CN108876838B - 微操作系统的微操作空间的数字化方法及系统 - Google Patents

微操作系统的微操作空间的数字化方法及系统 Download PDF

Info

Publication number
CN108876838B
CN108876838B CN201810622197.0A CN201810622197A CN108876838B CN 108876838 B CN108876838 B CN 108876838B CN 201810622197 A CN201810622197 A CN 201810622197A CN 108876838 B CN108876838 B CN 108876838B
Authority
CN
China
Prior art keywords
axis
micro
space
vision system
microscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810622197.0A
Other languages
English (en)
Other versions
CN108876838A (zh
Inventor
王代华
王坎
张朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201810622197.0A priority Critical patent/CN108876838B/zh
Publication of CN108876838A publication Critical patent/CN108876838A/zh
Application granted granted Critical
Publication of CN108876838B publication Critical patent/CN108876838B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种微操作系统的微操作空间的数字化方法,通过计算机显微视觉断层扫描技术、计算机显微视觉切片扫描技术在微操作系统各单目显微视觉系统光轴所在的方向垂直的两个正交方向上对微操作空间进行切片扫描获取切片扫描位置,沿显微视觉系统光轴方向上进行断层扫描获取断层扫描图像序列,并计算各单目显微视觉系统获取的微操作空间,计算各个方向上的三维数字化微操作空间的相交空间,即为数字化的微操作系统的微操作空间。该方法不仅在保证高分辨率的同时,提高了成像的视场或景深范围,而且将超视场或超景深的微操作系统空间信息进行数字化表示,形象直观表征了微操作空间下物体的三维信息,以实现在微操作空间空间下高效率、高精度、全自动的装配或操作。

