become one of the mainstream models in the field of wind power generation due to its good grid-connected stability and the advantages of decoupling control of active power and reactive power. However, as a power electronic component, the rectifier has some inherent defects in its structure, which may seriously affect the power quality and stability of the system. Among them, there are phenomena such as harmonic instability, which will not only deteriorate the supply environment of the grid system , causing the control system to be disordered, and will also reduce the voltage or power quality of the system, causing serious problems such as harmonic overvoltage and overcurrent. In order to analyze the stability of the rectifier part of the double-fed fan, the stability analysis based on impedance is a widely used method at present.

使用基于阻抗的稳定性分析方法,只需要分别各个子系统的外阻抗特性即可分析整个系统的稳定性。从最后计算出来的闭环阻抗中可以通过改变参数分别研究不同影响因子对于整体稳定性的作用效果,从而有效地抑制各种不稳定现象的发生。而由于整流器使用开关器件引入了非线性特性,双馈风机整流器阻抗模型的建立也成为了主要的难点。Using the impedance-based stability analysis method, the stability of the entire system can be analyzed only by distinguishing the external impedance characteristics of each subsystem. From the final calculated closed-loop impedance, the effects of different influencing factors on the overall stability can be studied respectively by changing the parameters, so as to effectively suppress the occurrence of various unstable phenomena. Since the rectifier uses switching devices to introduce nonlinear characteristics, the establishment of the impedance model of the double-fed fan rectifier has also become a major difficulty.

发明内容Contents of the invention

针对上述问题,本发明的目的在于提供一种能够通过调节参数提高双馈风机整流器的稳定性,避免出现谐波不稳定等危害电力系统的现象的基于双闭环控制的双馈风机整流器阻抗计算方法。技术方案如下:In view of the above problems, the object of the present invention is to provide a method for calculating the impedance of a double-fed fan rectifier based on double closed-loop control, which can improve the stability of the rectifier of the double-fed fan by adjusting parameters, and avoid harmonic instability and other phenomena that endanger the power system. . The technical solution is as follows:

一种基于双闭环控制的双馈风机整流器阻抗计算方法,包括如下步骤:A method for calculating the impedance of a doubly-fed fan rectifier based on double closed-loop control, comprising the following steps:

步骤1:按照整流器在dq轴下的电路拓扑建立整流器电路的小信号模型:Step 1: Establish a small-signal model of the rectifier circuit according to the circuit topology of the rectifier under the dq axis:

其中:in:

式中:分别为网侧电流和电压在dq轴下的小信号分量,为直流侧电压的小信号分量,为调制信号dq轴下的小信号分量;Ln、Rn为整流器网侧电感与电阻;Cd、Rd为直流侧的电容与电阻;Dd、Dq为dq轴下静态工作点的开关状态量;Id、 Iq为dq轴下静态工作点的电流量;ω为交流侧电压基波角频率;Udc为电压给定参考值;s 为拉普拉斯变换的复变量;A、B、C、D分别表示电路小信号模型中的模块矩阵。以上小信号量为电路系统中的数学模型,皆省略代表电信号的上标m。In the formula: and are the small signal components of the grid side current and voltage under the dq axis, respectively, is the small signal component of the DC side voltage, is the small signal component of the modulation signal under the dq axis; L n , R n are the inductance and resistance of the rectifier network side; C d , R d are the capacitance and resistance of the DC side; D d , D q are the values of the static working point under the dq axis Switch state quantity; I d , I q are the currents at the static operating point under the dq axis; ω is the fundamental angular frequency of the AC side voltage; U dc is the given reference value of the voltage; s is the complex variable of the Laplace transform; A, B, C, and D represent the module matrix in the circuit small-signal model, respectively. The above small semaphore is a mathematical model in the circuit system, and the superscript m representing the electrical signal is omitted.

根据主电路的小信号模型,得到电路部分的模块传函:According to the small signal model of the main circuit, the module transfer function of the circuit part is obtained:

GA=[0 0 1 0 0]A-1B GB=[0 0 1 0 0]C-1DG A =[0 0 1 0 0]A -1 BG B =[0 0 1 0 0]C -1 D

其中:GA为电路中udc到ddq的模块传递函数;GB为电路中udc到udq的模块传递函数;GC为电路中idq到ddq的模块传递函数;GD为电路中idq到udq的模块传递函数。Among them: G A is the module transfer function from u dc to d dq in the circuit; G B is the module transfer function from u dc to u dq in the circuit; G C is the module transfer function from i dq to d dq in the circuit; G D is The block transfer function from i dq to u dq in the circuit.