Description

微操作系统的微操作空间的数字化方法及系统
技术领域
本发明属于智能制造领域和科学研究领域,具体服务于微操作领域,具体涉及显微视觉系统的零件三维重构技术,尤其涉及微操作空间的数字化技术。
背景技术
在微操作系统中,显微视觉系统起着至关重要的作用,微操作系统中大多采用的是显微视觉系统,显微视觉系统的零件三维重构技术是所有拥有视觉系统的微操作系统的主要研究内容也是必须处理好的内容。Marr视觉计算理论框架中视觉部分的零件三维重构可以分为两大类,一类是通过视觉系统对物体采集的二维图像来进行重构,重构理论主要是利用物体在三维空间中的点、线、面与其在二维图像中的点、线之间的关系来实现物体的重构。另一类是通过断层扫描的方式获取物体横截面的图像序列,通过有一定间隔的图像序列来重构物体。
显微视觉系统的高分辨率、高放大倍数给微小零件的观测提供了极大方便,但由此也带来了小景深、小视场的问题。小视场就是在广度上无法获得待装配零件的全貌,小景深就是在深度上无法获得零件全貌。这样就无法采用点、线、面的方式进行零件的空间重构,又由于在微操作系统中也不方便采用CT、MRI等技术进行断层扫描的方式进行零件的重构。因此在对微操作空间中微型零件的装配或操作时就无法重构出空间信息全貌,也就无法进行装配或操作路径的优化进而解决装配或操作精度低、效率低、装配难度大等技术难题。
发明内容
本发明的目的是针对现有技术的不足,提出一种微操作系统的微操作空间的数字化方法,在数字化微操作空间下对微型零件进行三维显示、位姿检测及优化微型零件的装配或操作路径从而提高整个系统的装配或操作效率。
本发明解决其技术问题所采用的技术方案如下:
一种微操作系统的微操作空间数字化方法,其主要采用计算机显微视觉切片扫描技术、计算机显微视觉断层扫描技术获得微操作空间的切片扫描位置和断层图像序列实现微操作系统的微操作空间数字化。总体是,针对X轴、Z轴方向上的双目正交显微视觉系统的微操作系统,针对X轴方向的单目显微视觉系统(5)利用二维精密定位系统(6、7)控制显微视觉系统(5)进行切片扫描获取切片扫描位置,再通过一维精密定位系统(8)控制显微视觉系统(5)沿X轴方向进行断层扫描获取断层扫描图像序列;针对Z轴方向的单目显微视觉系统(1)利用二维精密定位系统(3、2)控制显微视觉系统(1)进行切片扫描获取切片扫描位置,再通过一维精密定位系统(4)控制显微视觉系统(1)沿Z轴方向进行断层扫描获取断层扫描图像序列;同理,针对X轴、Y轴、Z轴方向上的三目正交显微视觉系统的微操作系统,增加Y轴方向上的显微视觉系统(22),利用精密定位系统(21、20)控制显微视觉系统(22)进行切片扫描获取各切片扫描位置,利用精密定位系统(19)控制显微视觉系统(22)沿Y轴方向进行断层扫描获取不同切片扫描位置的断层扫描的图像序列;针对X轴、Y轴、Z轴、R轴方向上的多目显微视觉系统的微操作系统,则增加显微视觉系统(44),并获取对应的切片扫描位置和不同切片扫描位置的断层扫描图像序列;针对断层扫描图像结合沿X轴、Y轴、Z轴、R轴方向上作计算机显微视觉断层扫描的精密定位系统的运动步长重构三维断层视场空间,利用栅格化以及栅格数值化获取三维断层视场空间的数字化信息,并求取微操作空间在各方向上的三维切片空间;最后分别求取X轴、Y轴、Z轴、R轴方向各单目显微视觉系统获取的数字化微操作空间,并求取各方向上的微操作空间的相交空间。
本发明方法的具体步骤如下:
步骤1:利用计算机显微视觉切片扫描技术、计算机断层扫描技术获得各方向上单目显微视觉系统焦平面在微操作空间的切片扫描位置和断层扫描图像序列。针对X轴和Z轴双目正交的显微视觉系统,X轴方向上的显微视觉系统Ⅱ在微操作空间的Y轴、Z轴方向进行切片扫描,获取显微视觉系统Ⅱ的焦平面的各切片扫描位置,在微操作空间X轴方向进行断层扫描并记录不同切片扫描位置的断层扫描图像序列;Z轴方向上的显微视觉系统Ⅰ在微操作空间的X轴、Y轴方向进行切片扫描,获取显微视觉系统Ⅰ的焦平面的切片扫描位置,在微操作空间Z轴方向进行断层扫描并记录不同切片扫描位置的断层扫描图像序列;针对X轴和Y轴和Z轴三目正交的显微视觉系统,相对于仅有X轴与Z轴双目正交的显微视觉系统的微操作系统,增加Y轴方向上的显微视觉系统Ⅲ,显微视觉系统Ⅲ在微操作空间的X轴、Z轴方向进行切片扫描获取显微视觉系统Ⅲ的焦平面的各切片扫描位置,在微操作空间的Y轴方向进行断层扫描并记录不同切片扫描位置的断层扫描图像序列;针对三目正交的显微视觉系统以及其他任意轴(R轴)方向的显微视觉系统,相对于三目正交的显微视觉系统的微操作系统增加R轴方向上的显微视觉系统Ⅳ,其在垂直R轴平面上的两个正交方向上进行切片扫描获取各切片扫描位置,在各切片位置,沿R轴方向上进行断层扫描获取各断层扫描图像序列。
步骤2:利用微操作系统中各方向的单目显微视觉系统焦平面不同切片扫描位置的断层扫描图像结合对应断层扫描的精密定位系统的步长重构各方向单目显微视觉系统的对应的三维断层视场空间;计算各方向的单目显微视觉系统各切片扫描位置的三维断层视场空间的数字化信息、计算微操作空间的三维切片空间数字化信息,从而计算各单目显微视觉系统获取的数字化微操作空间。在此基础上计算各单目显微视觉系统获取的数字化微操作空间相交视场空间,得到微操作系统的数字化微操作空间。
(2.1)针对X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上的单目显微视觉系统焦平面在微操作空间中不同切片扫描位置的断层扫描图像序列,计算各方向单目显微视觉系统的三维断层视场空间范围;
(2.2)针对X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上的单目显微视觉系统获取的不同切片扫描位置的三维断层视场空间进行栅格化以及栅格数值化,获取各方向上的单目显微视觉系统的不同切片位置的三维断层视场空间数字化信息;
(2.3)根据X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上的单目显微视觉系统的不同切片扫描位置的三维断层视场空间数字化信息,计算各方向上微操作空间的三维切片空间的数字化信息;
(2.4)根据X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上的单目显微视觉系统的获取的微操作空间的三维切片空间,计算微操作系统在对应方向上的单目显微视觉系统的数字化微操作空间;
(2.5)针对X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上的单目显微视觉系统获取的数字化微操作空间关系匹配。X轴和Z轴双目正交的显微视觉系统的微操作空间,对沿X轴、Z轴方向的两个单目显微视觉系统获取的数字化微操作空间进行三维空间关系匹配;针对X轴和Y轴和Z轴三目正交的显微视觉系统的微操作空间,对沿X轴、Y轴、Z轴方向的三个单目显微视觉系统获取的数字化微操作空间进行三维空间关系匹配;针对X轴和Y轴和Z轴和R轴多目显微视觉系统的微操作空间,对沿X轴、Y轴、Z轴以及R轴方向的多个单目显微视觉系统获取的数字化微操作空间进行三维空间关系匹配;
(2.6)计算X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴各单目显微视觉系统的微操作空间的相交空间。
所述的微操作空间是指所搭建的微操作系统空间中能同时观测到微机械手或微机器人、工作台及待装配物体等全局信息的空间。
本发明进一步所述的微操作系统的微操作空间的数字化方法的系统的中精密定位系统还可配置有位移量标准量系统,控制切片位置和记录所获得的切片的位置信息;其包括设置于精密定位系统的运动机构上实现位移传感的位移量传感器,以及进行导轨控制运动反馈控制的精密定位系统控制器以及位移传感器控制器。
本发明所述的方法适用于双目、三目以及多目的显微视觉系统的微操作系统的微操作空间数字化,从而得到微操作空间的数字化信息。其中针对双目正交显微视觉系统的微操作系统,考虑双目显微视觉系统从X轴、Z轴方向上分别获取微操作空间,从而求取相交微操作空间;针对三目正交显微视觉系统的微操作系统,考虑三目显微视觉系统从X轴、Y轴、Z轴方向上分别获取微操作空间,从而求取相交微操作空间;针对多目显微视觉系统的微操作系统,考虑三目显微视觉系统从X轴、Y轴、Z轴方向上分别获取微操作空间的同时,考虑从任意轴(R轴)方向获取微操作空间,从而求取X轴、Y轴、Z轴以及任意轴方向的微操作空间的相交微操作空间;
本发明所述的方法适用于也适用于微操作系统、细胞操作系统;所述的方法在计算机中能够对采用微操作系统的微操作空间的数字化方法获得的微操作系统的数字化微操作空间中的微型零件进行操作。
本发明具有下述优点:
(1)本发明不仅在线地克服了高分辨率与大视场或大景深的矛盾,即在保证高分辨率的同时,提高了微操作空间观测范围,而且将超视场或超景深的微操作系统空间信息用数字化的形式表示出来,形象直观的表征了微操作空间下物体的三维信息,以实现在微操作空间下高效率、高精度、全自动的装配或操作,具有广泛的应用前景及经济效益。
(2)本发明利用数字化技术获取微操作系统的微操作空间,避免了现有通过图像融合获取景深扩展而导致的整体图像清晰度下降的缺陷,避免了因提取图像特征点拼接融合的计算复杂度以及拼接精度问题。
(3)相对现有的通过调整显微视觉系统内外参数、拓扑结构的方法提高各方向单目显微视觉系统的相交空间,本发明避免了因调整显微视觉系统内外参数、拓扑结构而导致的误差。
本发明可以在显微视场空间下应用空间数字化技术以及使用数字化技术实现零件重构、装配、定位、位姿检测、路径规划等操作,为微操作或者微操作系统的三维可视化、路径优化、装配、定位、位姿检测等提供必要条件,有效降低微操作问题的难度。
附图说明
图1是三目正交的显微视觉系统的微操作系统的微操作空间数字化方法示意图;
图2是具有常规精密定位系统构建三目正交的显微视觉系统的微操作系统的微操作空间数字化方法系统结构示意图;
图3是具有位移传感器的精密定位系统构建三目正交的显微视觉系统的微操作系统的微操作空间数字化方法系统结构示意图;
图4是具有可旋转台实现多方向扫描的三目正交的显微视觉系统的微操作系统的微操作空间数字化方法示意图;
图5是双目正交的显微视觉系统的微操作系统的微操作空间数字化方法示意图;
图6是具有位移传感器的精密定位系统构建双目正交的显微视觉系统的微操作系统的微操作空间数字化方法系统结构示意图;
图7是三目正交与多目非正交显微视觉系统的微操作系统的微操作空间数字化方法示意图;
图8是单目显微视觉系统在微操作空间中不同切片空间位置获取断层扫描图像计算微操作空间数字化方法示意图
图中:1、显微视觉系统Ⅰ,2、精密定位系统Ⅰ,3、精密定位系统Ⅱ,4、精密定位系统Ⅲ,5、显微视觉系统Ⅱ,6、精密定位系统Ⅳ,7、精密定位系统Ⅴ,8、精密定位系统Ⅵ,9、显微视觉系统Ⅰ视场高,10、显微视觉系统Ⅰ视场宽,11、Y轴方向上视场扩展的范围,12、显微视觉系统Ⅰ显微视场空间,13、显微视觉系统Ⅱ显微视场空间,14、显微视觉系统Ⅲ显微视场空间,15、X轴方向上视场扩展的范围,16、微操作空间坐标系,17、工作台,18、微操作空间,19、精密定位系统Ⅶ,20、精密定位系统Ⅷ,21、精密定位系统Ⅸ,22、显微视觉系统Ⅲ,23、显微视觉系统Ⅰ同轴光源,24、显微视觉系统Ⅱ同轴光源,25、显微视觉系统Ⅲ同轴光源,26、微夹钳控制器,27、位移传感器控制器,28、精密定位系统控制器,29、光源控制器,30、图像采集卡,31、主计算机,32、微夹钳系统,33、精密定位系统Ⅲ位移传感器,34、精密定位系统Ⅰ位移传感器,35、精密定位系统Ⅱ位移传感器,36、精密定位系统Ⅳ位移传感器,37、精密定位系统Ⅵ位移传感器,38、精密定位系统Ⅴ位移传感器,39、精密定位系统Ⅷ位移传感器,40、精密定位系统Ⅶ位移传感器,41、精密定位系统Ⅸ位移传感器,42、工作台旋转方向,43、零件,44、显微视觉系统Ⅳ,45、精密定位系统Ⅹ,46、精密定位系统XI,47、精密定位系统XII,48、显微视觉系统运动过程。
具体实施方式
以下将结合附图,对本发明的优选实施例进行详细描述。优选实施例仅为了说明本发明,而不是为了限制本发明的保护范围。
本发明的微操作系统的微操作空间的数字化方法可以采用图1-图7所显示的各种系统加以实现,这些系统均包括精密定位系统、显微视觉系统和主计算机。
由主计算机根据如图8所示的显微视觉系统在不同切片空间扫描位置进行断层扫描获取断层扫描图像的方法对精密定位系统和显微视觉系统进行控制和计算,微操作系统中Z轴方向上的单目显微视觉系统获取微操作空间数字化信息采用精密定位系统(3、2)分别控制显微视觉系统(1)沿着微操作空间坐标系统的X轴、Y轴作切片扫描,获取焦平面所在的不同切片空间位置。针对每个切片空间位置,利用精密定位系统(4)控制显微视觉系统(1)沿着微操作空间坐标系统Z轴作断层扫描,获取焦平面所在的不同切片空间位置的断层扫描图像序列以及精密定位系统的位移量序列。经过显微视觉系统的三维断层空间重构,计算不同切片位置的各个显微视觉系统的三维断层视场空间数字化信息以及微操作空间的三维切片视场空间数字化信息后,在此基础上计算单目显微视觉系统获取的微操作空间数字化信息。显微视觉系统的运动过程如标号48所示,获取的微操作空间如标号18所示。微操作系统中其它方向上的显微视觉系统获取数字化微操作空间的过程与图8所示的Z轴方向单目显微视觉系统获取数字化微操作空间的过程一致。
实施例1:
如图1所示的三目正交显微视觉系统的微操作系统的微操作空间的数字化示意图,精密定位系统(4)控制显微视觉系统(1)在沿着微操作空间坐标系Z轴方向作断层扫描,精密定位系统(8)控制显微视觉系统(5)在沿着微操作空间坐标系X轴方向上作断层扫描,精密定位系统控制显微视觉系统(22)在沿着微操作空间坐标系Y轴方向上作断层扫描,分别获取各方向上显微视觉系统的焦平面的断层位置;然后针对各方向上的显微视觉系统的焦平面的各断层位置,分别采用沿着定义坐标另外两个方向运动的精密定位系统控制显微视觉系统作切片扫描并记录切片扫描图像的序列以及各个精密定位系统的位移量。三目正交显微视觉系统的微操作系统的微操作空间数字化方法与实施例6所述的方法一致。
实施例2:
为实现三目正交显微视觉系统的微操作系统的微操作空间数字化,构建三目正交显微视觉系统的微操作系统如图2、图3所示。由图2可知,实现微操作系统的微操作空间数字化其主要包括三目正交的显微视觉系统、控制显微视觉系统进行断层扫描以及切片扫描的精密定位系统、图像采集系统、光源控制系统、位移传感器控制系统、以及微夹钳系统等。为了更加高精密的获取精密定位系统的位移,针对断层扫描、切片扫描的精密定位系统均增加位移传感器从而实现精密定位系统的高精度位移量测量,如图3所示。
针对微操作系统的微操作空间数字化方法适用于利用工作台沿着微操作空间坐标系X轴、Y轴、Z轴的旋转来实现显微视觉系统对微操作空间中零件位置、姿态数字化信息的获取,其如图3所示。其主要通过改变工作台相对显微视觉系统的角度位置实现显微视觉系统对微操作空间的任意角度的断层扫描以及切片扫描。该微操作系统的微操作空间的数字化过程与实施例6所述的方法一致。
实施例3:
如图5所示,本发明的微操作系统的微操作空间数字化方法适用于双目正交的显微视觉系统的微操作系统,其通过利用竖直方向上的显微视觉系统(1)和水平方向上的显微视觉系统(5)以及相应的精密定位系统实现对微操作空间两个方向上的数字化三维微操作空间的数字化信息进行获取,然后通过三维空间的相交计算获取微操作空间信息,其具体实现系统的结构示意图如图6所示。通过图6可知,其通过增加位移传感器实现精密定位系统的高精密位移量测量。双目正交的显微视觉系统的微操作系统的微操作空间数字化方法与实施例5一致。
实施例4:
本发明的微操作系统的微操作空间数字化方法适用于三目正交与非正交的显微视觉系统的微操作系统的微操作空间数字化,其微操作空间数字化示意图如图7所示。其利用各个显微视觉系统分别从任意角度对微操作系统的微操作空间进行断层扫描以及切片扫描,如精密定位系统(4)控制显微视觉系统(1)沿着微操作空间坐标系的Z轴方向进行断层扫描,并利用精密定位系统(3、2)控制显微视觉系统(1)在各断层位置沿着微操作空间坐标系的X轴、Y轴切片扫描获取切片扫描图像;如精密定位系统(47)控制显微视觉系统(44)沿着微操作空间坐标系的任意方向进行断层扫描,并利用精密定位系统(45、46)控制显微视觉系统(44)在对应的各断层位置沿着垂直显微视觉系统(44)光轴的断层位置平面上进行切片扫描获取切片扫描图像;显微视觉系统(5)以及(22)分别沿着微操作空间坐标系的X轴、Y轴方向进行断层扫描,并由精密定位系统(6、7)控制显微视觉系统(5)在各断层位置沿着微操作空间坐标系的Y轴、Z轴方向进行切片扫描,由精密定位系统(21、20)控制显微视觉系统(22)其对应的断层位置沿着微操作空间坐标系的X轴、Z轴方向进行切片扫描,从而获取对应的切片扫描图像。三目正交与非正交的显微视觉系统的微操作系统的微操作空间数字化过程与实施例7所述的过程一致。
实施例5:
利用双目正交的显微视觉系统的微操作系统进行微操作空间数字化的具体过程如下:
步骤1:利用计算机显微视觉切片扫描技术、计算机断层扫描技术获得各方向上单目显微视觉系统焦平面在微操作空间的切片扫描位置和断层扫描图像序列,X轴方向上的显微视觉系统Ⅱ在微操作空间的Y轴、Z轴方向进行切片扫描,获取显微视觉系统Ⅱ的焦平面的各切片扫描位置,在微操作空间X轴方向进行断层扫描并记录不同切片扫描位置的断层扫描图像序列;Z轴方向上的显微视觉系统Ⅰ在微操作空间的X轴、Y轴方向进行切片扫描,获取显微视觉系统Ⅰ的焦平面的切片扫描位置,在微操作空间Z轴方向进行断层扫描并记录不同切片扫描位置的断层扫描图像序列;
(1.1)分别确定微操作系统中各个方向上的单目显微视觉系统的视场分辨率大小、景深大小、像元尺寸、放大倍数,设置合适的光源以及各单目显微视觉系统焦平面初始位置;确定控制X轴方向上的显微视觉系统Ⅱ(5)在微操作空间的微操作空间坐标系的Y轴、Z轴方向进行计算机显微视觉切片扫描的精密定位系统(6、7)的步长、运动方向、运动方式、运动速度、初始位置以及初始位置时对应的显微视觉系统Ⅱ(5)的焦平面在微操作空间的微操作空间坐标系的X轴方向的位置
Figure BDA0001698321580000081
确定显微视觉系统Ⅰ(1)在微操作空间的微操作空间坐标系的X轴、Y轴方向进行计算机显微视觉切片扫描的精密定位系统(3、2)的步长、运动方向、运动方式、运动速度、初始位置以及初始位置时对应的显微视觉系统Ⅰ(1)的焦平面在微操作空间坐标系的Z轴方向的位置
Figure BDA0001698321580000082
(1.2)确定各方向单目显微视觉系统的切片扫描位置和对应精密定位系统的位移量,双目正交显微视觉系统的微操作系统中,精密定位系统(3、2)控制显微视觉系统(1)沿着微操作空间坐标系(16)的X轴、Y轴方向运动进行切片扫描,控制显微视觉系统(1)进行切片扫描的精密定位系统(3、2)的步长分别为
Figure BDA0001698321580000083
其运动一个步长的位移,则显微视觉系统的焦平面的断层空间位置发生变化,记录显微视觉系统(1)的焦平面所在切片位置的序列号以及精密定位系统4的位移量如下:
Figure BDA0001698321580000084
Figure BDA0001698321580000085
其中
Figure BDA0001698321580000086
为微操作系统中显微视觉系统Ⅰ(1)沿定义坐标X轴、Y轴方向进行切片扫描时,焦平面所在切片位置矩阵;
Figure BDA0001698321580000087
为微操作系统中控制显微视觉系统Ⅰ(1)进行切片扫描的精密定位系统(3、2)的位移量构建的矩阵;xN1、yN1为显微视觉系统Ⅰ(1)沿X轴、Y轴扫描的次数;精密定位系统(3)第xk、yk次运动后位移量
Figure BDA0001698321580000091
精密定位系统(2)第yk次运动后位移量
Figure BDA0001698321580000092
分别与各自步长
Figure BDA0001698321580000093
的关系式如下:
Figure BDA0001698321580000094
Figure BDA0001698321580000095
同理,针对显微视觉系统Ⅱ(5)的切片扫描,记录显微视觉系统(5)的焦平面的切片位置的序列号以及精密定位系统(6、7)的位移量如下:
Figure BDA0001698321580000096
Figure BDA0001698321580000097
其中
Figure BDA0001698321580000098
为微操作系统中显微视觉系统(5)沿微操作空间坐标系Y轴、Z轴方向进行切片扫描时,焦平面所在切片位置矩阵;yN5、zN5分别为显微视觉系统Ⅱ(5)沿Y轴、Z轴扫描的次数;
Figure BDA0001698321580000099
为微操作系统中控制显微视觉系统(5)进行切片扫描的精密定位系统(6、7)的位移量构建的矩阵;设置精密定位系统6和7的运动步长为:
Figure BDA00016983215800000910
精密定位系统(6)第yi次运动后位移量
Figure BDA00016983215800000911
与步长
Figure BDA00016983215800000912
的关系式以及精密定位系统7第zi次运动后位移量
Figure BDA00016983215800000913
与步长
Figure BDA00016983215800000914
的关系式如下:
Figure BDA00016983215800000915
Figure BDA00016983215800000916
(1.3)确定各方向单目显微视觉系统在不同切片扫描位置断层扫描获取断层扫描图像序列以及断层扫描对应精密定位系统的位移量;针对双目正交的显微视觉系统的微操作系统,显微视觉系统Ⅰ(1)的焦平面的切片位置
Figure BDA00016983215800000917
确定控制显微视觉系统Ⅰ(1)进行计算机显微视觉断层扫描的精密定位系统(4)的步长、运动方向、运动方式、运动速度、初始位置以及初始位置时显微视觉系统Ⅰ(1)光轴穿过焦平面的图像主点位置为
Figure BDA00016983215800000918
显微视觉系统Ⅱ(5)的焦平面切片位置
Figure BDA0001698321580000101
确定控制显微视觉系统Ⅱ(5)进行计算机显微视觉断层扫描的精密定位系统(8)的步长、运动方向、运动方式、运动速度、初始位置以及初始位置时显微视觉系统Ⅱ(5)光轴穿过焦平面的图像主点位置为
Figure BDA0001698321580000102
(1.4)各方向单目显微视觉获取断层扫描图像序列;针对双目正交的显微视觉系统的微操作系统,在显微视觉系统(1)的切片位置
Figure BDA0001698321580000103
精密定位系统(4)控制显微视觉系统(1)沿着微操作空间坐标系的Z轴方向进行扫描,记录精密定位系统(4)的位移为
Figure BDA0001698321580000104
则:
Figure BDA0001698321580000105
设置精密定位系统(4)的步长为
Figure BDA0001698321580000106
精密定位系统(2)的步长为
Figure BDA0001698321580000107
则精密定位系统的位移与步长的关系为:
Figure BDA0001698321580000108
根据精密定位系统(4)在切片位置
Figure BDA0001698321580000109
的位移量
Figure BDA00016983215800001010
定义每个扫描获取的图像序列构建的图像向量为
Figure BDA00016983215800001011
则获取的断层扫描图像序列的矩阵为:
Figure BDA00016983215800001012
其中[ ]′为矩阵转置运算,zN1表示精密定位系统(4)控制显微视觉系统(1)沿微操作空间坐标系Z轴方向断层扫描的最大次数;
同理,在显微视觉系统(5)的切片位置
Figure BDA00016983215800001013
精密定位系统(7)控制显微视觉系统Ⅱ(5)沿着微操作空间坐标系的X轴方向进行断层扫描,记录精密定位系统(8)的位移为
Figure BDA00016983215800001014
精密定位系统(7)控制显微视觉系统(5)沿着微操作空间坐标系的Z轴方向进行扫描,记录精密定位系统(7)的位移为
Figure BDA00016983215800001015
则:
Figure BDA00016983215800001016
设置精密定位系统(8)的步长为
Figure BDA00016983215800001017
精密定位系统(8)的步长为
Figure BDA00016983215800001018
则精密定位系统的位移与步长的关系为:
Figure BDA00016983215800001019
根据精密定位系统(8)在显微视觉系统Ⅱ(5)的焦平面切片位置
Figure BDA00016983215800001020
作断层扫描位移量
Figure BDA00016983215800001021
定义每个扫描获取的图像序列号为
Figure BDA00016983215800001022
则获取的断层扫描集合为:
Figure BDA0001698321580000111
其中xN5表示精密定位系统(8)控制显微视觉系统Ⅱ(5)沿微操作空间坐标系X轴方向断层扫描的最大次数;
步骤2:利用微操作系统中各方向的单目显微视觉系统焦平面不同切片扫描位置的断层扫描图像结合对应的断层扫描的精密定位系统的步长重构各方向单目显微视觉系统的对应的三维断层视场空间;计算各方向的单目显微视觉系统各切片扫描位置的三维断层视场空间的数字化信息、计算微操作空间三维切片空间数字化信息,从而计算各单目显微视觉系统获取的数字化微操作空间。在此基础上计算各单目显微视觉系统获取的数字化微操作空间相交视场空间,得到微操作系统的数字化微操作空间。
(2.1)针对微操作系统中各方向上的单目显微视觉系统焦平面在微操作空间中不同切片空间位置的断层扫描图像序列,计算各方向单目显微视觉系统的三维断层视场空间范围;X轴、Z中方向上的单目显微视觉系统获取的不同切片位置的断层扫描序列图像重构对应位置的三维断层视场空间如下:
①针对Z轴方向上显微视觉系统Ⅰ(1)的焦平面在X轴、Y轴方向不同切片位置由精密定位系统(4)控制显微视觉系统Ⅰ(1)在进行断层扫描获取的断层扫描图像序列,结合显微视觉系统Ⅰ(1)的视场大小以及精密定位系统(4)运动步长重构对应位置上的三维断层视场空间;根据显微视觉系统(1)的视场高H1,视场宽W1以及精密定位系统(4)的运动步长
Figure BDA0001698321580000112
显微视觉系统(1)焦平面切片位置
Figure BDA0001698321580000113
沿Z轴方向上断层扫描的断层扫描图像对应的三维断层视场空间大小均为
Figure BDA0001698321580000114
不同切片位置的断层扫描图像序列构建的向量
Figure BDA0001698321580000115
所重构的对应的三维断层视场空间序列构建的向量如下:
Figure BDA0001698321580000116
针对X轴方向上显微视觉系统Ⅱ(5)的焦平面在Y轴、Z轴方向不同切片位置由精密定位系统(8)控制显微视觉系统Ⅱ(5)在X轴方向进行断层扫描获取的切片扫描图像序列,结合显微视觉系统(5)的视场大小以及精密定位系统(8)运动步长重构对应位置上的三维断层视场空间;根据显微视觉系统Ⅱ(5)的视场高H5,视场宽H5以及精密定位系统(8)的运动步长
Figure BDA0001698321580000117
显微视觉系统(5)焦平面切片位置
Figure BDA0001698321580000118
沿X轴方向上断层扫描的断层扫描图像对应的三维断层视场空间大小均为
Figure BDA0001698321580000119
不同切片位置的断层扫描图像序列构建的向量
Figure BDA00016983215800001110
所重构的对应的三维断层视场空间序列构建的向量如下:
Figure BDA0001698321580000121
②针对X轴、Z轴方向上单目显微视觉系统的获取的三维断层视场空间去除非期望信息的处理如下:
针对显微视觉系统(1)的三维断层视场空间
Figure BDA0001698321580000122
对应的精密定位系统(3、2)的运动位移为
Figure BDA0001698321580000123
此时在微操作空间坐标系中X轴方向上
Figure BDA0001698321580000124
范围内,在Y轴方向上
Figure BDA0001698321580000125
范围内,在Z轴方向上
Figure BDA0001698321580000126
范围内均为三维断层视场空间
Figure BDA0001698321580000127
的信息。去除三维断层视场空间以外的信息后三维断层视场空间大小为:
Figure BDA0001698321580000128
针对显微视觉系统(5)的三维断层视场空间
Figure BDA0001698321580000129
对应的精密定位系统(6、7)的运动位移为
Figure BDA00016983215800001210
此时在微操作空间坐标系在X轴方向上
Figure BDA00016983215800001211
范围内,在Y轴方向上
Figure BDA00016983215800001212
范围内,在Z轴方向上
Figure BDA00016983215800001213
范围内均为三维断层视场空间
Figure BDA00016983215800001214
的信息。去除三维断层视场空间以外的信息后三维断层视场空间大小为:
Figure BDA00016983215800001215
(2.2)三维断层视场空间栅格化以及栅格数值化,获取三维断层视场空间数字化信息的方法,其中X轴与Z轴双目正交显微视觉系统的微操作系统完成X轴与Z轴方向上的两个显微视觉系统获取的三维断层视场空间数字化,方法如下:
针对Z轴方向显微视觉系统Ⅰ(1)获取的三维断层视场空间
Figure BDA00016983215800001216
设置一个nz×nz×nz个像素点的栅格立方体,利用
Figure BDA00016983215800001217
个栅格立方体对三维断层视场空间
Figure BDA00016983215800001218
离散化,并根据栅格立方体位置以及栅格立方体的函数值,构建一个三维数字化矩阵
Figure BDA00016983215800001219
表示;设置每个栅格立方体中像素点为1的个数
Figure BDA00016983215800001220
设置栅格立方体赋值阈值为TH1,若
Figure BDA00016983215800001221
则此栅格立方体赋值为1,否则赋值为0;三维断层视场空间
Figure BDA00016983215800001222
中(pk,qk,rk)位置的栅格立方体的赋值函数为
Figure BDA00016983215800001223
即:
Figure BDA0001698321580000131
Figure BDA0001698321580000132
其中
Figure BDA0001698321580000133
pk∈[1 2 … p],qk∈[1 2 … q],rk∈[1 2 … r],
Figure BDA0001698321580000134
为三维断层视场空间数字化矩阵
Figure BDA0001698321580000135
中位置为(pk,qk,rk)的栅格立方体中像素点为1的个数;
针对三维断层视场空间
Figure BDA0001698321580000136
设置一个nx×nx×nx个像素点的栅格立方体,利用
Figure BDA0001698321580000137
个栅格立方体对三维断层视场空间
Figure BDA0001698321580000138
离散化,并根据栅格立方体位置以及栅格立方体的函数值,构建一个三维数字化矩阵
Figure BDA0001698321580000139
表示;设置每个栅格立方体中像素点为1的个数
Figure BDA00016983215800001310
设置栅格立方体赋值阈值为TH5,若
Figure BDA00016983215800001311
则此栅格立方体赋值为1,否则赋值为0;三维断层视场空间
Figure BDA00016983215800001312
中(pi,qi,ri)位置的栅格立方体的赋值函数为
Figure BDA00016983215800001313
即:
Figure BDA0001698321580000141
Figure BDA0001698321580000142
其中
Figure BDA0001698321580000143
pi∈[1 2 … p],qi∈[1 2 … q],ri∈[1 2 … r],
Figure BDA0001698321580000144
为三维断层视场空间数字化矩阵
Figure BDA0001698321580000145
中位置为(pi,qi,ri)的栅格立方体中像素点为1的个数;
(2.3)根据三维断层视场空间数字化信息,计算各方向单目显微视觉系统在微操作空间的三维切片空间数字化信息,其中X轴与Z轴双目正交显微视觉系统的微操作系统计算X轴与Z轴两个方向上的微操作空间的三维切片空间数字化信息,方法如下:
①针对沿X轴方向显微视觉系统Ⅱ(5)的切片扫描位置
Figure BDA0001698321580000146
定义精密定位系统(8)控制显微视觉系统Ⅱ(5)沿X轴正方向进行断层扫描(Flagx=1),根据两相邻三维断层空间
Figure BDA0001698321580000147
Figure BDA0001698321580000148
的数字化矩阵为
Figure BDA0001698321580000149
则:
Figure BDA00016983215800001410
当精密定位系统(8)控制显微视觉系统(5)沿X轴负方向进行断层扫描(Flagx=-1)时:
Figure BDA0001698321580000151
此时计算X轴方向获取切片位置
Figure BDA0001698321580000152
的微操作空间的三维切片空间数字化信息
Figure BDA0001698321580000153
为:
Figure BDA0001698321580000154
②针对沿Z轴方向显微视觉系统Ⅰ(1)的焦平面切片扫描位置
Figure BDA0001698321580000155
沿Z轴方向定义精密定位系统(4)控制显微视觉系统(1)沿Z轴正方向进行断层扫描(Flagz=1),根据两相邻三维断层空间
Figure BDA0001698321580000156
Figure BDA0001698321580000157
的数字化矩阵为
Figure BDA0001698321580000158
则:
Figure BDA0001698321580000159
当精密定位系统(4)控制显微视觉系统(1)沿Z轴负方向进行断层扫描(Flagz=-1)时:
Figure BDA00016983215800001510
此时计算Z轴方向的切片位置获取切片位置
Figure BDA00016983215800001511
获取的微操作空间的三维切片空间数字化信息
Figure BDA00016983215800001512
为:
Figure BDA00016983215800001513
其中[ ]′表示矩阵转置,Flagx、Flagy、Flagz用于记录沿微操作空间坐标系X轴、Y轴、Z轴扫描的方向。
(2.4)根据各方向上的单目显微视觉系统的获取的微操作空间的三维切片空间,计算微操作系统在对应方向上的单目显微视觉系统的数字化微操作空间,其中X轴与Z轴双目正交显微视觉系统的微操作系统计算X轴、Z轴两个方向上的数字化微操作空间,方法如下:
①利用X轴方向上计算不同切片扫描位置的微操作空间的三维切片空间构建X轴方向上的获取的数字化微操作空间
Figure BDA00016983215800001514
X轴方向上得到的微操作空间数字化信息用
Figure BDA00016983215800001515
表示,即
Figure BDA0001698321580000161
此时数字化信息
Figure BDA0001698321580000162
描述微操作空间大小
Figure BDA0001698321580000163
为:
Figure BDA0001698321580000164
Figure BDA0001698321580000165
②利用Z轴方向上计算不同切片扫描位置的微操作空间的三维切片空间构建Z轴方向上的获取的数字化微操作空间