步骤2:建立dq轴下双闭环控制的小信号模型,包括电流内环控制与电压外环控制:Step 2: Establish a small signal model of double closed-loop control under the dq axis, including current inner loop control and voltage outer loop control:

电流内环控制:Current inner loop control:

其中:in:

电压外环控制:Voltage outer loop control:

其中:in:

式中:为交流测电压在dq轴下的给定值;为网测电流在dq轴下的给定值;kigP、kigI为电流内环控制的比例、积分调节系数;为电压外环控制的比例、积分调节系数;GipI为控制中实际值与给定值的差值到的模块传递函数;Goi为控制中的模块传递函数;Guce为控制中的模块传递函数;G21为控制中Udc的模块传递函数。以上为控制系统的数学波形,皆省略上标c。In the formula: It is the given value of the AC measuring voltage under the dq axis; is the given value of the network measurement current under the dq axis; k igP and k igI are the proportional and integral adjustment coefficients of the current inner loop control; is the proportional and integral adjustment coefficient of the voltage outer loop control; G ipI is the control The difference between the actual value and the given value to The module transfer function; G oi is the control arrive The module transfer function; G uce is the control arrive The module transfer function; G 21 is U dc in the control to The module transfer function for . The above is the mathematical waveform of the control system, and the superscript c is omitted.

步骤3:建立dq轴下锁相环部分的小信号模型,电路信号到控制信号传递过程的数学模型为:Step 3: Establish the small signal model of the phase-locked loop part under the dq axis, and the mathematical model of the transmission process from the circuit signal to the control signal is:

其中:in:

式中:带有上标m的小信号分量为电信号,带有上标c的小信号分量为控制信号;Ed为dq 轴下静态工作点的网压ud的幅值;Gpi为锁相环部分比例积分模块的传递函数Kppll和Kipll分别为锁相环模块的比例、积分调节系数;E22为锁相环部分udq在电路模块中的小信号分量到控制模块中小信号分量的模块传递函数;H22为锁相环部分udq在电路模块中的小信号分量到ddq在控制模块中小信号分量的模块传递函数;F22为锁相环部分udq在电路模块中的小信号分量到idq在控制模块中小信号分量的模块传递函数。In the formula: the small signal component with the superscript m is the electrical signal, and the small signal component with the superscript c is the control signal; E d is the amplitude of the network pressure u d at the static working point under the dq axis; G pi is Transfer Function of Partial Proportional Integral Module of Phase Locked Loop K ppll and K ipll are the proportional and integral adjustment coefficients of the phase-locked loop module respectively; E 22 is the module transfer function from the small signal component of the phase-locked loop part u dq in the circuit module to the small signal component in the control module; H 22 is the lock The module transfer function of the small signal component of the phase loop part u dq in the circuit module to the small signal component of d dq in the control module; F 22 is the small signal component of the phase locked loop part u dq in the circuit module to i dq in the control module Block transfer function for small and medium signal components.

步骤4:得出三相整流器的闭环阻抗;Step 4: Obtain the closed-loop impedance of the three-phase rectifier;

闭环阻抗的形式为:The closed loop impedance has the form:

式中:Zdq为三相整流器的闭环阻抗矩阵;Zdd(s)、Zdq(s)、Zqd(s)、Zqq(s)分别为dd轴、dq轴、 qd轴、qq轴下的闭环阻抗表达式。In the formula: Z dq is the closed-loop impedance matrix of the three-phase rectifier; Z dd (s), Z dq (s), Z qd (s), Z qq (s) are dd axis, dq axis, qd axis, qq axis respectively The closed-loop impedance expression below.

结合电路、控制及锁相环的数学方程,得到三相整流器的闭环阻抗:Combining the mathematical equations of the circuit, control and phase-locked loop, the closed-loop impedance of the three-phase rectifier is obtained:

式中:GPWM为系统的延时传函, Ts为开关周期;Gq代表控制信号需进行的标幺化处理,K22为整流器电路的小信号模型中dq坐标量与αβ坐标量之间的关系,且:In the formula: G PWM is the delay transfer letter of the system, T s is the switching period; G q represents the per-unit processing of the control signal, K 22 is the relationship between dq coordinates and αβ coordinates in the small signal model of the rectifier circuit, and:

进一步的,所述步骤4之后还包括步骤5:建立带有扰动输入的仿真模型,通过在仿真模型中输入扰动进行测量阻抗,对比测量结果与计算得到的闭环阻抗,验证计算结果的正确性;测量阻抗为:Further, step 5 is also included after step 4: establishing a simulation model with disturbance input, measuring impedance by inputting disturbance in the simulation model, comparing the measurement result with the calculated closed-loop impedance, and verifying the correctness of the calculation result; The measured impedance is:

式中:为设计在dq系下的电压扰动,为设计在 dq系下的电流扰动。In the formula: To design the voltage perturbation in the dq system, In order to design the current disturbance under the dq system.

更进一步的,所述步骤5具体为:Further, the step 5 is specifically:

在dq轴中设计扰动,满足两组电压电流dq扰动分量线性无关:The disturbance is designed in the dq axis, and the two sets of voltage and current dq disturbance components are linearly independent:

式中:Er为扰动电压幅值;ωp为扰动频率;In the formula: E r is the disturbance voltage amplitude; ω p is the disturbance frequency;

通过Park逆变换及Clark逆变换计算得到原坐标轴下的扰动:The disturbance under the original coordinate axis is calculated by Park inverse transformation and Clark inverse transformation:

通过添加不同频率的电压扰动,采集信号进行处理,得到特定频率下的阻抗大小。By adding voltage perturbations of different frequencies, the signal is collected and processed to obtain the impedance at a specific frequency.