Figure BDA0001698321580000166
Z轴方向上得到的微操作空间数字化信息用
Figure BDA0001698321580000167
表示,即
Figure BDA0001698321580000168
此时数字化信息
Figure BDA0001698321580000169
描述微操作空间
Figure BDA00016983215800001610
大小为:
Figure BDA00016983215800001611
Figure BDA00016983215800001612
(2.5)微操作系统中各方向上的单目显微视觉系统获取的数字化微操作空间关系匹配。针对双目正交的显微视觉系统的微操作系统,对沿X轴、Z轴方向的两个单目显微视觉系统获取的数字化微操作空间进行三维空间关系匹配方法如下:
①针对X轴、Z轴双目正交的显微视觉系统的微操作系统的微操作空间大小以及数字化栅格立方体大小匹配,选取标准匹配模板中的一特征点,获取该特征在沿X轴、Z轴方向获取的微操作空间
Figure BDA00016983215800001613
中对应的数字化信息的位置,利用标准匹配模板同一特征点在不同方向微操作空间的位置相同原则匹配微操作空间
Figure BDA00016983215800001614
的空间大小;根据数字化信息的位置确定该特征数字化信息在
Figure BDA00016983215800001615
中分别与平行于微操作空间坐标系XY平面的两个边界平面的对应距离值匹配
Figure BDA00016983215800001616
在微操作空间坐标系Z轴方向上的范围;该特征数字化信息在
Figure BDA00016983215800001617
中分别与平行于微操作空间坐标系XZ平面的两个边界平面的对应距离值匹配
Figure BDA00016983215800001618
在微操作空间坐标系Y轴方向上的范围;该特征数字化信息在
Figure BDA00016983215800001619
中分别与平行于微操作空间坐标系YZ平面的两个边界平面的对应距离值匹配
Figure BDA00016983215800001620
在微操作空间坐标系X轴方向上的范围,从而完成
Figure BDA00016983215800001621
大小的匹配;选取标准匹配模板在
Figure BDA00016983215800001622
数字化距离特征,利用标准匹配模板同一距离特征在不同数字化显微视觉空间的等距原则对
Figure BDA00016983215800001623
的数字化栅格立方体大小进行匹配。经过数字化微操作空间大小、数字化栅格立方体大小匹配后的沿X轴、Z轴方向获取的微操作空间为Sx、Sz
②沿X轴、Z轴方向的微操作空间为Sx、Sz空间位置匹配:根据沿X轴、Z轴方向微操作空间Sx、Sz利用空间平移以及旋转变换使得各方向上的数字化微操作空间坐标系与微操作空间坐标系(16)保持一致。使得双目正交的显微视觉系统的微操作系统完成Sx与Sz的空间位置匹配;
(2.6)计算各方向上微操作空间的相交视场空间的方法如下:
针对X轴、Z轴方向双目正交显微视觉系统的微操作系统,各方向上的微操作空间的相交微操作空间G为:
Figure BDA0001698321580000171
实施例6:
利用三目正交的显微视觉系统的微操作系统进行微操作空间数字化的具体过程如下:
步骤1:在实施例5的基础上,增加Y轴方向上的显微视觉系统Ⅲ,显微视觉系统Ⅲ在微操作空间的X轴、Z轴方向进行切片扫描获取显微视觉系统Ⅲ的焦平面的各切片扫描位置,在微操作空间的Y轴方向进行断层扫描并记录不同切片扫描位置的断层扫描图像序列;
(1.1)在实施例5的基础上,增加Y轴方向的显微视觉系统Ⅲ,确定显微视觉系统Ⅲ(22)在微操作空间的微操作空间坐标系的X轴、Z轴方向进行计算机显微视觉切片扫描的精密定位系统(21、20)的步长、运动方向、运动方式、运动速度、初始位置以及初始位置时对应的显微视觉系统Ⅲ(22)的焦平面在Y轴方向的位置
Figure BDA0001698321580000172
(1.2)在实施例5的基础上,增加Y轴方向上的显微视觉系统Ⅲ进行切片扫描,记录显微视觉系统(22)的焦平面的切片位置的序列号以及精密定位系统(21、20)的位移量如下:
Figure BDA0001698321580000173
Figure BDA0001698321580000174
其中
Figure BDA0001698321580000175
为微操作系统中显微视觉系统Ⅲ(22)沿微操作空间坐标系X轴、Z轴方向进行切片扫描时,焦平面所在切片位置矩阵;xN22、zN22分别为显微视觉系统Ⅲ(22)沿X轴、Z轴扫描的次数;
Figure BDA0001698321580000176
为微操作系统中控制显微视觉系统(5)进行切片扫描的精密定位系统(21、20)的位移量构建的矩阵;设置精密定位系统21和20的运动步长为:
Figure BDA0001698321580000177
精密定位系统(6)第yi次运动后位移量
Figure BDA0001698321580000181
与步长
Figure BDA0001698321580000182
的关系式以及精密定位系统7第zi次运动后位移量
Figure BDA0001698321580000183
与步长
Figure BDA0001698321580000184
的关系式如下:
Figure BDA0001698321580000185
Figure BDA0001698321580000186
(1.3)在实施例5的基础上,增加Y轴方向的显微视觉系统Ⅲ(22),显微视觉系统Ⅲ(22)的焦平面沿着微操作空间坐标系在切片位置
Figure BDA0001698321580000187
确定控制显微视觉系统(22)进行计算机显微视觉断层扫描的精密定位系统(19)的步长、运动方向、运动方式、运动速度、初始位置以及初始位置时显微视觉系统(22)光轴穿过焦平面的图像主点位置为
Figure BDA0001698321580000188
(1.4)在实施例5的基础上,增加Y轴方向的显微视觉系统Ⅲ(22),在显微视觉系统(22)的切片位置
Figure BDA0001698321580000189
精密定位系统(19)控制显微视觉系统(22)沿微操作空间坐标系Y轴方向进行断层扫描,记录精密定位系统(19)的位移为
Figure BDA00016983215800001810
则:
Figure BDA00016983215800001811
设置精密定位系统(19)的步长为
Figure BDA00016983215800001812
则精密定位系统的位移与步长的关系为:
Figure BDA00016983215800001813
根据精密定位系统(19)在显微视觉系统Ⅲ(22)的焦平面切片位置
Figure BDA00016983215800001814
作断层扫描位移量
Figure BDA00016983215800001815
定义每个扫描获取的图像序列号为
Figure BDA00016983215800001816
则获取的切片扫描集合为:
Figure BDA00016983215800001817
其中yN22表示精密定位系统控制显微视觉系统Ⅲ(22)沿微操作空间坐标系Y轴方向扫描的最大次数;
步骤2:利用微操作系统中各方向的单目显微视觉系统焦平面不同切片扫描位置的断层扫描图像结合对应的断层扫描的精密定位系统的步长重构各方向单目显微视觉系统的对应的三维断层视场空间;计算各方向的单目显微视觉系统各切片扫描位置的三维断层视场空间的数字化信息、计算微操作空间三维切片空间数字化信息,从而计算各单目显微视觉系统获取的数字化微操作空间。在此基础上计算各单目显微视觉系统获取的数字化微操作空间相交视场空间,得到微操作系统的数字化微操作空间。
(2.1)在实施例5的基础上,针对Y轴方向上显微视觉系统Ⅲ(22)的焦平面在X轴、Z轴方向上不同切片位置由精密定位系统(19)控制显微视觉系统(22)在进行断层扫描获取断层扫描图像序列,结合显微视觉系统(22)的视场大小以及精密定位系统(19)运动步长重构对应位置上的三维断层视场空间;根据显微视觉系统Ⅲ(22)的视场高H22,视场宽W22以及精密定位系统(19)的运动步长
Figure BDA0001698321580000191
显微视觉系统Ⅲ(22)焦平面切片位置
Figure BDA0001698321580000192
沿Y轴方向上断层扫描的断层扫描图像对应的三维断层视场空间大小均为
Figure BDA0001698321580000193
不同切片位置的断层扫描图像序列构建的向量
Figure BDA0001698321580000194
所重构的对应的三维断层视场空间序列构建的向量如下:
Figure BDA0001698321580000195
针对显微视觉系统(22)的三维断层视场空间
Figure BDA0001698321580000196
对应的精密定位系统(22、21)的运动位移为
Figure BDA0001698321580000197
此时在微操作空间坐标系在X轴方向上
Figure BDA0001698321580000198
范围内,在Y轴方向上
Figure BDA0001698321580000199
范围内,在Z轴方向上
Figure BDA00016983215800001910
范围内均为三维断层视场空间
Figure BDA00016983215800001911
的信息。去除三维断层视场空间以外的信息后三维断层视场空间大小为:
Figure BDA00016983215800001912
(2.2)在实施例5的基础上,针对三维断层视场空间
Figure BDA00016983215800001913
设置一个ny×ny×ny个像素点的栅格立方体,利用
Figure BDA00016983215800001914
个栅格立方体对三维切片视场空间
Figure BDA00016983215800001915
离散化,并根据栅格立方体位置以及栅格立方体的函数值,构建一个三维数字化矩阵
Figure BDA00016983215800001916
表示;设置每个栅格立方体中像素点为1的个数
Figure BDA00016983215800001917
设置栅格立方体赋值阈值为TH22,若
Figure BDA00016983215800001918
则此栅格立方体赋值为1,否则赋值为0;三维断层视场空间
Figure BDA00016983215800001919
中(pj,qj,rj)位置的栅格立方体的赋值函数为
Figure BDA00016983215800001920
即:
Figure BDA0001698321580000201
Figure BDA0001698321580000202
其中
Figure BDA0001698321580000203
pj∈[1 2 … p],qj∈[1 2 … q],rj∈[12 … r],
Figure BDA0001698321580000204
为三维断层视场空间数字化矩阵
Figure BDA0001698321580000205
中位置为(pj,qj,rj)的栅格立方体中像素点为1的个数。
(2.3)根据三维断层视场空间数字化信息,计算各方向单目显微视觉系统在微操作空间的三维切片空间数字化信息,在实施例5的基础上,针对沿Y轴方向显微视觉系统Ⅲ(22)的焦平面切片扫描位置
Figure BDA0001698321580000206
定义精密定位系统(19)控制显微视觉系统(22)沿Y轴正方向进行断层扫描(Flagy=1),根据两相邻三维断层空间
Figure BDA0001698321580000207
Figure BDA0001698321580000208
的数字化矩阵为
Figure BDA0001698321580000209
Figure BDA00016983215800002010
则:
Figure BDA00016983215800002011
当精密定位系统(19)控制显微视觉系统(22)沿Y轴负方向进行断层扫描(Flagy=-1)时:
Figure BDA0001698321580000211
此时计算Y轴方向获取切片位置
Figure BDA0001698321580000212
获取的微操作空间的三维切片空间数字化信息
Figure BDA0001698321580000213
为:
Figure BDA0001698321580000214
(2.4)根据各方向上的单目显微视觉系统的获取的微操作空间的三维切片空间,计算微操作系统在对应方向上的单目显微视觉系统的数字化微操作空间,利用Y轴方向上计算不同切片扫描位置的微操作空间的三维切片空间构建Y轴方向上的获取的数字化微操作空间
Figure BDA0001698321580000215
Y轴方向上得到的微操作空间数字化信息用
Figure BDA0001698321580000216
表示,即
Figure BDA0001698321580000217
此时数字化信息
Figure BDA0001698321580000218
描述微操作空间
Figure BDA0001698321580000219
大小为:
Figure BDA00016983215800002110
Figure BDA00016983215800002111
(2.5)微操作系统中X轴、Y轴、Z轴方向上的单目显微视觉系统获取的数字化微操作空间关系匹配。选取标准匹配模板中的一特征点,获取该特征在沿X轴、Y轴、Z轴方向的微操作空间
Figure BDA00016983215800002112
中的对应的数字化信息的位置。利用标准匹配模板同一特征点在不同方向微操作空间的位置相同原则匹配
Figure BDA00016983215800002113
的空间大小。根据
Figure BDA00016983215800002114
空间大小匹配过程,确定选择特征点的数字化信息的位置分别匹配
Figure BDA00016983215800002115
在X轴、Y轴、Z轴方向的空间范围,从而完成显微视场空间
Figure BDA00016983215800002116
大小的匹配;选取标准匹配模板的在
Figure BDA00016983215800002117
数字化距离特征,利用标准匹配模板同一距离特征在不同微操作空间的等距原则对
Figure BDA00016983215800002118
的数字化栅格立方体大小进行匹配。经过数字化显微视场空间大小、数字化栅格立方体大小匹配后的沿X轴、Y轴、Z轴方向的微操作空间为Sx、Sy、Sz
沿X轴、Y轴、Z轴方向的微操作空间为Sx、Sy、Sz空间位置匹配:令微操作空间Sx、Sy、Sz经过空间平移以及旋转变换后的显微视场空间为
Figure BDA0001698321580000221
其经过三维空间位置匹配后的数字化信息为:
Figure BDA0001698321580000222
(2.6)计算各方向上微操作空间的相交视场空间的方法如下:
针对X轴、Y轴、Z轴方向三目正交显微视觉系统的微操作系统,各方向上的微操作空间的相交微操作空间G为:
Figure BDA0001698321580000223
其中∩表示显微视场空间的相交计算。
实施例7:
利用三目正交以及其他非正交的显微视觉系统的微操作系统进行微操作空间数字化的具体过程如下:
步骤1:利用计算机显微视觉切片扫描技术、计算机断层扫描技术获得各方向上单目显微视觉系统焦平面在微操作空间的切片扫描位置和断层扫描图像序列。在实施例6的基础上,增加R轴方向上的显微视觉系统Ⅳ,其在垂直R轴平面上的两个正交方向上进行切片扫描获取各切片扫描位置,在各切片位置,沿R轴方向上进行断层扫描获取各断层扫描图像序列。
R轴方向的显微视觉系统确定切片扫描位置与获取断层图像序列的方法与X轴、Y轴、Z轴方向的显微视觉系统的切片扫描位置与获取断层图像序列的方法一致;
步骤2:利用微操作系统中各方向的单目显微视觉系统焦平面不同切片扫描位置的断层扫描图像结合对应的断层扫描的精密定位系统的步长重构各方向单目显微视觉系统的对应的三维断层视场空间;计算各方向的单目显微视觉系统各切片扫描位置的三维断层视场空间的数字化信息、计算微操作空间三维切片空间数字化信息,从而计算各单目显微视觉系统获取的数字化微操作空间。在此基础上计算各单目显微视觉系统获取的数字化微操作空间相交视场空间,得到微操作系统的数字化微操作空间。
(2.1)在实施例6的基础上,针对R轴方向上的显微视觉系统Ⅳ(44),并重构R轴方向上的显微视觉系统焦平面在不同切片位置的三维断层视场空间;根据显微视觉系统Ⅳ(44)的视场高H44,视场宽W44以及精密定位系统(47)的运动步长
Figure BDA0001698321580000224
断层扫描图像对应的三维断层视场空间大小均为
Figure BDA0001698321580000225
去除三维断层视场空间以外的信息后三维断层视场空间大小为:
Figure BDA0001698321580000226
(2.2)在实施例6的基础上,针对R轴方向显微视觉系统Ⅳ(44)获取的三维断层视场空间
Figure BDA0001698321580000231
则采用X轴、Y轴、Z轴方向获取的三维断层视场空间数字化方法完成其三维空间数字化过程。
(2.3)在实施例6的基础上,针对R轴方向显微视觉系统Ⅳ(44)在不同切片位置获取的三维断层视场空间序列,构建R轴方向微操作空间的三维切片空间。
(2.4)在实施例6的基础上,利用R轴方向微操作空间的三维切片空间计算R轴方向上得到的微操作空间
Figure BDA0001698321580000232
的数字化信息
Figure BDA0001698321580000233
(2.5)在实施例6的基础上,增加R中方向上的微操作空间
Figure BDA0001698321580000234
进行空间匹配、栅格大小匹配、空间位置关系匹配得到空间关系匹配后的数字化矩阵为
Figure BDA0001698321580000235
(2.6)在实施例6的基础上,针对X轴、Y轴、Z轴、R轴方向多目显微视觉系统的微操作系统,各方向上的微操作空间的相交微操作空间G为:
Figure BDA0001698321580000236
以上所述仅为本发明的优选实施例,并不用于限制本发明,显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

1.一种微操作系统的微操作空间的数字化方法,其特征在于,所述方法采用计算机显微视觉断层扫描技术、计算机显微视觉切片扫描技术在微操作系统微操作空间中沿各单目显微视觉系统光轴垂直正交的两个方向上进行切片扫描获取各方向显微视觉系统的焦平面切片位置,沿各单目显微视觉系统光轴所在的方向进行断层扫描获得的不同切片位置的断层扫描图像序列,基于各显微视觉系统焦平面的不同切片位置的断层扫描图像数字化重构各单目显微视觉系统的三维微操作空间,并求取微操作系统的数字化微操作空间,包括以下步骤:
(1)利用计算机显微视觉切片扫描技术、计算机显微视觉断层扫描技术获得各方向上单目显微视觉系统焦平面在微操作空间的切片扫描位置和断层扫描图像序列:针对X轴和Z轴双目正交的显微视觉系统,X轴方向上的显微视觉系统Ⅱ在微操作空间坐标系的Y轴、Z轴方向进行切片扫描,获取显微视觉系统Ⅱ的焦平面的各切片扫描位置,在微操作空间坐标系X轴方向进行断层扫描并记录不同切片扫描位置的断层扫描图像序列;Z轴方向上的显微视觉系统Ⅰ在微操作空间坐标系的X轴、Y轴方向进行切片扫描,获取显微视觉系统Ⅰ的焦平面的切片扫描位置,在微操作空间坐标系Z轴方向进行断层扫描并记录不同切片扫描位置的断层扫描图像序列;针对X轴和Y轴和Z轴三目正交的显微视觉系统,相对于仅有X轴与Z轴双目正交的显微视觉系统的微操作系统,增加Y轴方向上的显微视觉系统Ⅲ,显微视觉系统Ⅲ在微操作空间坐标系的X轴、Z轴方向进行切片扫描获取显微视觉系统Ⅲ的焦平面的各切片扫描位置,在微操作空间坐标系的Y轴方向进行断层扫描并记录不同切片扫描位置的断层扫描图像序列;针对三目正交的显微视觉系统以及其他任意轴方向的显微视觉系统,相对于三目正交的显微视觉系统的微操作系统增加R轴方向上的显微视觉系统Ⅳ,其在垂直R轴平面上的两个正交方向上进行切片扫描获取各切片扫描位置,在各切片位置,沿R轴方向上进行断层扫描获取各断层扫描图像序列;
(2)利用微操作系统中各方向的单目显微视觉系统焦平面不同切片扫描位置的断层扫描图像结合对应断层扫描的精密定位系统的步长重构各方向单目显微视觉系统的对应的三维断层视场空间;计算各方向的单目显微视觉系统各切片扫描位置的三维断层视场空间的数字化信息、计算微操作空间的三维切片空间数字化信息,从而计算各单目显微视觉系统获取的数字化微操作空间,在此基础上计算各单目显微视觉系统获取的数字化微操作空间相交视场空间,得到微操作系统的数字化微操作空间:
(2.1)针对X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上的单目显微视觉系统焦平面在微操作空间中不同切片扫描位置的断层扫描图像序列,计算各方向单目显微视觉系统的三维断层视场空间范围;
(2.2)对X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上的单目显微视觉系统获取的不同切片扫描位置的三维断层视场空间进行栅格化以及栅格数值化,获取各方向上的单目显微视觉系统的不同切片位置的三维断层视场空间数字化信息;
(2.3)根据X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上的单目显微视觉系统的不同切片扫描位置的三维断层视场空间数字化信息,计算各方向上微操作空间的三维切片空间的数字化信息;
(2.4)根据X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上的单目显微视觉系统的获取的微操作空间的三维切片空间,计算微操作系统在对应方向上的单目显微视觉系统的数字化微操作空间;
(2.5)针对X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上的单目显微视觉系统获取的数字化微操作空间关系匹配:针对X轴和Z轴双目正交的显微视觉系统的微操作空间,对沿X轴、Z轴方向的两个单目显微视觉系统获取的数字化微操作空间进行三维空间关系匹配;针对X轴和Y轴和Z轴三目正交的显微视觉系统的微操作空间,对沿X轴、Y轴、Z轴方向的三个单目显微视觉系统获取的数字化微操作空间进行三维空间关系匹配;针对X轴和Y轴和Z轴和R轴多目显微视觉系统的微操作空间,对沿X轴、Y轴、Z轴以及R轴方向的多个单目显微视觉系统获取的数字化微操作空间进行三维空间关系匹配;
(2.6)计算X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴各单目显微视觉系统的微操作空间的相交空间;
所述的微操作空间是指所搭建的微操作系统空间中能同时观测到微机械手或微机器人、工作台及待装配物体之全局信息的空间。
2.根据权利要求1所述的微操作系统的微操作空间的数字化方法,其特征在于,所述步骤(1)的具体过程是:
(1.1)确定沿X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上的显微视觉系统II(5)和显微视觉系统I(1)、或者显微视觉系统II(5)和显微视觉系统III(22)和显微视觉系统I(1)、或者显微视觉系统II(5)和显微视觉系统III(22)和显微视觉系统I(1)和显微视觉系统Ⅳ(44)的视场分辨率大小、景深大小、像元尺寸、放大倍数,设置合适的光源强度以及各单目显微视觉系统焦平面初始位置;针对X轴和Z轴双目正交的显微视觉系统,确定控制X轴方向上的显微视觉系统Ⅱ(5)在微操作空间坐标系的Y轴、Z轴方向进行计算机显微视觉切片扫描的精密定位系统Ⅳ(6)和精密定位系统Ⅴ(7)的步长、运动方向、运动方式、运动速度、初始位置以及初始位置时对应的显微视觉系统Ⅱ(5)的焦平面在微操作空间坐标系的X轴方向的位置
Figure FDA0003524121510000031
确定显微视觉系统Ⅰ(1)在微操作空间坐标系的X轴、Y轴方向进行计算机显微视觉切片扫描的精密定位系统Ⅱ(3)和精密定位系统Ⅰ(2)的步长、运动方向、运动方式、运动速度、初始位置以及初始位置时对应的显微视觉系统Ⅰ(1)的焦平面在微操作空间坐标系的Z轴方向的位置
Figure FDA0003524121510000032
针对X轴和Y轴和Z轴三目正交的显微视觉系统,增加Y轴方向的显微视觉系统Ⅲ,确定显微视觉系统Ⅲ(22)在微操作空间坐标系的X轴、Z轴方向进行计算机显微视觉切片扫描的精密定位系统Ⅸ(21)和精密定位系统Ⅷ(20)的步长、运动方向、运动方式、运动速度、初始位置以及初始位置时对应的显微视觉系统Ⅲ(22)的焦平面在Y轴方向的位置
Figure FDA0003524121510000033
针对X轴和Y轴和Z轴和R轴多目的显微视觉系统,增加R轴方向显微视觉系统Ⅳ(44),确定控制显微视觉系统Ⅳ(44)焦平面的初始位置以及进行切片扫描的精密定位系统Ⅹ(45)和精密定位系统XI(46)以及断层扫描的精密定位系统XII(47)的步长、运动方向、运动方式、速度以及初始位置参数;
(1.2)针对X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上的显微视觉系统,分别获取X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上的显微视觉系统的切片扫描位置和对应精密定位系统的位移量序列;
其中精密定位系统Ⅱ(3)和精密定位系统Ⅰ(2)控制显微视觉系统Ⅰ(1)沿着微操作空间坐标系的X轴、Y轴方向运动进行切片扫描,控制显微视觉系统Ⅰ(1)进行切片扫描的精密定位系统Ⅱ(3)和精密定位系统Ⅰ(2)的步长分别为
Figure FDA0003524121510000034
其运动一个步长的位移,则显微视觉系统的焦平面的切片扫描位置发生变化,记录显微视觉系统Ⅰ(1)的焦平面所在切片位置的序列号以及精密定位系统Ⅱ(3)和精密定位系统Ⅰ(2)的位移量如下:
Figure FDA0003524121510000035
Figure FDA0003524121510000036
其中
Figure FDA0003524121510000037
为微操作系统中显微视觉系统Ⅰ(1)在微操作空间坐标系X轴、Y轴方向进行切片扫描时,焦平面所在切片位置矩阵;
Figure FDA0003524121510000041
为微操作系统中控制显微视觉系统Ⅰ(1)进行切片扫描的精密定位系统Ⅱ(3)和精密定位系统Ⅰ(2)的位移量构建的矩阵;xN1、yN1为显微视觉系统Ⅰ(1)沿X轴、Y轴扫描的次数;精密定位系统Ⅱ(3)第xk、yk次运动后位移量
Figure FDA0003524121510000042
精密定位系统Ⅰ(2)第yk次运动后位移量
Figure FDA0003524121510000043
分别与各自步长
Figure FDA0003524121510000044
的关系式如下:
Figure FDA0003524121510000045
Figure FDA0003524121510000046
针对X轴方向上的显微视觉系统Ⅱ(5)的切片扫描,记录显微视觉系统Ⅱ(5)的焦平面的切片位置的序列号以及精密定位系统Ⅳ(6)和精密定位系统Ⅴ(7)的位移量如下:
Figure FDA0003524121510000047
Figure FDA0003524121510000048
其中
Figure FDA0003524121510000049
为微操作系统中显微视觉系统Ⅱ(5)在微操作空间坐标系的Y轴、Z轴方向进行切片扫描时,焦平面所在切片位置矩阵;yN5、zN5分别为显微视觉系统Ⅱ(5)沿Y轴、Z轴扫描的次数;
Figure FDA00035241215100000410
为微操作系统中控制显微视觉系统Ⅱ(5)进行切片扫描的精密定位系统Ⅳ(6)和精密定位系统Ⅴ(7)的位移量构建的矩阵;设置精密定位系统Ⅳ(6)和精密定位系统Ⅴ(7)的运动步长为:
Figure FDA00035241215100000411
精密定位系统Ⅳ(6)第yi次运动后位移量
Figure FDA00035241215100000412
与步长
Figure FDA00035241215100000413
的关系式以及精密定位系统Ⅴ(7)第zi次运动后位移量
Figure FDA00035241215100000414
与步长
Figure FDA00035241215100000415
的关系式如下:
Figure FDA00035241215100000416
Figure FDA00035241215100000417
针对Y轴方向上的显微视觉系统Ⅲ(22)进行切片扫描,记录显微视觉系统Ⅲ(22)的焦平面的切片位置的序列号以及精密定位系统Ⅸ(21)和精密定位系统Ⅷ(20)的位移量如下:
Figure FDA0003524121510000051
Figure FDA0003524121510000052
其中
Figure FDA0003524121510000053
为微操作系统中显微视觉系统Ⅲ(22)在微操作空间坐标系X轴、Z轴方向进行切片扫描时,焦平面所在切片位置矩阵;zN22、zN22分别为显微视觉系统Ⅲ(22)沿X轴、Z轴扫描的次数;
Figure FDA0003524121510000054
为微操作系统中控制显微视觉系统Ⅱ(5)进行切片扫描的精密定位系统Ⅸ(21)和精密定位系统Ⅷ(20)的位移量构建的矩阵;设置精密定位系统Ⅸ(21)和精密定位系统Ⅷ(20)的运动步长为:
Figure FDA0003524121510000055
精密定位系统Ⅳ(6)第yi次运动后位移量
Figure FDA0003524121510000056
与步长
Figure FDA0003524121510000057
的关系式以及精密定位系统V(7)第zi次运动后位移量
Figure FDA0003524121510000058
与步长
Figure FDA0003524121510000059
的关系式如下:
Figure FDA00035241215100000510
Figure FDA00035241215100000511
针对R轴方向上的显微视觉系统Ⅳ进行切片扫描,记录显微视觉系统Ⅹ(45)的焦平面的切片位置的序列号
Figure FDA00035241215100000512
以及精密定位系统Ⅸ(21)和精密定位系统Ⅷ(20)的位移量
Figure FDA00035241215100000513
(1.3)确定X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上显微视觉系统II(5)与显微视觉系统(1)I、或者显微视觉系统II(5)与显微视觉系统III(22)与显微视觉系统I(1)、或者显微视觉系统II(5)与显微视觉系统III(22)与显微视觉系统I(1)与显微视觉系统Ⅳ(44)在各自不同切片扫描位置断层扫描获取断层扫描图像序列以及断层扫描对应精密定位系统的位移量;
其中确定控制显微视觉系统Ⅰ(1)进行计算机显微视觉断层扫描的精密定位系统Ⅲ(4)的步长、运动方向、运动方式、运动速度、初始位置以及初始位置时显微视觉系统Ⅰ(1)光轴穿过焦平面的图像主点位置为
Figure FDA00035241215100000514
确定控制显微视觉系统Ⅱ(5)进行计算机显微视觉断层扫描的精密定位系统Ⅵ(8)的步长、运动方向、运动方式、运动速度、初始位置以及初始位置时显微视觉系统Ⅱ(5)光轴穿过焦平面的图像主点位置为
Figure FDA00035241215100000515
确定控制显微视觉系统Ⅲ(22)进行计算机显微视觉断层扫描的精密定位系统Ⅶ(19)的步长、运动方向、运动方式、运动速度、初始位置以及初始位置时显微视觉系统Ⅲ(22)光轴穿过焦平面的图像主点位置为
Figure FDA0003524121510000061
确定R轴方向的显微视觉系统Ⅳ(44)在切片位置进行断层扫描的精密定位系统XII(47)的步长、运动方向、运动方式、运动速度、初始位置以及初始位置时显微视觉系统Ⅳ(44)光轴穿过焦平面的图像主点位置;
(1.4)X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上显微视觉系统II(5)与显微视觉系统I(1)、或者显微视觉系统II(5)与显微视觉系统III(22)与显微视觉系统I(1)、或者显微视觉系统II(5)与显微视觉系统III(22)与显微视觉系统I(1)与显微视觉系统Ⅳ(44)的各切片扫描位置进行断层扫描并获取不同切片位置的断层扫描图像序列,并记录进行断层扫描对应的精密定位系统的位移;
在显微视觉系统Ⅰ(1)的切片位置
Figure FDA0003524121510000062
精密定位系统Ⅲ(4)控制显微视觉系统Ⅰ(1)沿着微操作空间的Z轴方向进行扫描,记录精密定位系统Ⅲ(4)的位移为
Figure FDA0003524121510000063
则:
Figure FDA0003524121510000064
设置精密定位系统Ⅲ(4)的步长为
Figure FDA0003524121510000065
精密定位系统Ⅰ(2)的步长为
Figure FDA0003524121510000066
则精密定位系统的位移与步长的关系为:
Figure FDA0003524121510000067
根据精密定位系统Ⅲ(4)在切片位置
Figure FDA0003524121510000068
的位移量
Figure FDA0003524121510000069
定义扫描获取的图像序列构建的图像向量为
Figure FDA00035241215100000610
则获取的断层扫描图像序列的矩阵为:
Figure FDA00035241215100000611
其中[]′为矩阵转置运算,zN1表示精密定位系统Ⅲ(4)控制显微视觉系统Ⅰ(1)在微操作空间坐标系Z轴方向断层扫描的最大次数;
在显微视觉系统Ⅱ(5)的切片位置
Figure FDA00035241215100000612
精密定位系统Ⅵ(8)控制显微视觉系统Ⅱ(5)沿着微操作空间坐标系的X轴方向进行断层扫描,记录精密定位系统Ⅵ(8)的位移为
Figure FDA00035241215100000613
则:
Figure FDA00035241215100000614
设置精密定位系统Ⅵ(8)的步长为
Figure FDA00035241215100000615
精密定位系统Ⅵ(8)的步长为
Figure FDA00035241215100000616
则精密定位系统的位移与步长的关系为:
Figure FDA00035241215100000617
根据精密定位系统Ⅵ(8)在显微视觉系统Ⅱ(5)的焦平面切片位置
Figure FDA0003524121510000071