本发明的有益效果是:本发明采用MIMO阻抗建模方法,考虑了占空比、网压两个输入量及网测电流、直流侧电压两个输出量,推导了电路及控制两重影响下的完整闭环dq阻抗表达式;采用了扰动引入的方法,通过计算不同频率下的阻抗值验证了闭环阻抗计算结果的正确性,为后续不同稳定性现象的分析及抑制提供了有效正确的基础。The beneficial effects of the present invention are: the present invention adopts the MIMO impedance modeling method, considers two input quantities of duty cycle and network voltage, and two output quantities of network measurement current and DC side voltage, and derives The complete closed-loop dq impedance expression; using the method of disturbance introduction, the correctness of the closed-loop impedance calculation results is verified by calculating the impedance values at different frequencies, which provides an effective and correct basis for the subsequent analysis and suppression of different stability phenomena.

附图说明Description of drawings

图1为双馈风机整流侧的电路及控制示意图。Figure 1 is a schematic diagram of the circuit and control of the rectifier side of the doubly-fed fan.

图2为dq坐标系下整流器的电路示意图。Fig. 2 is a schematic circuit diagram of a rectifier in the dq coordinate system.

图3为基于双闭环控制的整流器小信号模型图。Figure 3 is a small-signal model diagram of a rectifier based on double closed-loop control.

图4为在Matlab/Simulink中搭建的带有扰动输入的整流器仿真模型。Figure 4 is a rectifier simulation model with disturbance input built in Matlab/Simulink.

图5为闭环阻抗测量结果图。Figure 5 is a graph of the closed-loop impedance measurement results.

图6为本发明基于双闭环控制的双馈风机整流器阻抗计算方法的流程图。Fig. 6 is a flow chart of the method for calculating the impedance of a doubly-fed fan rectifier based on double closed-loop control in the present invention.

具体实施方式Detailed ways

下面结合附图和具体实施例对本发明做进一步详细说明。本发明提供的基于双闭环控制的双馈风机整流器阻抗计算方法,如图1所示,整个系统主要分为电路与控制两大部分,主要步骤为:根据电路拓扑建立电气量之间的关系式;根据控制框图建立控制部分的数学模型;建立电路与控制之间相联系的锁相环部分的数学模型;推导出闭环阻抗表达式;并通过输入不同频率下的扰动来计算阻抗值的方法,验证阻抗计算方法的正确性。详述如下:The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments. The impedance calculation method of double-fed fan rectifier based on double closed-loop control provided by the present invention, as shown in Figure 1, the whole system is mainly divided into two parts: circuit and control, the main steps are: establish the relationship between the electrical quantities according to the circuit topology ; Establish the mathematical model of the control part according to the control block diagram; establish the mathematical model of the phase-locked loop part connected between the circuit and the control; derive the closed-loop impedance expression; and calculate the impedance value by inputting disturbances at different frequencies, Verify the correctness of the impedance calculation method. The details are as follows:

根据Clark坐标变换及Park坐标变换,可以由图1所示的三相电路变换到如图2所示的 dq坐标系下,电气量包含稳态量与小信号含量,通过基尔霍夫第一、第二定律KCL、KVL方程,得到双馈风机整流器在dq坐标系下静态工作点的方程:According to the Clark coordinate transformation and the Park coordinate transformation, the three-phase circuit shown in Figure 1 can be transformed into the dq coordinate system shown in Figure 2. The electrical quantity includes the steady state quantity and the small signal content. , the second law KCL, KVL equation, get the equation of the static working point of the doubly-fed fan rectifier in the dq coordinate system:

式中:Ln、Rn为整流器网侧电感与电阻;Cd、Rd为直流侧的电容与电阻;Dd、Dq为dq轴下静态工作点的开关状态量;Id、Iq为dq轴下静态工作点的电流量;ω为交流侧电压基波角频率;Udc为电压给定参考值;三相变换器在坐标变换后,将dq坐标系中的d轴与电网电压矢量定位于同一方向上,所以Ed为网压的幅值,Eq为0。整流器工作在单位功率因数下,故Iq也为零,所以可以得到剩余的稳态量:In the formula: L n , R n are the inductance and resistance of the grid side of the rectifier; C d , R d are the capacitance and resistance of the DC side; D d , D q are the switch state quantities of the static working point under the dq axis; I d , I q is the current at the static working point under the dq axis; ω is the fundamental angular frequency of the AC side voltage; The voltage vectors are positioned in the same direction, so E d is the magnitude of the grid voltage, and E q is 0. The rectifier works at unity power factor, so I q is also zero, so the remaining steady-state quantity can be obtained:

根据图2可以得到交流与直流侧的数学模型:According to Figure 2, the mathematical models of the AC and DC sides can be obtained:

式中:分别为网侧电流和电压在dq轴下的小信号分量,为直流侧电压的小信号分量,为调制信号dq轴下的小信号分量。以上小信号量为电路系统中的数学模型,皆省略上标m。In the formula: and are the small signal components of the grid side current and voltage under the dq axis, respectively, is the small signal component of the DC side voltage, is the small signal component under the dq axis of the modulated signal. The above small semaphores are mathematical models in the circuit system, and the superscript m is omitted.

结合静态工作点的方程,除去小信号的乘积项,可以得到整流器交流与直流侧的小信号模型:Combined with the equation of the static operating point, the small signal model of the AC and DC sides of the rectifier can be obtained by removing the product term of the small signal:

其中:in:

根据主电路的小信号模型,可以得到图3中的电路部分的模块传函:According to the small signal model of the main circuit, the module transfer function of the circuit part in Figure 3 can be obtained:

GA=[0 0 1 0 0]A-1B GB=[0 0 1 0 0]C-1DG A =[0 0 1 0 0]A -1 BG B =[0 0 1 0 0]C -1 D

其中:A、B、C、D分别表示电路小信号模型中的模块矩阵;GA为电路中udc到ddq的模块传递函数;GB为电路中udc到udq的模块传递函数;GC为电路中idq到ddq的模块传递函数; GD为电路中idq到udq的模块传递函数。Among them: A, B, C, D respectively represent the module matrix in the small signal model of the circuit; G A is the module transfer function from u dc to d dq in the circuit; G B is the module transfer function from u dc to u dq in the circuit; G C is the module transfer function from i dq to d dq in the circuit; G D is the module transfer function from i dq to u dq in the circuit.

从图1中可以看出控制部分包括电流内环控制和电压外环控制,可以根据图1中的控制框图写出dq轴下的电流、电压控制方程:It can be seen from Figure 1 that the control part includes current inner loop control and voltage outer loop control, and the current and voltage control equations under the dq axis can be written according to the control block diagram in Figure 1:

电流内环控制:Current inner loop control:

电压外环控制:Voltage outer loop control:

使Udcref=0,可以得到控制部分的小信号模型及图3中控制部分的模块传函:Make Udcref = 0, the small signal model of the control part and the module transfer letter of the control part in Fig. 3 can be obtained:

电流内环控制:Current inner loop control:

其中:in:

电压外环控制:Voltage outer loop control:

其中:in:

式中:为交流测电压在dq轴下的给定值;为网测电流在dq轴下的给定值;kigP、kigI为电流内环控制的比例、积分调节系数;为电压外环控制的比例、积分调节系数;GipI为控制中实际值与给定值的差值到的模块传递函数;Goi为控制中的模块传递函数;Guce为控制中的模块传递函数;G21为控制中Udc的模块传递函数。以上为控制系统的数学波形,皆省略上标c。In the formula: It is the given value of the AC measuring voltage under the dq axis; is the given value of the network measurement current under the dq axis; k igP and k igI are the proportional and integral adjustment coefficients of the current inner loop control; is the proportional and integral adjustment coefficient of the voltage outer loop control; G ipI is the control The difference between the actual value and the given value to The module transfer function; G oi is the control arrive The module transfer function; G uce is the control arrive The module transfer function; G 21 is U dc in the control to The module transfer function for . The above is the mathematical waveform of the control system, and the superscript c is omitted.

电路模块与控制模块之间需要锁相环进行电气量与调制量的转换,故需要建立dq轴下锁相环部分的小信号模型。根据Park坐标变换可以得到以下数学模型,表示电路信号到控制信号的传递过程,带有上标m的小信号分量为电信号,带有上标d的小信号分量为控制信号:The phase-locked loop is needed between the circuit module and the control module to convert the electrical quantity and the modulation quantity, so it is necessary to establish a small-signal model of the phase-locked loop part under the dq axis. According to the Park coordinate transformation, the following mathematical model can be obtained, which represents the transmission process from the circuit signal to the control signal. The small signal component with the superscript m is the electrical signal, and the small signal component with the superscript d is the control signal:

省略小信号的乘积项可以得到:Omitting the product term for small signals yields:

其中:in:

同理可以得到电流与占空比信号的传递方程:In the same way, the transfer equation of the current and duty cycle signals can be obtained:

其中:in:

式中:Ed为dq轴下静态工作点的网压ud的幅值;Gpi为锁相环部分比例积分模块的传递函数Kppll和Kipll分别为锁相环模块的比例、积分调节系数;E22为锁相环部分udq在电路模块中的小信号分量到控制模块中小信号分量的模块传递函数;H22为锁相环部分udq在电路模块中的小信号分量到ddq在控制模块中小信号分量的模块传递函数;F22为锁相环部分udq在电路模块中的小信号分量到idq在控制模块中小信号分量的模块传递函数。In the formula: E d is the amplitude of network pressure u d at the static working point under the dq axis; G pi is the transfer function of the proportional-integral module of the phase-locked loop K ppll and K ipll are the proportional and integral adjustment coefficients of the phase-locked loop module respectively; E 22 is the module transfer function from the small signal component of the phase-locked loop part u dq in the circuit module to the small signal component in the control module; H 22 is the lock The module transfer function of the small signal component of the phase loop part u dq in the circuit module to the small signal component of d dq in the control module; F 22 is the small signal component of the phase locked loop part u dq in the circuit module to i dq in the control module Block transfer function for small and medium signal components.