作断层扫描位移量
Figure FDA0003524121510000072
定义扫描获取的图像序列号为
Figure FDA0003524121510000073
则获取的断层扫描向量为:
Figure FDA0003524121510000074
其中xN5表示精密定位系统Ⅵ(8)控制显微视觉系统Ⅱ(5)沿着微操作空间坐标系的X轴方向断层扫描的最大次数;
在显微视觉系统Ⅲ(22)的切片位置
Figure FDA0003524121510000075
精密定位系统Ⅶ(19)控制显微视觉系统Ⅲ(22)沿着微操作空间坐标系Y轴方向进行断层扫描,记录精密定位系统Ⅶ(19)的位移为
Figure FDA0003524121510000076
则:
Figure FDA0003524121510000077
设置精密定位系统Ⅶ(19)的步长为
Figure FDA0003524121510000078
则精密定位系统的位移与步长的关系为:
Figure FDA0003524121510000079
根据精密定位系统Ⅶ(19)在显微视觉系统Ⅲ(22)的焦平面切片位置
Figure FDA00035241215100000710
作断层扫描位移量
Figure FDA00035241215100000711
定义扫描获取的图像序列号为
Figure FDA00035241215100000712
则获取的切片扫描向量为:
Figure FDA00035241215100000713
其中yN22表示精密定位系统控制显微视觉系统Ⅲ(22)沿着微操作空间坐标系的Y轴方向扫描的最大次数;
在R轴方向的显微视觉系统Ⅳ(44)的切片扫描位置
Figure FDA00035241215100000714
记录显微视觉系统Ⅳ(44)在各个不同切片位置的断层图像序列和进行断层扫描的精密定位系统XII(47)的位移量序列。
3.根据权利要求2所述的微操作系统的微操作空间的数字化方法,其特征在于,针对X轴和Z轴方向上的显微视觉系统的切片扫描和断层扫描,精密定位系统Ⅲ(4)和精密定位系统Ⅵ(8)控制显微视觉系统Ⅰ(1)和显微视觉系统Ⅱ(5)进行各方向切片扫描位置的断层扫描步长为
Figure FDA00035241215100000715
显微视觉系统Ⅰ(1)进行微操作空间的切片扫描,精密定位系统Ⅰ(2)和精密定位系统Ⅱ(3)的扫描步长为
Figure FDA00035241215100000716
显微视觉系统Ⅱ(5)进行微操作空间的切片扫描,精密定位系统Ⅳ(6)和精密定位系统Ⅴ(7)的扫描步长为
Figure FDA00035241215100000717
其需要满足:
Figure FDA0003524121510000081
Figure FDA0003524121510000082
Figure FDA0003524121510000083
Figure FDA0003524121510000084
Figure FDA0003524121510000085
Figure FDA0003524121510000086
针对X轴和Y轴和Z轴方向上显微视觉系统的切片扫描和断层扫描,增加的Y轴方向上的显微视觉系统Ⅲ(22),控制显微视觉系统Ⅲ(22)进行不同切片扫描位置的断层扫描的精密定位系统Ⅶ(19)的步长为
Figure FDA0003524121510000087
进行切片扫描的精密定位系统Ⅸ(21)和精密定位系统Ⅷ(20)的扫描步长为
Figure FDA0003524121510000088
需要满足:
Figure FDA0003524121510000089
Figure FDA00035241215100000810
Figure FDA00035241215100000811
其中DOF1、DOF5、DOF22分别为显微视觉系统Ⅰ(1)、显微视觉系统Ⅱ(5)、显微视觉系统Ⅲ(22)的景深,H1、H5、H22分别为显微视觉系统Ⅰ(1)、显微视觉系统Ⅱ(5)、显微视觉系统Ⅲ(22)的视场高度,W1、W5、W22分别为显微视觉系统Ⅰ(1)、显微视觉系统Ⅱ(5)、显微视觉系统Ⅲ(22)的视场宽度;
针对X轴和Y轴和Z轴和R轴方向上多目显微视觉系统的切片扫描和断层扫描,在三目正交显微视觉系统的微操作系统上增加的R轴方向上的显微视觉系统Ⅳ(44)的切片扫描和断层扫描,控制显微视觉系统Ⅳ(44)进行不同切片扫描位置的断层扫描的精密定位系统XII(47)的步长需要小于等于显微视觉系统Ⅳ(44)的景深,进行切片扫描的精密定位系统Ⅹ(45)和精密定位系统XI(46)的扫描步长小于等于显微视觉系统Ⅳ(44)的视场宽度和高度。
4.根据权利要求1所述的微操作系统的微操作空间的数字化方法,其特征在于,所述步骤(2.1)的具体过程如下:
①针对X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上的单目显微视觉系统获取的不同切片扫描位置的断层扫描序列图像,重构各断层扫描图像对应的三维断层视场空间,计算各方向单目显微视觉系统获取的断层扫描图像对应的三维断层视场空间范围;其中X轴、Y轴、Z轴、R轴方向上获取的不同切片扫描位置的三维断层视场空间如下:
针对Z轴方向上显微视觉系统Ⅰ(1)的焦平面在X轴、Y轴方向不同切片位置由精密定位系统Ⅲ(4)控制显微视觉系统Ⅰ(1)在进行断层扫描获取的断层扫描图像序列,结合显微视觉系统Ⅰ(1)的视场大小以及精密定位系统Ⅲ(4)运动步长重构对应位置上的三维断层视场空间;根据显微视觉系统Ⅰ(1)的视场高H1,视场宽W1以及精密定位系统Ⅲ(4)的运动步长
Figure FDA0003524121510000091
显微视觉系统Ⅰ(1)焦平面切片位置
Figure FDA0003524121510000092
沿Z轴方向上断层扫描获得的断层扫描图像对应的三维断层视场空间大小均为
Figure FDA0003524121510000093
不同切片位置的断层扫描图像序列构建的向量
Figure FDA0003524121510000094
所重构的对应的三维断层视场空间序列构建的向量如下:
Figure FDA0003524121510000095
针对X轴方向上显微视觉系统Ⅱ(5)的焦平面在Y轴、Z轴方向不同切片位置由精密定位系统Ⅵ(8)控制显微视觉系统Ⅱ(5)在X轴方向进行断层扫描获取断层扫描图像序列,结合显微视觉系统Ⅱ(5)的视场大小以及精密定位系统Ⅵ(8)运动步长重构对应位置上的三维断层视场空间;根据显微视觉系统Ⅱ(5)的视场高H5,视场宽W5以及精密定位系统Ⅵ(8)的运动步长
Figure FDA0003524121510000096
显微视觉系统Ⅱ(5)焦平面切片位置
Figure FDA0003524121510000097
沿X轴方向上断层扫描的断层扫描图像对应的三维断层视场空间大小均为
Figure FDA0003524121510000098
不同切片位置的断层扫描图像序列构建的向量
Figure FDA0003524121510000099
所重构的对应的三维断层视场空间序列构建的向量如下:
Figure FDA00035241215100000910
针对Y轴方向上显微视觉系统Ⅲ(22)的焦平面在X轴、Z轴方向上不同切片位置由精密定位系统Ⅶ(19)控制显微视觉系统Ⅲ(22)在进行断层扫描获取断层扫描图像序列,结合显微视觉系统Ⅲ(22)的视场大小以及精密定位系统Ⅶ(19)运动步长重构对应位置上的三维断层视场空间;根据显微视觉系统Ⅲ(22)的视场高H22,视场宽W22以及精密定位系统Ⅶ(19)的运动步长
Figure FDA00035241215100000911
显微视觉系统Ⅲ(22)焦平面切片位置
Figure FDA00035241215100000912
沿Y轴方向上断层扫描的断层扫描图像对应的三维断层视场空间大小均为
Figure FDA00035241215100000913
不同切片位置的断层扫描图像序列构建的向量
Figure FDA00035241215100000914
所重构的对应的三维断层视场空间序列构建的向量如下:
Figure FDA00035241215100000915
针对R轴方向上的显微视觉系统Ⅳ(44),并重构R轴方向上的显微视觉系统焦平面在不同切片位置的三维断层视场空间;根据显微视觉系统Ⅳ(44)的视场高H44,视场宽W44以及精密定位系统XII(47)的运动步长
Figure FDA0003524121510000101
断层扫描图像对应的三维断层视场空间大小均为
Figure FDA0003524121510000102
②针对X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上的单目显微视觉系统获取的不同切片扫描位置的三维断层视场空间去除非期望信息的处理如下:
针对显微视觉系统Ⅰ(1)的三维断层视场空间
Figure FDA0003524121510000103
对应的精密定位系统Ⅱ(3)和精密定位系统Ⅰ(2)的运动位移为
Figure FDA0003524121510000104
此时在微操作空间坐标系的X轴方向上
Figure FDA0003524121510000105
范围内,在Y轴方向上
Figure FDA0003524121510000106
范围内,在Z轴方向上
Figure FDA0003524121510000107
范围内均为三维断层视场空间
Figure FDA0003524121510000108
的信息,去除三维断层视场空间以外的信息后三维断层视场空间大小为:
Figure FDA0003524121510000109
针对显微视觉系统Ⅱ(5)的三维断层视场空间
Figure FDA00035241215100001010
对应的精密定位系统Ⅳ(6)和精密定位系统Ⅴ(7)的运动位移为
Figure FDA00035241215100001011
此时在微操作空间坐标系的X轴方向上
Figure FDA00035241215100001012
范围内,在Y轴方向上
Figure FDA00035241215100001013
范围内,在Z轴方向上
Figure FDA00035241215100001014
范围内均为三维断层视场空间
Figure FDA00035241215100001015
的信息,去除三维断层视场空间以外的信息后三维断层视场空间大小为:
Figure FDA00035241215100001016
针对显微视觉系统Ⅲ(22)的三维断层视场空间
Figure FDA00035241215100001017
对应的精密定位系统Ⅲ(4)和精密定位系统Ⅸ(21)的运动位移为
Figure FDA00035241215100001018
此时在微操作空间坐标系的X轴方向上
Figure FDA00035241215100001019
范围内,在Y轴方向上
Figure FDA00035241215100001020
范围内,在Z轴方向上
Figure FDA00035241215100001021
范围内均为三维断层视场空间
Figure FDA00035241215100001022
的信息,去除三维断层视场空间以外的信息后三维断层视场空间大小为:
Figure FDA00035241215100001023
针对显微视觉系统Ⅳ(44)的三维断层视场空间以及进行切片扫描、断层扫描的精密定位系统的步长,去除三维断层视场空间以外的信息后三维断层视场空间大小为:
Figure FDA00035241215100001024
5.根据权利要求1所述的微操作系统的微操作空间的数字化方法,其特征在于,所述(2.2)对X轴和Z轴,或者X轴和Y轴和Z轴,或者X轴和Y轴和Z轴和R轴方向上的显微视觉系统获取的不同切片扫描位置的三维断层视场空间栅格化以及栅格数值化,获取各三维断层视场空间数字化信息的方法,其中X轴、Y轴、Z轴、R轴方向上各单目显微视觉系统获取的三维断层视场空间栅格化以及栅格数值化,获取X轴、Y轴、Z轴、R轴方向上各单目显微视觉系统的各三维断层视场空间数字化信息的方法分别如下:
针对Z轴方向显微视觉系统Ⅰ(1)的切片扫描位置
Figure FDA0003524121510000111
获取的三维断层视场空间
Figure FDA0003524121510000112
设置一个nz×nz×nz个像素点的栅格立方体,利用
Figure FDA0003524121510000113
个栅格立方体对三维断层视场空间
Figure FDA0003524121510000114
离散化,并根据栅格立方体位置以及栅格立方体的函数值,构建一个三维数字化矩阵
Figure FDA0003524121510000115
表示;设置每个栅格立方体中像素点为1的个数
Figure FDA0003524121510000116
设置栅格立方体赋值阈值为TH1,若
Figure FDA0003524121510000117
则此栅格立方体赋值为1,否则赋值为0;三维断层视场空间
Figure FDA0003524121510000118
中(pk,qk,rk)位置的栅格立方体的赋值函数为
Figure FDA0003524121510000119
即:
Figure FDA00035241215100001110
Figure FDA00035241215100001111
其中
Figure FDA00035241215100001112
Figure FDA0003524121510000121
为三维断层视场空间数字化矩阵
Figure FDA0003524121510000122
中位置为(pk,qk,rk)的栅格立方体中像素点为1的个数;
针对X轴方向显微视觉系统Ⅱ(1)的切片扫描位置
Figure FDA0003524121510000123
获取的三维断层视场空间
Figure FDA0003524121510000124
设置一个nx×nx×nx个像素点的栅格立方体,利用
Figure FDA0003524121510000125
个栅格立方体对三维断层视场空间
Figure FDA0003524121510000126
离散化,并根据栅格立方体位置以及栅格立方体的函数值,构建一个三维数字化矩阵
Figure FDA0003524121510000127
表示;设置每个栅格立方体中像素点为1的个数
Figure FDA0003524121510000128
设置栅格立方体赋值阈值为TH5,若
Figure FDA0003524121510000129
则此栅格立方体赋值为1,否则赋值为0;三维断层视场空间
Figure FDA00035241215100001210
中(pi,qi,ri)位置的栅格立方体的赋值函数为
Figure FDA00035241215100001211
即:
Figure FDA00035241215100001212
Figure FDA00035241215100001213
其中
Figure FDA00035241215100001214
Figure FDA00035241215100001215
为三维断层视场空间数字化矩阵
Figure FDA00035241215100001216
中位置为(pi,qi,ri)的栅格立方体中像素点为1的个数;
针对Y轴方向显微视觉系统Ⅲ(22)的切片扫描位置
Figure FDA00035241215100001217
获取的三维断层视场空间
Figure FDA0003524121510000131
设置一个ny×ny×ny像素点的栅格立方体,利用
Figure FDA0003524121510000132
个栅格立方体对三维切片视场空间
Figure FDA0003524121510000133
离散化,并根据栅格立方体位置以及栅格立方体的函数值,构建一个三维数字化矩阵
Figure FDA0003524121510000134
表示;设置每个栅格立方体中像素点为1的个数
Figure FDA0003524121510000135
设置栅格立方体赋值阈值为TH22,若
Figure FDA0003524121510000136
则此栅格立方体赋值为1,否则赋值为0;三维切片视场空间
Figure FDA0003524121510000137
中(pj,qj,rj)位置的栅格立方体的赋值函数为
Figure FDA0003524121510000138
即:
Figure FDA0003524121510000139
Figure FDA00035241215100001310
其中
Figure FDA00035241215100001311
Figure FDA00035241215100001316
为三维断层视场空间数字化矩阵
Figure FDA00035241215100001314
中位置为(pj,qj,rj)的栅格立方体中像素点为1的个数;
针对R轴方向显微视觉系统Ⅳ(44)获取的三维断层视场空间矩阵
Figure FDA00035241215100001315
则采用X轴、Y轴、Z轴方向获取的三维断层视场空间数字化方法完成其三维空间数字化过程。
6.根据权利要求1所述的微操作系统的微操作空间的数字化方法,其特征在于,所述步骤(2.3)根据X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上的三维断层视场空间数字化信息,计算X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上单目显微视觉系统获取的微操作空间的三维切片空间数字化信息,其中分别计算X轴、Y轴、Z轴方向上的微操作空间三维切片空间数字化信息的方法如下:
①针对沿X轴方向显微视觉系统Ⅱ(5)的切片扫描位置
Figure FDA0003524121510000141
定义精密定位系统Ⅵ(8)控制显微视觉系统Ⅱ(5)沿X轴正方向进行断层扫描(Flagx=1),根据两相邻三维断层空间
Figure FDA0003524121510000142
Figure FDA0003524121510000143
的数字化矩阵为
Figure FDA0003524121510000144
则:
Figure FDA0003524121510000145
当精密定位系统Ⅵ(8)控制显微视觉系统Ⅱ(5)沿X轴负方向进行断层扫描(Flagx=-1)时:
Figure FDA0003524121510000146
此时计算X轴方向获取切片位置
Figure FDA0003524121510000147
的微操作空间的三维切片空间数字化信息
Figure FDA0003524121510000148
为:
Figure FDA0003524121510000149
②针对沿Y轴方向显微视觉系统Ⅲ(22)的焦平面切片扫描位置
Figure FDA00035241215100001410
定义精密定位系统Ⅶ(19)控制显微视觉系统Ⅲ(22)沿Y轴正方向进行断层扫描(Flagy=1),根据两相邻三维断层空间
Figure FDA00035241215100001411
Figure FDA00035241215100001412
的数字化矩阵为
Figure FDA00035241215100001413
则:
Figure FDA00035241215100001414
当精密定位系统Ⅶ(19)控制显微视觉系统Ⅲ(22)沿Y轴负方向进行断层扫描(Flagy=-1)时:
Figure FDA00035241215100001415
此时计算Y轴方向获取切片位置
Figure FDA00035241215100001416
获取的微操作空间的三维切片空间数字化信息
Figure FDA0003524121510000151
为:
Figure FDA0003524121510000152
③针对沿Z轴方向显微视觉系统Ⅰ(1)的焦平面切片扫描位置
Figure FDA0003524121510000153
沿Z轴方向定义精密定位系统Ⅲ(4)控制显微视觉系统Ⅰ(1)沿Z轴正方向进行断层扫描(Flagz=1),根据两相邻三维断层空间
Figure FDA0003524121510000154
Figure FDA0003524121510000155
的数字化矩阵为
Figure FDA0003524121510000156
则:
Figure FDA0003524121510000157
当精密定位系统Ⅲ(4)控制显微视觉系统Ⅰ(1)沿Z轴负方向进行断层扫描(Flagz=-1)时:
Figure FDA0003524121510000158
此时计算Z轴方向的切片位置获取切片位置
Figure FDA0003524121510000159
获取的微操作空间的三维切片空间数字化信息
Figure FDA00035241215100001510
为:
Figure FDA00035241215100001511
④针对沿R轴方向显微视觉系统Ⅳ(44)的焦平面不同切片扫描位置,根据相邻两个三维断层视场空间的位置关系以及进行断层扫描的精密定位系统的运动方向FlagR计算可以用拼接计算微操作空间的三维切片空间数字化信息;其中[ ]′表示矩阵转置,Flagx、Flagy、Flagz用于记录沿着微操作空间坐标系的X轴、Y轴、Z轴扫描的方向。
7.根据权利要求1所述的微操作系统的微操作空间的数字化方法,其特征在于,所述步骤(2.4)X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上的单目显微视觉系统的获取的微操作空间的三维切片空间,计算微操作系统在对应方向上的单目显微视觉系统的数字化微操作空间,其中分别计算X轴、Y轴、Z轴、R轴方向上的数字化微操作空间的方法分别如下:
①利用X轴方向上计算不同切片扫描位置的微操作空间的三维切片空间构建X轴方向上获取的数字化微操作空间
Figure FDA00035241215100001512
X轴方向上得到的微操作空间数字化信息用
Figure FDA00035241215100001513
表示,即
Figure FDA0003524121510000161
此时数字化信息
Figure FDA0003524121510000162
描述微操作空间大小
Figure FDA0003524121510000163
为:
Figure FDA0003524121510000164
Figure FDA0003524121510000165
②利用Y轴方向上计算不同切片扫描位置的微操作空间的三维切片空间构建Y轴方向上获取的数字化微操作空间
Figure FDA0003524121510000166
Y轴方向上得到的微操作空间数字化信息用
Figure FDA0003524121510000167
表示,即
Figure FDA0003524121510000168
此时数字化信息
Figure FDA0003524121510000169
描述微操作空间
Figure FDA00035241215100001610
大小为:
Figure FDA00035241215100001611
Figure FDA00035241215100001612
③利用Z轴方向上计算不同切片扫描位置的微操作空间的三维切片空间构建Z轴方向上获取的数字化微操作空间
Figure FDA00035241215100001613
Z轴方向上得到的微操作空间数字化信息用
Figure FDA00035241215100001614
表示,即
Figure FDA00035241215100001615
此时数字化信息
Figure FDA00035241215100001616
描述微操作空间
Figure FDA00035241215100001617
大小为:
Figure FDA00035241215100001618
Figure FDA00035241215100001619
④利用R轴方向上计算不同切片扫描位置的微操作空间的三维切片空间构建R轴方向上的获取的数字化微操作空间
Figure FDA00035241215100001620
R轴方向上得到的微操作空间数字化信息用
Figure FDA00035241215100001621
表示。
8.根据权利要求1所述的微操作系统的微操作空间的数字化方法,其特征在于,所述步骤(2.5)针对X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上的单目显微视觉系统获取的数字化微操作空间关系匹配:
①针对X轴和Z轴方向上的微操作空间大小以及数字化栅格立方体大小匹配,选取标准匹配模板中的一特征点,获取该特征在沿X轴、Z轴方向获取的微操作空间
Figure FDA00035241215100001622
中对应的数字化信息的位置,利用标准匹配模板同一特征点在不同方向微操作空间的位置相同原则匹配微操作空间
Figure FDA0003524121510000171
的空间大小;根据数字化信息的位置确定该特征数字化信息在
Figure FDA0003524121510000172
中分别与平行于微操作空间坐标系XY平面的两个边界平面的对应距离值匹配
Figure FDA0003524121510000173
在微操作空间坐标系Z轴方向上的范围;该特征数字化信息在
Figure FDA0003524121510000174
中分别与平行于微操作空间坐标系XZ平面的两个边界平面的对应距离值匹配
Figure FDA0003524121510000175
在微操作空间坐标系Y轴方向上的范围;该特征数字化信息在
Figure FDA0003524121510000176
中分别与平行于微操作空间坐标系YZ平面的两个边界平面的对应距离值匹配
Figure FDA0003524121510000177
在微操作空间坐标系X轴方向上的范围,从而完成
Figure FDA0003524121510000178
大小的匹配;选取标准匹配模板在
Figure FDA0003524121510000179
数字化距离特征,利用标准匹配模板同一距离特征在不同数字化显微视觉空间的等距原则对
Figure FDA00035241215100001710
的数字化栅格立方体大小进行匹配;经过数字化微操作空间大小、数字化栅格立方体大小匹配后的沿X轴、Z轴方向获取的微操作空间为Sx、Sz;针对X轴和Y轴和Z轴方向上的微操作空间大小以及数字化栅格立方体大小匹配,则选取标准匹配模板中的一特征点,获取该特征在沿X轴、Y轴、Z轴方向的微操作空间
Figure FDA00035241215100001711
中的对应的数字化信息的位置;利用标准匹配模板同一特征点在不同方向微操作空间的位置相同原则匹配
Figure FDA00035241215100001712
的空间大小;根据
Figure FDA00035241215100001713
空间大小匹配过程,确定选择特征点的数字化信息的位置分别匹配
Figure FDA00035241215100001714
在X轴、Y轴、Z轴方向的空间范围,从而完成显微视场空间
Figure FDA00035241215100001715
大小的匹配;选取标准匹配模板的在
Figure FDA00035241215100001716
数字化距离特征,利用标准匹配模板同一距离特征在不同微操作空间的等距原则对
Figure FDA00035241215100001717
的数字化栅格立方体大小进行匹配;经过数字化显微视场空间大小、数字化栅格立方体大小匹配后的沿X轴、Y轴、Z轴方向的微操作空间为Sx、Sy、Sz;针对X轴和Y轴和Z轴和R轴方向的微操作空间大小以及数字化栅格立方体大小匹配,则在X轴和Y轴和Z轴方向上的微操作空间大小以及数字化栅格立方体大小匹配过程的基础上考虑
Figure FDA00035241215100001718
的空间范围和栅格立方体的大小,经过数字化显微视场空间大小、数字化栅格立方体大小匹配后的沿X轴、Y轴、Z轴以及R轴方向的微操作空间为Sx、Sy、Sz、SR
②X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上微操作空间的空间位置匹配:根据沿X轴、Y轴、Z轴、R轴方向微操作空间Sx、Sy、Sz、SR利用空间平移以及旋转变换使得各方向上的数字化微操作空间坐标系与微操作空间坐标系(16)保持一致;X轴与Z轴方向上的微操作空间Sx与Sz完成两个的空间位置匹配;X轴与Y 轴与Z轴方向上的微操作空间Sx与Sy与Sz完成三个空间位置匹配;X轴与Y轴与Z轴与R轴方向多方向上的微操作空间Sx与Sy与Sz与SR完成多个方向上的空间位置匹配;令微操作空间Sx、Sy、Sz、SR经过空间平移以及旋转变换后的显微视场空间为
Figure FDA0003524121510000181
其经过三维空间位置匹配后的数字化信息为:
Figure FDA0003524121510000182
沿X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上微操作空间关系匹配可以选定装配零件、物体的数字化特征实现X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上的微操作空间匹配,获取X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上的空间关系匹配后的微操作空间
Figure FDA0003524121510000183
Figure FDA0003524121510000184
Figure FDA0003524121510000185
Figure FDA0003524121510000186
Figure FDA0003524121510000187
Figure FDA0003524121510000188
Figure FDA0003524121510000189
Figure FDA00035241215100001810
Figure FDA00035241215100001811
9.根据权利要求1所述的微操作系统的微操作空间的数字化方法,其特征在于,所述步骤(2.6)计算X轴和Z轴、或者X轴和Y轴和Z轴、或者X轴和Y轴和Z轴和R轴方向上微操作空间的相交空间方法如下:
针对X轴、Z轴方向微操作空间,各方向上的微操作空间的相交微操作空间G为:
Figure FDA00035241215100001812
针对X轴、Y轴、Z轴方向微操作空间,各方向上的微操作空间的相交微操作空间G为:
Figure FDA00035241215100001813
针对X轴、Y轴、Z轴、R轴方向微操作空间,各方向上的微操作空间的相交微操作空间G为:
Figure FDA00035241215100001814
其中∩表示显微视场空间的相交计算。
10.根据权利要求1-9中任一项所述的微操作系统的微操作空间的数字化方法的系统,包括精密定位系统、显微视觉系统和主计算机;
所述精密定位系统用于带动显微视觉系统沿各自显微视觉系统光轴方向运动以及进行精密定位;其包括实现一维、二维精密运动的运动装置、实现定位精度与显微视觉系统景深匹配的高精度定位运动驱动执行器及控制器,实现定位精度与显微视觉系统视场大小匹配的二维高精度定位运动驱动执行器及控制器;
所述显微视觉系统用于进行图像断层扫描获得断层扫描图像序列;其包括显微放大单元,即通过光学显微镜或者电子显微镜实现对显微视场空间中成像物体的放大,成像单元,即通过CCD或CMOS相机完成对显微视场空间中的物体成像;
所述主计算机用于对精密定位系统和显微视觉系统进行控制和计算,以及进行数字化显微视场空间结果显示:主计算机利用沿X轴、Y轴、Z轴、R轴方向在不同断层位置的切片扫描图像结合对应断层扫描的精密定位系统的步长重构切片图像的三维切片视场空间;然后通过栅格化、栅格数值化技术重构三维切片视场空间的数字化信息并基于数字化的三维切片视场空间计算不同断层位置的视场的扩展的三维断层视场空间数字化信息;最后基于不同断层位置的视场的扩展的三维断层视场空间数字化信息计算X轴、Y轴、Z轴方、R轴向上单目显微视觉系统的视场与景深同时扩展的数字化显微视场空间,并利用各方向上显微视觉系统的视场与景深同时扩展的数字化显微视场空间计算相交视场空间数字化信息,从而得到微操作系统的数字化微操作空间;所述的微操作系统的微操作空间为构成微操作系统的双目正交、三目正交以及多目显微视觉系统获取的微操作空间的相交视场空间。
CN201810622197.0A 2018-06-15 2018-06-15 微操作系统的微操作空间的数字化方法及系统 Active CN108876838B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810622197.0A CN108876838B (zh) 2018-06-15 2018-06-15 微操作系统的微操作空间的数字化方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810622197.0A CN108876838B (zh) 2018-06-15 2018-06-15 微操作系统的微操作空间的数字化方法及系统