闭环阻抗的形式为式中:Zdq为三相整流器的闭环阻抗矩阵;Zdd(s)、Zdq(s)、Zqd(s)、Zqq(s)分别为dd轴、dq轴、qd轴、qq轴下的闭环阻抗表达式。The closed loop impedance is of the form In the formula: Z dq is the closed-loop impedance matrix of the three-phase rectifier; Z dd (s), Z dq (s), Z qd (s), Z qq (s) are dd axis, dq axis, qd axis, qq axis respectively The closed-loop impedance expression below.

结合电路、控制及锁相环的数学方程,可以得到三相整流器的闭环阻抗:Combining the mathematical equations of the circuit, control and phase-locked loop, the closed-loop impedance of the three-phase rectifier can be obtained:

式中:GPWM为系统的延时传函,Ts为开关周期;Gq代表控制信号需进行的标幺化处理,K22为整流器电路的小信号模型中dq坐标量与αβ坐标量之间的关系,且:In the formula: G PWM is the delay transfer letter of the system, T s is the switching period; G q represents the per-unit processing of the control signal, K 22 is the relationship between dq coordinates and αβ coordinates in the small signal model of the rectifier circuit, and:

为了能够验证闭环阻抗计算方法的正确性,建立了如图4所示的带有扰动输入的仿真模型进行测量阻抗。测量阻抗表达式为:In order to verify the correctness of the closed-loop impedance calculation method, a simulation model with a disturbance input as shown in Figure 4 is established to measure the impedance. The measured impedance expression is:

式中:为设计在dq系下的电压扰动。为设计在 dq系下的电流扰动。In the formula: In order to design the voltage disturbance under the dq system. In order to design the current disturbance under the dq system.

首先要在dq轴中设计扰动,并满足两组电压电流dq扰动分量线性无关:Firstly, the disturbance should be designed in the dq axis, and the two sets of voltage and current dq disturbance components should be linearly independent:

式中:Er为扰动电压幅值;ωp为扰动频率。In the formula: E r is the disturbance voltage amplitude; ω p is the disturbance frequency.

通过Park逆变换及Clark逆变换计算得到原坐标轴下的扰动:The disturbance under the original coordinate axis is calculated by Park inverse transformation and Clark inverse transformation:

通过改变扰动的频率,可以采集到不同频率下的电压和电流值,计算可得到特定频率下的阻抗大小。本发明中选择了1、2、3、4、5、6、7、17、27、37、47、57、67、77、87、97Hz的扰动进行输入,得到了如图5所示的闭环阻抗测量结果图,图中显示测量结果与计算结果基本上可以吻合,验证了这种计算方法的正确性。By changing the frequency of the disturbance, the voltage and current values at different frequencies can be collected, and the impedance at a specific frequency can be calculated. In the present invention, disturbances of 1, 2, 3, 4, 5, 6, 7, 17, 27, 37, 47, 57, 67, 77, 87, and 97 Hz are selected for input, and the closed loop shown in Figure 5 is obtained The graph of the impedance measurement results shows that the measurement results and the calculation results are basically consistent, which verifies the correctness of this calculation method.

Claims (3)

1.一种基于双闭环控制的双馈风机整流器阻抗计算方法,其特征在于,包括如下步骤:1. A double-fed fan rectifier impedance calculation method based on double closed-loop control, is characterized in that, comprises the steps: 步骤1:按照整流器在dq轴下的电路拓扑建立整流器电路的小信号模型:Step 1: Establish a small-signal model of the rectifier circuit according to the circuit topology of the rectifier under the dq axis: 其中:in: 式中:分别为网侧电流和电压在dq轴下的小信号分量,为直流侧电压的小信号分量,为调制信号dq轴下的小信号分量;Ln、Rn为整流器网侧电感与电阻;Cd、Rd为直流侧的电容与电阻;Dd、Dq为dq轴下静态工作点的开关状态量;Id、Iq为dq轴下静态工作点的电流量;ω为交流侧电压基波角频率;Udc为电压给定参考值;s为拉普拉斯变换的复变量;A、B、C、D分别表示电路小信号模型中的模块矩阵;以上小信号量为电路系统中的数学模型,皆省略代表电信号的上标m;In the formula: and are the small signal components of the grid side current and voltage under the dq axis, respectively, is the small signal component of the DC side voltage, is the small signal component of the modulation signal under the dq axis; L n , R n are the inductance and resistance of the rectifier network side; C d , R d are the capacitance and resistance of the DC side; D d , D q are the values of the static working point under the dq axis Switch state quantity; I d , I q are the currents at the static working point under the dq axis; ω is the fundamental angular frequency of the voltage on the AC side; U dc is the given reference value of the voltage; s is the complex variable of Laplace transform; A, B, C, and D respectively represent the module matrix in the circuit small signal model; the above small signal quantities are mathematical models in the circuit system, and the superscript m representing the electrical signal is omitted; 根据主电路的小信号模型,得到电路部分的模块传函:According to the small signal model of the main circuit, the module transfer function of the circuit part is obtained: GA=[0 0 1 0 0]A-1B GB=[0 0 1 0 0]C-1DG A =[0 0 1 0 0]A -1 BG B =[0 0 1 0 0]C -1 D 其中:GA为电路中udc到ddq的模块传递函数;GB为电路中udc到udq的模块传递函数;GC为电路中idq到ddq的模块传递函数;GD为电路中idq到udq的模块传递函数;Among them: G A is the module transfer function from u dc to d dq in the circuit; G B is the module transfer function from u dc to u dq in the circuit; G C is the module transfer function from i dq to d dq in the circuit; G D is The module transfer function from i dq to u dq in the circuit; 步骤2:建立dq轴下双闭环控制的小信号模型,包括电流内环控制与电压外环控制:电流内环控制:Step 2: Establish a small signal model of double closed-loop control under the dq axis, including current inner loop control and voltage outer loop control: current inner loop control: 其中:in: 电压外环控制:Voltage outer loop control: 其中:in: 式中:为交流测电压在dq轴下的给定值;为网测电流在dq轴下的给定值;kigP、kigI为电流内环控制的比例、积分调节系数;为电压外环控制的比例、积分调节系数;GipI为控制中实际值与给定值的差值到的模块传递函数;Goi为控制中的模块传递函数;Guce为控制中的模块传递函数;G21为控制中Udc的模块传递函数;以上为控制系统的数学波形,皆省略上标c;In the formula: It is the given value of the AC measuring voltage under the dq axis; is the given value of the network measurement current under the dq axis; k igP and k igI are the proportional and integral adjustment coefficients of the current inner loop control; is the proportional and integral adjustment coefficient of the voltage outer loop control; G ipI is the control The difference between the actual value and the given value to The module transfer function; G oi is the control arrive The module transfer function; G uce is the control arrive The module transfer function; G 21 is U dc in the control to The module transfer function of ; the above is the mathematical waveform of the control system, and the superscript c is omitted; 步骤3:建立dq轴下锁相环部分的小信号模型,电路信号到控制信号传递过程的数学模型为:Step 3: Establish the small signal model of the phase-locked loop part under the dq axis, and the mathematical model of the transmission process from the circuit signal to the control signal is: 其中:in: 式中:带有上标m的小信号分量为电信号,带有上标c的小信号分量为控制信号;Ed为dq轴下静态工作点的网压ud的幅值;Gpi为锁相环部分比例积分模块的传递函数Kppll和Kipll分别为锁相环模块的比例、积分调节系数;E22为锁相环部分udq在电路模块中的小信号分量到控制模块中小信号分量的模块传递函数;H22为锁相环部分udq在电路模块中的小信号分量到ddq在控制模块中小信号分量的模块传递函数;F22为锁相环部分udq在电路模块中的小信号分量到idq在控制模块中小信号分量的模块传递函数;In the formula: the small signal component with the superscript m is the electrical signal, and the small signal component with the superscript c is the control signal; E d is the amplitude of the network pressure u d at the static working point under the dq axis; G pi is Transfer Function of Partial Proportional Integral Module of Phase Locked Loop K ppll and K ipll are the proportional and integral adjustment coefficients of the phase-locked loop module respectively; E 22 is the module transfer function from the small signal component of the phase-locked loop part u dq in the circuit module to the small signal component in the control module; H 22 is the lock The module transfer function of the small signal component of the phase loop part u dq in the circuit module to the small signal component of d dq in the control module; F 22 is the small signal component of the phase locked loop part u dq in the circuit module to i dq in the control module Module transfer function for small and medium signal components; 步骤4:得出三相整流器的闭环阻抗;Step 4: Obtain the closed-loop impedance of the three-phase rectifier; 闭环阻抗的形式为:The closed loop impedance has the form: 式中:Zdq为三相整流器的闭环阻抗矩阵;Zdd(s)、Zdq(s)、Zqd(s)、Zqq(s)分别为dd轴、dq轴、qd轴、qq轴下的闭环阻抗表达式;In the formula: Z dq is the closed-loop impedance matrix of the three-phase rectifier; Z dd (s), Z dq (s), Z qd (s), Z qq (s) are dd axis, dq axis, qd axis, qq axis respectively The closed-loop impedance expression under; 结合电路、控制及锁相环的数学方程,得到三相整流器的闭环阻抗:Combining the mathematical equations of the circuit, control and phase-locked loop, the closed-loop impedance of the three-phase rectifier is obtained: 式中:GPWM为系统的延时传函,Ts为开关周期;Gq代表控制信号需进行的标幺化处理,K22为整流器电路的小信号模型中dq坐标量与αβ坐标量之间的关系,且:In the formula: G PWM is the delay transfer letter of the system, T s is the switching period; G q represents the per-unit processing of the control signal, K 22 is the relationship between dq coordinates and αβ coordinates in the small signal model of the rectifier circuit, and: 2.根据权利要求1所述的基于双闭环控制的双馈风机整流器阻抗计算方法,所述步骤4之后还包括步骤5:建立带有扰动输入的仿真模型,通过在仿真模型中输入扰动进行测量阻抗,对比测量结果与计算得到的闭环阻抗,验证计算结果的正确性;测量阻抗为:2. The rectifier impedance calculation method based on double closed-loop control according to claim 1, after said step 4, also includes step 5: set up a simulation model with disturbance input, and measure by input disturbance in the simulation model Impedance, compare the measured results with the calculated closed-loop impedance to verify the correctness of the calculated results; the measured impedance is: 式中:为设计在dq系下的电压扰动,为设计在dq系下的电流扰动。In the formula: To design the voltage perturbation in the dq system, In order to design the current disturbance under the dq system. 3.根据权利要求2所述的基于双闭环控制的双馈风机整流器阻抗计算方法,所述步骤5具体为:3. the double-fed fan rectifier impedance calculation method based on double closed-loop control according to claim 2, said step 5 is specifically: 在dq轴中设计扰动,满足两组电压电流dq扰动分量线性无关:The disturbance is designed in the dq axis, and the two sets of voltage and current dq disturbance components are linearly independent: 式中:Er为扰动电压幅值;ωp为扰动频率;In the formula: E r is the disturbance voltage amplitude; ω p is the disturbance frequency; 通过Park逆变换及Clark逆变换计算得到原坐标轴下的扰动:The disturbance under the original coordinate axis is calculated by Park inverse transformation and Clark inverse transformation: 通过添加不同频率的电压扰动,采集信号进行处理,得到特定频率下的阻抗大小。By adding voltage perturbations of different frequencies, the signal is collected and processed to obtain the impedance at a specific frequency.
CN201810844397.0A 2018-07-27 2018-07-27 Double-fed fan rectifier impedance calculation method based on double closed-loop control Expired - Fee Related CN108880300B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810844397.0A CN108880300B (en) 2018-07-27 2018-07-27 Double-fed fan rectifier impedance calculation method based on double closed-loop control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810844397.0A CN108880300B (en) 2018-07-27 2018-07-27 Double-fed fan rectifier impedance calculation method based on double closed-loop control

Publications (2)

Publication Number Publication Date
CN108880300A true CN108880300A (en) 2018-11-23
CN108880300B CN108880300B (en) 2020-03-20

Family

ID=64306016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810844397.0A Expired - Fee Related CN108880300B (en) 2018-07-27 2018-07-27 Double-fed fan rectifier impedance calculation method based on double closed-loop control

Country Status (1)

Country Link
CN (1) CN108880300B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108847670A (en) * 2018-07-30 2018-11-20 西南交通大学 A kind of harmonic instability analysis method of double-fed blower grid side converter
CN110456161A (en) * 2019-08-09 2019-11-15 合肥工业大学 Impedance Measurement Method for Adaptive Control of Disturbance Frequency and Disturbance Amplitude
CN111525828A (en) * 2020-05-20 2020-08-11 太原理工大学 Control method of bidirectional isolation type resonant power converter based on virtual synchronous motor
CN112953172A (en) * 2021-01-28 2021-06-11 东南大学 Method for modeling sequence impedance of modular multilevel converter under phase-locked loop coupling
CN116093942A (en) * 2023-04-06 2023-05-09 广东电网有限责任公司珠海供电局 Construction method, device, terminal and medium for frequency division impedance model of frequency division frequency converter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783642A (en) * 2010-03-12 2010-07-21 华北电力大学 Method for optimally designing parameters of double-fed wind-driven power generation control system
CN103904665A (en) * 2014-04-15 2014-07-02 华北电力大学 Power system stabilizer design method suitable for double-fed draught fan
US20160226368A1 (en) * 2013-10-18 2016-08-04 Abb Technology Ag Control method for electrical converter with lc filter
CN106227949A (en) * 2016-07-26 2016-12-14 三峡大学 A kind of Wind turbines primary frequency control system dynamic response modeling method controlled based on rotating speed
CN107317357A (en) * 2017-07-17 2017-11-03 湖南大学 The small-signal admittance modeling of LCL type combining inverter and method for analyzing stability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783642A (en) * 2010-03-12 2010-07-21 华北电力大学 Method for optimally designing parameters of double-fed wind-driven power generation control system
US20160226368A1 (en) * 2013-10-18 2016-08-04 Abb Technology Ag Control method for electrical converter with lc filter
CN103904665A (en) * 2014-04-15 2014-07-02 华北电力大学 Power system stabilizer design method suitable for double-fed draught fan
CN106227949A (en) * 2016-07-26 2016-12-14 三峡大学 A kind of Wind turbines primary frequency control system dynamic response modeling method controlled based on rotating speed
CN107317357A (en) * 2017-07-17 2017-11-03 湖南大学 The small-signal admittance modeling of LCL type combining inverter and method for analyzing stability

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108847670A (en) * 2018-07-30 2018-11-20 西南交通大学 A kind of harmonic instability analysis method of double-fed blower grid side converter
CN108847670B (en) * 2018-07-30 2021-04-09 西南交通大学 Harmonic instability analysis method for doubly-fed fan grid-side converter
CN110456161A (en) * 2019-08-09 2019-11-15 合肥工业大学 Impedance Measurement Method for Adaptive Control of Disturbance Frequency and Disturbance Amplitude
CN111525828A (en) * 2020-05-20 2020-08-11 太原理工大学 Control method of bidirectional isolation type resonant power converter based on virtual synchronous motor
CN111525828B (en) * 2020-05-20 2023-03-10 太原理工大学 Control Method of Bidirectional Isolated Resonant Power Converter Based on Virtual Synchronous Motor
CN112953172A (en) * 2021-01-28 2021-06-11 东南大学 Method for modeling sequence impedance of modular multilevel converter under phase-locked loop coupling
US11687699B2 (en) 2021-01-28 2023-06-27 Southeast University Method for modeling sequence impedance of modular multilevel converter under phase locked loop coupling
CN116093942A (en) * 2023-04-06 2023-05-09 广东电网有限责任公司珠海供电局 Construction method, device, terminal and medium for frequency division impedance model of frequency division frequency converter
CN116093942B (en) * 2023-04-06 2023-07-04 广东电网有限责任公司珠海供电局 Construction method, device, terminal and medium for frequency division impedance model of frequency division frequency converter

Also Published As

Publication number Publication date
CN108880300B (en) 2020-03-20

Similar Documents

Publication Publication Date Title
Xue et al. A complete impedance model of a PMSG-based wind energy conversion system and its effect on the stability analysis of MMC-HVDC connected offshore wind farms
CN111541262B (en) Model Prediction Modeling Method of MMC Frequency Coupling Impedance under Constant AC Voltage Control
CN108964040B (en) Power-current coordinated control method of virtual synchronous generator under grid unbalance
CN106532685B (en) For the generalized impedance criterion calculation method of gird-connected inverter stability analysis and application
CN108880300A (en) A kind of double-fed blower rectifier impedance calculation method based on double-closed-loop control
CN110556831B (en) A stability evaluation method and system for a multi-machine multi-node power generation system
CN108418253B (en) Impedance modeling and stability analysis method of current control type virtual synchronous generator
Gong et al. Impact analysis and mitigation of synchronization dynamics for DQ impedance measurement
CN108964118A (en) Phase-locked loop-considered small-signal impedance modeling method for single-phase grid-connected inverter
CN106936125B (en) A Generalized Second-Order Integral Phase Locked Loop Small Signal Impedance Modeling Method
CN110429611A (en) A kind of Static Var Compensator sequence impedance modeling and control parameter method of adjustment
CN110676874B (en) Direct-drive fan subsynchronous oscillation electrical quantity analysis method considering frequency coupling effect
CN108923463A (en) Consider the frequency coupling modeling method of the single-phase LCL type gird-connected inverter of phaselocked loop
CN105958548B (en) A kind of inverter power-voltage control method suitable for weak grid operating condition
CN110224431B (en) Control method for reducing influence of phase-locked loop in grid-connected inverter system
CN109586337B (en) Risk assessment method for subsynchronous oscillation of VSC grid-connected system based on frequency domain modeling
CN110768299A (en) Sequence Impedance Modeling and Stability Analysis Method of Load Virtual Synchronous Machine
CN107069800A (en) A kind of method for building up of double-fed fan motor short circuit current flow model
CN108988391A (en) The method for analyzing stability of double-fed fan rotor side converter based on revolving speed control
CN108847670A (en) A kind of harmonic instability analysis method of double-fed blower grid side converter
CN110137949A (en) A kind of method and device for the mains by harmonics characteristic obtaining the station containing new energy
CN112018783A (en) Model reduced order feedback control method for direct-drive fan subsynchronous oscillation suppression
CN108306332A (en) A kind of LCL type grid-connected inverting system and curren tracing control method
Xue et al. A comprehensive study on impedance models of grid-tied voltage-source converters
Xue et al. A complete impedance model of a PMSG-based wind turbine system considering machine-side dynamics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200320

Termination date: 20210727