Publications (2)

Publication Number Publication Date
CN108876838A CN108876838A (zh) 2018-11-23
CN108876838B true CN108876838B (zh) 2022-05-06

Family

ID=64339456

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810622197.0A Active CN108876838B (zh) 2018-06-15 2018-06-15 微操作系统的微操作空间的数字化方法及系统

Country Status (1)

Country Link
CN (1) CN108876838B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110672608B (zh) * 2019-10-15 2022-04-12 南京泰立瑞信息科技有限公司 一种全切片扫描路径动态规划方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000296A (zh) * 2006-12-20 2007-07-18 西北师范大学 基于数字图像技术三维重构金相组织微观浮凸的方法
CN101596715A (zh) * 2009-06-26 2009-12-09 南开大学 一种微操作机器人系统显微视野拓展方法
CN104111242A (zh) * 2014-06-17 2014-10-22 费鹏 一种三维像素超分辨显微成像方法
CN105678847A (zh) * 2016-02-27 2016-06-15 北京工业大学 线激光用于slm显微立体视觉的小尺度物体表面重构方法
CN105938618A (zh) * 2015-03-03 2016-09-14 康耐视公司 通过物体虚拟装配训练装配系统的视觉系统
JP2016168651A (ja) * 2015-03-13 2016-09-23 キヤノン株式会社 ロボット制御方法、ロボット装置、プログラム及び記録媒体
CN107015525A (zh) * 2017-03-16 2017-08-04 南通大学 一种适用于微流控芯片观测的微位移控制平台及使用方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9606527B2 (en) * 2014-06-30 2017-03-28 Caterpillar Inc. Automated fabrication system implementing 3-D void modeling

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000296A (zh) * 2006-12-20 2007-07-18 西北师范大学 基于数字图像技术三维重构金相组织微观浮凸的方法
CN101596715A (zh) * 2009-06-26 2009-12-09 南开大学 一种微操作机器人系统显微视野拓展方法
CN104111242A (zh) * 2014-06-17 2014-10-22 费鹏 一种三维像素超分辨显微成像方法
CN105938618A (zh) * 2015-03-03 2016-09-14 康耐视公司 通过物体虚拟装配训练装配系统的视觉系统
JP2016168651A (ja) * 2015-03-13 2016-09-23 キヤノン株式会社 ロボット制御方法、ロボット装置、プログラム及び記録媒体
CN105678847A (zh) * 2016-02-27 2016-06-15 北京工业大学 线激光用于slm显微立体视觉的小尺度物体表面重构方法
CN107015525A (zh) * 2017-03-16 2017-08-04 南通大学 一种适用于微流控芯片观测的微位移控制平台及使用方法

Also Published As

Publication number Publication date
CN108876838A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
US5850469A (en) Real time tracking of camera pose
US11164289B1 (en) Method for generating high-precision and microscopic virtual learning resource
DE102015011914B4 (de) Konturlinienmessvorrichtung und Robotersystem
Orteu et al. Multiple-camera instrumentation of a single point incremental forming process pilot for shape and 3D displacement measurements: methodology and results
DE102013211240B4 (de) Bereichsmessvorrichtung und Bereichsmessverfahren
US11403780B2 (en) Camera calibration device and camera calibration method
CN108253939B (zh) 可变视轴单目立体视觉测量方法
US20040027347A1 (en) Discrete linear space sampling method and apparatus for generating digital 3D models
JPH06129851A (ja) ステレオカメラの校正方法
CN109187591A (zh) 一种x射线超分辨成像方法及其应用
CN114283203B (zh) 一种多相机系统的标定方法及系统
CN111060006A (zh) 一种基于三维模型的视点规划方法
CN109983767B (zh) 图像处理装置、显微镜系统、图像处理方法及计算机程序
JP2022500793A (ja) 多自由度可動視覚システムのキャリブレーション方法
CN113884519A (zh) 自导航x射线成像系统及成像方法
CN108876838B (zh) 微操作系统的微操作空间的数字化方法及系统
CN115272080A (zh) 基于图像拼接的全局变形测量方法和系统
CN108983702B (zh) 基于计算机显微视觉切片扫描技术的显微视觉系统的显微视场数字化扩展方法及系统
CN108955562B (zh) 显微视觉系统显微景深数字化扩展方法及系统
JP4653041B2 (ja) イメージ・ブロックを合成し顕微鏡スライドのシームレスな拡大イメージを作成するシステム及び方法
DE102010046902B4 (de) Partikelstrahlmikroskop und Verfahren zum Betreiben hierzu
CN108961419B (zh) 微装配系统的显微视觉系统的显微视场空间数字化方法及系统
CN108734763B (zh) 微装配系统的微装配空间的数字化方法及系统
JP4236202B2 (ja) モデリング装置およびカメラパラメータの計算方法
CN108897279B (zh) 微装配系统的显微视觉系统的视场与景深数字化扩展方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant