CN108873043A - 车辆侧滑角度的计算方法及装置 - Google Patents

车辆侧滑角度的计算方法及装置 Download PDF

Info

Publication number
CN108873043A
CN108873043A CN201810440521.7A CN201810440521A CN108873043A CN 108873043 A CN108873043 A CN 108873043A CN 201810440521 A CN201810440521 A CN 201810440521A CN 108873043 A CN108873043 A CN 108873043A
Authority
CN
China
Prior art keywords
vehicle
coordinate system
under
measured
vehicle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810440521.7A
Other languages
English (en)
Other versions
CN108873043B (zh
Inventor
刘兆朋
罗锡文
张智刚
张健
王辉
岳斌斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Original Assignee
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University filed Critical South China Agricultural University
Priority to CN201810440521.7A priority Critical patent/CN108873043B/zh
Publication of CN108873043A publication Critical patent/CN108873043A/zh
Application granted granted Critical
Publication of CN108873043B publication Critical patent/CN108873043B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/53Determining attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

本发明提供了一种车辆侧滑角度的计算方法及装置,该方法包括:根据检测数据采用欧拉坐标转换方法对主卫星天线位置坐标进行坐标转换,得到导航坐标系下的待测车辆的质心位置坐标;进而确定质心瞬时航向角;采用卡尔曼滤波器优化质心瞬时航向角,得到优化的质心航向角;对车身航向数据进行方位变换,得到车身航向角;结合优化的质心航向角和车身航向角计算待测车辆的侧滑角度。本方法通过1次坐标变换和1次卡尔曼滤波可以获取车辆质心高精度的航向角信息,进而通过比对车身航向角计算得到侧滑角度,该方法原理清晰,运算量小,计算误差小,精度高。

Description

车辆侧滑角度的计算方法及装置
技术领域
本发明涉及数据处理的技术领域,尤其是涉及一种车辆侧滑角度的计 算方法及装置。
背景技术
行驶的车辆因制动、转动惯性、路况和其他原因,引发某一轴的车轮 或两轴的车轮出现横向移动(即向侧面发生甩动)的现象,称为车辆侧滑。车 辆侧滑对安全行车威胁较大,常造成碰撞、翻车、掉沟等恶性事故,对驾 驶操纵造成干扰,在车辆导航控制领域影响操控精度。在湿滑的路面,极 易发生车辆侧滑,例如,在水田作业的农业机械车辆,由于水田环境底层 湿滑,泥脚深浅不一,附着力小,极易发生侧向滑移。为了应对车辆侧滑 对驾驶带来的干扰,提高驾驶安全性和操纵精度,及时的获取车辆侧滑角 度至关重要。
现有技术中,获取侧滑角度的技术路线是通过获取车辆质心横向、纵 向速度的基础上获得,该过程涉及多个状态观测器和估计器,流程复杂, 计算量大,误差累计大,且在低速条件下实现侧滑角的精确检测困难。
发明内容
有鉴于此,本发明的目的在于提供一种车辆侧滑角度的计算方法及装 置,运算量小,计算误差小,精度高。
第一方面,本发明实施例提供了一种车辆侧滑角度的计算方法,所述 方法包括:
获取GNSS双卫星天线定位定向传感器测得的第一检测数据,以及获 取车辆姿态与惯性传感器测得的第二检测数据,其中,所述GNSS双卫星 天线定位定向传感器和所述车辆姿态与惯性传感器设置于待测车辆上;
基于所述第二检测数据采用欧拉坐标转换方法对导航坐标系下的主卫 星天线位置坐标进行坐标转换,得到导航坐标系下的所述待测车辆的质心 位置坐标,其中,所述导航坐标系下的主卫星天线位置坐标为对所述第一 检测数据进行高斯投影变换得到的;
基于所述待测车辆的质心位置坐标确定所述待测车辆的质心瞬时航向 角,其中,所述待测车辆的质心位置坐标包括:当前时刻的质心位置坐标 和前一时刻的质心位置坐标;
采用卡尔曼滤波器优化所述质心瞬时航向角,得到优化的质心航向角;
对所述第一检测数据中的北东地坐标系下的车身航向数据进行方位变 换,得到导航坐标系下的车身航向角;
结合所述优化的质心航向角和所述车身航向角计算所述待测车辆的侧 滑角度。
结合第一方面,本发明实施例提供了第一方面的第一种可能的实施方 式,其中,所述第一检测数据包括:所述北东地坐标系下的车身航向数据, 大地坐标系下的经度,纬度和高程信息;
所述第二检测数据包括:车身横摆角速度,地理坐标系下的车身的横 滚角,俯仰角;
所述GNSS双卫星天线定位定向传感器的双卫星天线间连线与所述待 测车辆的车身前进方向垂直,其中,所述主卫星天线设置于车身右侧,从 卫星天线设置于车身左侧;
所述车辆姿态与惯性传感器与所述待测车辆的质心位置相邻设置。
结合第一方面,本发明实施例提供了第一方面的第二种可能的实施方 式,其中,在获取GNSS双卫星天线定位定向传感器测得的第一检测数据, 以及获取车辆姿态与惯性传感器测得的第二检测数据之前,所述方法还包 括:
构建导航坐标系统,
其中,所述导航坐标系统包括:所述导航坐标系,地理坐标系和车体 坐标系,所述导航坐标系为东北天坐标系,所述地理坐标系位于所述主卫 星天线中心,始终与所述导航坐标系平行,且随所述主卫星天线移动,所 述车体坐标系与所述主卫星天线的中心位置固联,且其初始状态与所述导 航坐标系平行,所述地理坐标系根据航姿测量系统的参考坐标系建立。
结合第一方面,本发明实施例提供了第一方面的第三种可能的实施方 式,其中,基于所述第二检测数据采用欧拉坐标转换方法对导航坐标系下 的主卫星天线位置坐标进行坐标转换,得到导航坐标系下的所述待测车辆 的质心位置坐标包括:
对所述大地坐标系下的经度,纬度和高程信息进行所述高斯投影变换, 得到所述导航坐标系下的主卫星天线位置坐标;
基于所述地理坐标系下的车身的横滚角,俯仰角,所述导航坐标系下 的车身航向角确定欧拉坐标转换的转换矩阵;
基于所述转换矩阵对所述导航坐标系下的主卫星天线位置坐标进行欧 拉坐标转换,得到导航坐标系下的所述待测车辆的质心位置坐标。
结合第一方面,本发明实施例提供了第一方面的第四种可能的实施方 式,其中,基于所述转换矩阵对所述导航坐标系下的主卫星天线位置坐标 进行欧拉坐标转换,得到导航坐标系下的所述待测车辆的质心位置坐标包 括:
根据欧拉坐标转换公式对所述导航坐标系下的主卫 星天线位置坐标进行欧拉坐标转换,得到导航坐标系下的所述待测车辆的 质心位置坐标,其中,表示导航坐标系下的所述待测车辆的质心位置坐 标,表示所述导航坐标系下的主卫星天线位置坐标,Rb2n表示所述转换 矩阵,表示车体坐标系下的所述主卫星天线位置与所述质心位置的相对 关系。
结合第一方面,本发明实施例提供了第一方面的第五种可能的实施方 式,其中,基于所述待测车辆的质心位置坐标确定所述待测车辆的质心瞬 时航向角包括:
根据所述当前时刻的质心位置坐标和所述前一时刻的质心位置坐标计 算所述待测车辆的质心位置矢量;
根据质心瞬时航向角计算公式计算所述待测车辆的质心瞬时航向角,其中,ψr表示所述待测车辆的质心 瞬时航向角,δx表示所述质心位置矢量中x方向的矢量,δy表示所述质心 位置矢量中y方向的矢量。
结合第一方面,本发明实施例提供了第一方面的第六种可能的实施方 式,其中,对所述第一检测数据中的北东地坐标系下的车身航向数据进行 方位变换,得到导航坐标系下的车身航向角包括:
按照方位变换公式对所述第一检测数据中的北 东地坐标系下的车身航向数据进行方位变换,得到所述导航坐标系下的车 身航向角,其中,ψ表示所述导航坐标系下的车身航向角,ψ0表示所述北 东地坐标系下的车身航向数据。
结合第一方面,本发明实施例提供了第一方面的第七种可能的实施方 式,其中,结合所述优化的质心航向角和所述车身航向角计算所述待测车 辆的侧滑角度包括:
根据侧滑角度计算公式β=ψ-ψa计算所述待测车辆的侧滑角度,其中, β表示所述侧滑角度,ψ表示所述车身航向角,ψa表示所述优化的质心航向 角。
第二方面,本发明实施例还提供了一种车辆侧滑角度的计算装置,所 述装置包括:
获取模块,用于获取GNSS双卫星天线定位定向传感器测得的第一检 测数据,以及获取车辆姿态与惯性传感器测得的第二检测数据,其中,所 述GNSS双卫星天线定位定向传感器和所述车辆姿态与惯性传感器设置于 待测车辆上;
坐标转换模块,用于基于所述第二检测数据采用欧拉坐标转换方法对 导航坐标系下的主卫星天线位置坐标进行坐标转换,得到导航坐标系下的 所述待测车辆的质心位置坐标,其中,所述导航坐标系下的主卫星天线位 置坐标为对所述第一检测数据进行高斯投影变换得到的;
确定模块,用于基于所述待测车辆的质心位置坐标确定所述待测车辆 的质心瞬时航向角,其中,所述待测车辆的质心位置坐标包括:当前时刻 的质心位置坐标和前一时刻的质心位置坐标;
优化模块,用于采用卡尔曼滤波器优化所述质心瞬时航向角,得到优 化的质心航向角;
方位变换模块,用于对所述第一检测数据中的北东地坐标系下的车身 航向数据进行方位变换,得到导航坐标系下的车身航向角;
计算模块,用于结合所述优化的质心航向角和所述车身航向角计算所 述待测车辆的侧滑角度。
结合第二方面,本发明实施例提供了第二方面的第一种可能的实施方 式,其中,所述第一检测数据包括:所述北东地坐标系下的车身航向数据, 大地坐标系下的经度,纬度和高程信息;
所述第二检测数据包括:车身横摆角速度,地理坐标系下的车身的横 滚角,俯仰角;
所述GNSS双卫星天线定位定向传感器的双卫星天线与所述待测车辆 的车身前进方向垂直,其中,所述主卫星天线设置于车身右侧,从卫星天 线设置于车身左侧;
所述车辆姿态与惯性传感器与所述待测车辆的质心位置相邻设置。
本发明实施例带来了以下有益效果:本发明实施例提供了一种车辆侧 滑角度的计算方法及装置,该方法包括:获取GNSS双卫星天线定位定向 传感器测得的第一检测数据,以及获取车辆姿态与惯性传感器测得的第二 检测数据,其中,GNSS双卫星天线定位定向传感器和车辆姿态与惯性传感 器设置于待测车辆上;基于第二检测数据采用欧拉坐标转换方法对导航坐 标系下的主卫星天线位置坐标进行坐标转换,得到导航坐标系下的待测车 辆的质心位置坐标,其中,导航坐标系下的主卫星天线位置坐标为对第一 检测数据进行高斯投影变换得到的;基于待测车辆的质心位置坐标确定待 测车辆的质心瞬时航向角,其中,待测车辆的质心位置坐标包括:当前时 刻的质心位置坐标和前一时刻的质心位置坐标;采用卡尔曼滤波器优化质 心瞬时航向角,得到优化的质心航向角;对第一检测数据中的北东地坐标 系下的车身航向数据进行方位变换,得到导航坐标系下的车身航向角;结 合优化的质心航向角和车身航向角计算待测车辆的侧滑角度。
现有技术中无法对车辆侧滑角度进行计算。与现有技术相比,本发明 实施例的车辆侧滑角度的计算方法先获取GNSS双卫星天线定位定向传感 器测得的第一检测数据和车辆姿态与惯性传感器测得的第二检测数据,进 而采用欧拉坐标转换方法对导航坐标系下的主卫星天线位置坐标进行坐标 转换,得到导航坐标系下的待测车辆的质心位置坐标,进一步基于待测车 辆的质心位置坐标确定待测车辆的质心瞬时航向角,然后采用卡尔曼滤波 器优化质心瞬时航向角,得到优化的质心航向角,同时,对北东地坐标系 下的车身航向数据进行方位变换,得到导航坐标系下的车身航向角,最终 结合优化的质心航向角和车身航向角就能够计算得到待测车辆的侧滑角 度。本方法可以获取无漂移的高精度位置、方位角信息,通过1次坐标变 换和1次卡尔曼滤波就能够得到优化的质心航向角,进而通过比对车身航 向角计算得到待测车辆的侧滑角度,该方法原理清晰,运算量小,计算误 差小,精度高,缓解了现有技术中计算车辆侧滑角度时流程复杂,计算量 大,误差累计大的技术问题。
本发明的其他特征和优点将在随后的说明书中阐述,并且,部分地从 说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其 他优点在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实 施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下 面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普 通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获 得其他的附图。
图1为本发明实施例提供的一种车辆侧滑角度的计算方法的流程图;
图2为本发明实施例提供的车辆侧滑角度计算的原理图;
图3为本发明实施例提供的基于第二检测数据采用欧拉坐标转换方法 对导航坐标系下的主卫星天线位置坐标进行坐标转换,得到导航坐标系下 的待测车辆的质心位置坐标的方法流程图;
图4为本发明实施例提供的质心瞬时航向角曲线和优化的质心航向角 曲线的示意图;
图5为本发明实施例提供的车身航向角曲线与优化的质心航向角曲线 的示意图;
图6为本发明实施例提供的待测车辆的侧滑角度曲线的示意图;
图7为本发明实施例提供的一种车辆侧滑角度的计算装置的功能模块 图。
图标:
11-获取模块;12-坐标转换模块;13-确定模块;14-优化模块;15-方位 变换模块;16-计算模块。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附 图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是 本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本 领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施 例,都属于本发明保护的范围。
为便于对本实施例进行理解,首先对本发明实施例所公开的一种车辆 侧滑角度的计算方法方法进行详细介绍。
实施例一:
一种车辆侧滑角度的计算方法,参考图1,该方法包括:
S102、获取GNSS双卫星天线定位定向传感器测得的第一检测数据, 以及获取车辆姿态与惯性传感器测得的第二检测数据,其中,GNSS双卫星 天线定位定向传感器和车辆姿态与惯性传感器设置于待测车辆上;
在本发明实施例中,该车辆侧滑角度的计算方法的执行主体为嵌入式 单片机。GNSS双卫星天线定位定向传感器和车辆姿态与惯性传感器设置于 待测车辆上,安装的具体位置将在下文中进行描述,在此不再赘述。在本 发明实施例中,车辆定位定向传感器采用Trimble生产的,GNSS双卫星天 线接收机模块为BD982,车辆定位定向传感器GNSS双卫星天线接收机模 块即为本发明中的GNSS双卫星天线定位定向传感器,车辆姿态与惯性传 感器采用Xsens生产的MTi-30。
在具体实现时,嵌入式单片机通过RS232通讯接口分别连接GNSS双 卫星天线定位定向传感器和车辆姿态与惯性传感器。以20HZ的频率接收 GNSS双卫星天线定位定向传感器的(GNGGA)和(PTNL,AVR),这里的 (GNGGA)为数据包的一个报头,(PTNL,AVR)为数据包的另一个报头, 这两个报头中含有第一检测数据,同时,以100HZ的频率接收车辆姿态与 惯性传感器的第二检测数据,下文中再对第一检测数据和第二检测数据的 内容进行具体介绍,在此不再赘述。
S104、基于第二检测数据采用欧拉坐标转换方法对导航坐标系下的主 卫星天线位置坐标进行坐标转换,得到导航坐标系下的待测车辆的质心位 置坐标,其中,导航坐标系下的主卫星天线位置坐标为对第一检测数据进 行高斯投影变换得到的;
在得到第一检测数据和第二检测数据后,基于第二检测数据采用欧拉 坐标转换方法对导航坐标系下的主卫星天线位置坐标进行坐标转换,得到 导航坐标系下的待测车辆的质心位置坐标。
下文中再对坐标转换的过程以及计算导航坐标系下的主卫星天线位置 坐标的过程进行详细描述,在此不再赘述。
S106、基于待测车辆的质心位置坐标确定待测车辆的质心瞬时航向角, 其中,待测车辆的质心位置坐标包括:当前时刻的质心位置坐标和前一时 刻的质心位置坐标;
在得到导航坐标系下的待测车辆的质心位置坐标后,基于待测车辆的 质心位置坐标确定待测车辆的质心瞬时航向角,下文中再对质心瞬时航向 角的确定过程进行详细介绍。
具体的,当前时刻的质心位置坐标是根据当前时刻的第一检测数据和 第二检测数据按照上述过程计算得到的,前一时刻的质心位置坐标是根据 前一时刻的第一检测数据和第二检测数据按照上述过程计算得到的。
S108、采用卡尔曼滤波器优化质心瞬时航向角,得到优化的质心航向 角;
在得到质心瞬时航向角后,采用卡尔曼滤波器优化质心瞬时航向角, 得到优化的质心航向角。
具体的,基于微积分原理,卡尔曼滤波公式具体为:
其中,A=[1],B=[δT],δT为BD982(即GNSS双卫星天线定位定向 传感器)信息更新时间,在本发明中因信号传输不可避免的丢包,数据更 新时间偶尔出现大于0.05s的间隔,U=gyro_z,也就是横摆角速度,为第二 检测数据中的一个参量,是车辆姿态与惯性传感器测得的;离线仿真得到 最优Q/R值分别为:Q=0.00001,R=0.01;量测系统参数矩阵H=[1]。上述 (3)式中的Z(k)即为质心瞬时航向角(下文中用ψr表示),即为优化 的质心航向角(也就是下文中的ψa),其它参量都是中间值,含义固定。
也就是通过上式可以得到优化的质心航向角也即下文中的ψa
需要说明的是,为了防止在速度为0时数据发散,设计了基于速度阈 值的输入信息处理,即车速小于0.3m/s时,车身航向角(ψ)与质心瞬时 航向角(ψr)一致且相等。即:
S110、对第一检测数据中的北东地坐标系下的车身航向数据进行方位 变换,得到导航坐标系下的车身航向角;
继续对第一检测数据中的北东地坐标系下的车身航向数据进行方位变 换,得到导航坐标系下的车身航向角。具体变换过程将在下文中进行详细 描述。
S112、结合优化的质心航向角和车身航向角计算待测车辆的侧滑角度。
在得到优化的质心航向角和车身航向角,就能够结合优化的质心航向 角和车身航向角计算待测车辆的侧滑角度。下文中再对计算过程进行详细 描述。
如图2所示,其中,V为质心瞬时速度方向,横轴为车身航向,β表示 侧滑角度,CG表示质心,lr表示质心距离后轴的距离,lf表示质心距离前 轴的距离,δ表示前轮的转角。
与现有技术相比,本发明实施例的车辆侧滑角度的计算方法先获取 GNSS双卫星天线定位定向传感器测得的第一检测数据和车辆姿态与惯性 传感器测得的第二检测数据,进而采用欧拉坐标转换方法对导航坐标系下 的主卫星天线位置坐标进行坐标转换,得到导航坐标系下的待测车辆的质 心位置坐标,进一步基于待测车辆的质心位置坐标确定待测车辆的质心瞬 时航向角,然后采用卡尔曼滤波器优化质心瞬时航向角,得到优化的质心 航向角,同时,对北东地坐标系下的车身航向数据进行方位变换,得到导 航坐标系下的车身航向角,最终结合优化的质心航向角和车身航向角就能 够计算得到待测车辆的侧滑角度。本方法可以获取无漂移的高精度位置、 方位角信息,通过1次坐标变换和1次卡尔曼滤波就能够得到优化的质心 航向角,进而通过比对车身航向角计算得到待测车辆的侧滑角度,该方法 原理清晰,运算量小,计算误差小,精度高。
上述内容对车辆侧滑角度的计算方法进行了简要描述,下面对其中涉 及到的具体内容进行详细介绍。
具体的,第一检测数据包括:北东地坐标系下的车身航向数据,大地 坐标系下的经度,纬度和高程信息;
第二检测数据包括:车身横摆角速度,地理坐标系下的车身的横滚角, 俯仰角;
GNSS双卫星天线定位定向传感器的双卫星天线间连线与待测车辆的 车身前进方向垂直,其中,主卫星天线设置于车身右侧,从卫星天线设置 于车身左侧;
车辆姿态与惯性传感器与待测车辆的质心位置相邻设置。该方法中的 设备组成简单,安装灵活,使用方便。
在一个可选地实施方式中,在获取GNSS双卫星天线定位定向传感器 测得的第一检测数据,以及获取车辆姿态与惯性传感器测得的第二检测数 据之前,该方法还包括:
构建导航坐标系统,
其中,导航坐标系统包括:导航坐标系,地理坐标系和车体坐标系, 导航坐标系为东北天坐标系,地理坐标系位于主卫星天线中心,始终与导 航坐标系平行,且随主卫星天线移动;车体坐标系与主卫星天线的中心位 置固联,且其初始状态与导航坐标系平行,地理坐标系根据航姿测量系统 的参考坐标系建立。
也就是,导航坐标系为东北天坐标系(ENU),根据高斯平面坐标系和 航姿测量参考坐标系建立了地理坐标系、车体坐标系,构成导航坐标系统。 地理坐标系位于主卫星天线(即坐标系原点位于天线中心位置),始终与导 航坐标系平行并跟随主卫星天线移动;车辆初始位置朝向坐标轴东方向, 车体坐标系初始位置与导航坐标系平行并固联在主卫星天线位置(即坐标 系跟随天线移动而移动,与天线形成“刚体”);航姿坐标系由MTi-30系统定义,安装时与车身固联并与车体坐标系平行。
下面对坐标转换的过程进行详细描述:
在一个可选地实施方式中,参考图3,基于第二检测数据采用欧拉坐标 转换方法对导航坐标系下的主卫星天线位置坐标进行坐标转换,得到导航 坐标系下的待测车辆的质心位置坐标包括:
S301、对大地坐标系下的经度,纬度和高程信息进行高斯投影变换, 得到导航坐标系下的主卫星天线位置坐标;
对第一检测数据中的大地坐标系下的经度,纬度和高程信息进行高斯 投影变换,得到导航坐标系下的主卫星天线位置坐标。
高斯投影变换为:
式中,l=L-L0,L0为投影带中央子午线经度,卯酉圈曲率半径 椭球第一偏心率辅助变量t=tanB,辅助变量 η=e'cosB,椭球第二偏心率a、b分别为参考椭球的长半径、 短半径;扁率X为赤道至纬度为B的平行圈的子午线弧长,其计 算公式为:c为极曲率半径。
本实施例所用投影坐标系的主要参数为:a、投影方式:Gauss-Kruger; b、中央经线:114.000000(3度带);c、水平偏移量:500km;d、地理坐 标系:GCS_WGS_1984;e、大地参照系:D_WGS_1984;f、参考椭球体: WGS-84;g、椭球长轴:6378137.000000;h、椭球扁率:0.0033528107。
S302、基于地理坐标系下的车身的横滚角,俯仰角,导航坐标系下的 车身航向角确定欧拉坐标转换的转换矩阵;
具体的,欧拉坐标转换的转换矩阵:
其中,ψ表示导航坐标系下的车身航向角,θ表示车身的俯仰角,φ表 示车身的横滚角。
S303、基于转换矩阵对导航坐标系下的主卫星天线位置坐标进行欧拉 坐标转换,得到导航坐标系下的待测车辆的质心位置坐标。
具体的,根据欧拉坐标转换公式对导航坐标系下的主 卫星天线位置坐标进行欧拉坐标转换,得到导航坐标系下的待测车辆的质 心位置坐标,其中,表示导航坐标系下的待测车辆的质心位置坐标,表示导航坐标系下的主卫星天线位置坐标,Rb2n表示转换矩阵,表示车 体坐标系下的主卫星天线位置与质心位置的相对关系。该值是通过测量得 到的,通过米尺就能实现。
下面对质心瞬时航向角的确定过程进行描述:
在一个可选地实施方式中,基于待测车辆的质心位置坐标确定待测车 辆的质心瞬时航向角包括:
(1)根据当前时刻的质心位置坐标和前一时刻的质心位置坐标计算待 测车辆的质心位置矢量;
具体的,如果当前时刻的质心位置坐标为P2(xk,yk),前一时刻的质心位 置坐标为P2(xk-1,yk-1),那么质心位置矢量:δx=P2(xk)-P2(xk-1); δy=P2(yk)-P2(yk-1)。
(2)根据质心瞬时航向角计算公式
计算待测车辆的质心瞬时航向 角,其中,ψr表示待测车辆的质心瞬时航向角,δx表示质心位置矢量中x 方向的矢量,δy表示质心位置矢量中y方向的矢量。得到的质心瞬时航向 角噪声很大,可以通过卡尔曼滤波器进行信息融合,具体过程已经在步骤 S108中进行了详细描述,在此不再赘述。
参考图4,其中一条曲线为质心瞬时航向角的曲线,一条为卡尔曼滤波 器对质心瞬时航向角进行优化,优化的质心航向角。
下面对导航坐标系下的车身航向角的计算过程进行介绍:
在一个可选地实施方式中,对第一检测数据中的北东地坐标系下的车 身航向数据进行方位变换,得到导航坐标系下的车身航向角包括:
按照方位变换公式对第一检测数据中的北东地 坐标系下的车身航向数据进行方位变换,得到导航坐标系下的车身航向角, 其中,ψ表示导航坐标系下的车身航向角,ψ0表示北东地坐标系下的车身 航向数据。
参考图5,其中一条曲线为车身航向角的曲线,一条为优化的质心航向 角的曲线。
下面对计算待测车辆的侧滑角度的过程进行详细介绍:
在一个可选地实施方式中,结合优化的质心航向角和车身航向角计算 待测车辆的侧滑角度包括:
根据侧滑角度计算公式β=ψ-ψa计算待测车辆的侧滑角度,其中,β表 示侧滑角度,ψ表示车身航向角,ψa表示优化的质心航向角。
参考图6,图6为对图5中的两条曲线求差得到的待测车辆的侧滑角度 的曲线。
实施例二:
一种车辆侧滑角度的计算装置,参考图7,该装置包括:
获取模块11,用于获取GNSS双卫星天线定位定向传感器测得的第一 检测数据,以及获取车辆姿态与惯性传感器测得的第二检测数据,其中, GNSS双卫星天线定位定向传感器和车辆姿态与惯性传感器设置于待测车 辆上;
坐标转换模块12,用于基于第二检测数据采用欧拉坐标转换方法对导 航坐标系下的主卫星天线位置坐标进行坐标转换,得到导航坐标系下的待 测车辆的质心位置坐标,其中,导航坐标系下的主卫星天线位置坐标为对 第一检测数据进行高斯投影变换得到的;
确定模块13,用于基于待测车辆的质心位置坐标确定待测车辆的质心 瞬时航向角,其中,待测车辆的质心位置坐标包括:当前时刻的质心位置 坐标和前一时刻的质心位置坐标;
优化模块14,用于采用卡尔曼滤波器优化质心瞬时航向角,得到优化 的质心航向角;
方位变换模块15,用于对第一检测数据中的北东地坐标系下的车身航 向数据进行方位变换,得到导航坐标系下的车身航向角;
计算模块16,用于结合优化的质心航向角和车身航向角计算待测车辆 的侧滑角度。
本发明实施例的车辆侧滑角度的计算装置先获取GNSS双卫星天线定 位定向传感器测得的第一检测数据和车辆姿态与惯性传感器测得的第二检 测数据,进而采用欧拉坐标转换方法对导航坐标系下的主卫星天线位置坐 标进行坐标转换,得到导航坐标系下的待测车辆的质心位置坐标,进一步 基于待测车辆的质心位置坐标确定待测车辆的质心瞬时航向角,然后采用 卡尔曼滤波器优化质心瞬时航向角,得到优化的质心航向角,同时,对北 东地坐标系下的车身航向数据进行方位变换,得到导航坐标系下的车身航 向角,最终结合优化的质心航向角和车身航向角就能够计算得到待测车辆 的侧滑角度。本装置可以获取无漂移的高精度位置、方位角信息,通过1 次坐标变换和1次卡尔曼滤波就能够得到优化的质心航向角,进而通过比 对车身航向角计算得到待测车辆的侧滑角度,该方法原理清晰,运算量小, 计算误差小,精度高。
可选地,第一检测数据包括:北东地坐标系下的车身航向数据,大地 坐标系下的经度,纬度和高程信息;
第二检测数据包括:车身横摆角速度,地理坐标系下的车身的横滚角, 俯仰角;
GNSS双卫星天线定位定向传感器的双卫星天线间连线与待测车辆的 车身前进方向垂直,其中,主卫星天线设置于车身右侧,从卫星天线设置 于车身左侧;
车辆姿态与惯性传感器与待测车辆的质心位置相邻设置。
可选地,该装置还包括:
构建模块,用于构建导航坐标系统,
其中,导航坐标系统包括:导航坐标系,地理坐标系和车体坐标系, 导航坐标系为东北天坐标系,地理坐标系位于主卫星天线中心,始终与导 航坐标系平行,且随主卫星天线移动;车体坐标系与主卫星天线的中心位 置固联,且其初始状态与导航坐标系平行,地理坐标系根据航姿测量系统 的参考坐标系建立。
可选地,坐标转换模块包括:
高斯投影变换单元,用于对大地坐标系下的经度,纬度和高程信息进 行高斯投影变换,得到导航坐标系下的主卫星天线位置坐标;
确定单元,用于基于地理坐标系下的车身的横滚角,俯仰角,导航坐 标系下的车身航向角确定欧拉坐标转换的转换矩阵;
欧拉坐标转换单元,用于基于转换矩阵对导航坐标系下的主卫星天线 位置坐标进行欧拉坐标转换,得到导航坐标系下的待测车辆的质心位置坐 标。
可选地,欧拉坐标转换单元包括:
欧拉坐标转换子单元,用于根据欧拉坐标转换公式对 导航坐标系下的主卫星天线位置坐标进行欧拉坐标转换,得到导航坐标系 下的待测车辆的质心位置坐标,其中,表示导航坐标系下的待测车辆的 质心位置坐标,表示导航坐标系下的主卫星天线位置坐标,Rb2n表示转 换矩阵,表示车体坐标系下的主卫星天线位置与质心位置的相对关系。
可选地,确定模块包括:
第一计算单元,用于根据当前时刻的质心位置坐标和前一时刻的质心 位置坐标计算待测车辆的质心位置矢量;
第二计算单元,用于根据质心瞬时航向角计算公式计算待测车辆的质心瞬时航向角,其 中,ψr表示待测车辆的质心瞬时航向角,δx表示质心位置矢量中x方向的 矢量,δy表示质心位置矢量中y方向的矢量。
可选地,方位变换模块包括:
方位变换单元,用于按照方位变换公式对第一检 测数据中的北东地坐标系下的车身航向数据进行方位变换,得到导航坐标 系下的车身航向角,其中,ψ表示导航坐标系下的车身航向角,ψ0表示北 东地坐标系下的车身航向数据。
可选地,计算模块包括:
计算单元,用于根据侧滑角度计算公式β=ψ-ψa计算待测车辆的侧滑角 度,其中,β表示侧滑角度,ψ表示车身航向角,ψa表示优化的质心航向角。
该实施例二中的具体内容可参考上述实施例一中的描述,在此不再赘 述。
本发明实施例所提供的车辆侧滑角度的计算方法及装置的计算机程序 产品,包括存储了程序代码的计算机可读存储介质,所述程序代码包括的 指令可用于执行前面方法实施例中所述的方法,具体实现可参见方法实施 例,在此不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述 描述的系统和装置的具体工作过程,可以参考前述方法实施例中的对应过 程,在此不再赘述。
另外,在本发明实施例的描述中,除非另有明确的规定和限定,术语“安 装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可 拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直 接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对 于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的 具体含义。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发 明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的 部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储 介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服 务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步 骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光 盘等各种可以存储程序代码的介质。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、 “右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所 示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示 或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作, 因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用 于描述目的,而不能理解为指示或暗示相对重要性。
最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用 以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于 此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术 人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围 内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变 化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都 应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利 要求的保护范围为准。

Claims (10)

1.一种车辆侧滑角度的计算方法,其特征在于,所述方法包括:
获取GNSS双卫星天线定位定向传感器测得的第一检测数据,以及获取车辆姿态与惯性传感器测得的第二检测数据,其中,所述GNSS双卫星天线定位定向传感器和所述车辆姿态与惯性传感器设置于待测车辆上;
基于所述第二检测数据采用欧拉坐标转换方法对导航坐标系下的主卫星天线位置坐标进行坐标转换,得到导航坐标系下的所述待测车辆的质心位置坐标,其中,所述导航坐标系下的主卫星天线位置坐标为对所述第一检测数据进行高斯投影变换得到的;
基于所述待测车辆的质心位置坐标确定所述待测车辆的质心瞬时航向角,其中,所述待测车辆的质心位置坐标包括:当前时刻的质心位置坐标和前一时刻的质心位置坐标;
采用卡尔曼滤波器优化所述质心瞬时航向角,得到优化的质心航向角;
对所述第一检测数据中的北东地坐标系下的车身航向数据进行方位变换,得到导航坐标系下的车身航向角;
结合所述优化的质心航向角和所述车身航向角计算所述待测车辆的侧滑角度。
2.根据权利要求1所述的方法,其特征在于,
所述第一检测数据包括:所述北东地坐标系下的车身航向数据,大地坐标系下的经度,纬度和高程信息;
所述第二检测数据包括:车身横摆角速度,地理坐标系下的车身的横滚角,俯仰角;
所述GNSS双卫星天线定位定向传感器的双卫星天线间连线与所述待测车辆的车身前进方向垂直,其中,所述主卫星天线设置于车身右侧,从卫星天线设置于车身左侧;
所述车辆姿态与惯性传感器与所述待测车辆的质心位置相邻设置。
3.根据权利要求1所述的方法,其特征在于,在获取GNSS双卫星天线定位定向传感器测得的第一检测数据,以及获取车辆姿态与惯性传感器测得的第二检测数据之前,所述方法还包括:
构建导航坐标系统,
其中,所述导航坐标系统包括:所述导航坐标系,地理坐标系和车体坐标系,所述导航坐标系为东北天坐标系,所述地理坐标系位于所述主卫星天线中心,始终与所述导航坐标系平行,且随所述主卫星天线移动;所述车体坐标系与所述主卫星天线的中心位置固联,且其初始状态与所述导航坐标系平行,所述地理坐标系根据航姿测量系统的参考坐标系建立。
4.根据权利要求2所述的方法,其特征在于,基于所述第二检测数据采用欧拉坐标转换方法对导航坐标系下的主卫星天线位置坐标进行坐标转换,得到导航坐标系下的所述待测车辆的质心位置坐标包括:
对所述大地坐标系下的经度,纬度和高程信息进行所述高斯投影变换,得到所述导航坐标系下的主卫星天线位置坐标;
基于所述地理坐标系下的车身的横滚角,俯仰角,所述导航坐标系下的车身航向角确定欧拉坐标转换的转换矩阵;
基于所述转换矩阵对所述导航坐标系下的主卫星天线位置坐标进行欧拉坐标转换,得到导航坐标系下的所述待测车辆的质心位置坐标。
5.根据权利要求4所述的方法,其特征在于,基于所述转换矩阵对所述导航坐标系下的主卫星天线位置坐标进行欧拉坐标转换,得到导航坐标系下的所述待测车辆的质心位置坐标包括:
根据欧拉坐标转换公式对所述导航坐标系下的主卫星天线位置坐标进行欧拉坐标转换,得到导航坐标系下的所述待测车辆的质心位置坐标,其中,表示导航坐标系下的所述待测车辆的质心位置坐标,表示所述导航坐标系下的主卫星天线位置坐标,Rb2n表示所述转换矩阵,表示车体坐标系下的所述主卫星天线位置与所述质心位置的相对关系。
6.根据权利要求2所述的方法,其特征在于,基于所述待测车辆的质心位置坐标确定所述待测车辆的质心瞬时航向角包括:
根据所述当前时刻的质心位置坐标和所述前一时刻的质心位置坐标计算所述待测车辆的质心位置矢量;
根据质心瞬时航向角计算公式计算所述待测车辆的质心瞬时航向角,其中,ψr表示所述待测车辆的质心瞬时航向角,δx表示所述质心位置矢量中x方向的矢量,δy表示所述质心位置矢量中y方向的矢量。
7.根据权利要求1所述的方法,其特征在于,对所述第一检测数据中的北东地坐标系下的车身航向数据进行方位变换,得到导航坐标系下的车身航向角包括:
按照方位变换公式对所述第一检测数据中的北东地坐标系下的车身航向数据进行方位变换,得到所述导航坐标系下的车身航向角,其中,ψ表示所述导航坐标系下的车身航向角,ψ0表示所述北东地坐标系下的车身航向数据。
8.根据权利要求1所述的方法,其特征在于,结合所述优化的质心航向角和所述车身航向角计算所述待测车辆的侧滑角度包括:
根据侧滑角度计算公式β=ψ-ψa计算所述待测车辆的侧滑角度,其中,β表示所述侧滑角度,ψ表示所述车身航向角,ψa表示所述优化的质心航向角。
9.一种车辆侧滑角度的计算装置,其特征在于,所述装置包括:
获取模块,用于获取GNSS双卫星天线定位定向传感器测得的第一检测数据,以及获取车辆姿态与惯性传感器测得的第二检测数据,其中,所述GNSS双卫星天线定位定向传感器和所述车辆姿态与惯性传感器设置于待测车辆上;
坐标转换模块,用于基于所述第二检测数据采用欧拉坐标转换方法对导航坐标系下的主卫星天线位置坐标进行坐标转换,得到导航坐标系下的所述待测车辆的质心位置坐标,其中,所述导航坐标系下的主卫星天线位置坐标为对所述第一检测数据进行高斯投影变换得到的;
确定模块,用于基于所述待测车辆的质心位置坐标确定所述待测车辆的质心瞬时航向角,其中,所述待测车辆的质心位置坐标包括:当前时刻的质心位置坐标和前一时刻的质心位置坐标;
优化模块,用于采用卡尔曼滤波器优化所述质心瞬时航向角,得到优化的质心航向角;
方位变换模块,用于对所述第一检测数据中的北东地坐标系下的车身航向数据进行方位变换,得到导航坐标系下的车身航向角;
计算模块,用于结合所述优化的质心航向角和所述车身航向角计算所述待测车辆的侧滑角度。
10.根据权利要求9所述的装置,其特征在于,
所述第一检测数据包括:所述北东地坐标系下的车身航向数据,大地坐标系下的经度,纬度和高程信息;
所述第二检测数据包括:车身横摆角速度,地理坐标系下的车身的横滚角,俯仰角;
所述GNSS双卫星天线定位定向传感器的双卫星天线与所述待测车辆的车身前进方向垂直,其中,所述主卫星天线设置于车身右侧,从卫星天线设置于车身左侧;
所述车辆姿态与惯性传感器与所述待测车辆的质心位置相邻设置。
CN201810440521.7A 2018-05-09 2018-05-09 车辆侧滑角度的计算方法及装置 Active CN108873043B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810440521.7A CN108873043B (zh) 2018-05-09 2018-05-09 车辆侧滑角度的计算方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810440521.7A CN108873043B (zh) 2018-05-09 2018-05-09 车辆侧滑角度的计算方法及装置

Publications (2)

Publication Number Publication Date
CN108873043A true CN108873043A (zh) 2018-11-23
CN108873043B CN108873043B (zh) 2021-01-15

Family

ID=64333218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810440521.7A Active CN108873043B (zh) 2018-05-09 2018-05-09 车辆侧滑角度的计算方法及装置

Country Status (1)

Country Link
CN (1) CN108873043B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109927726A (zh) * 2019-03-13 2019-06-25 深兰科技(上海)有限公司 一种调整目标车辆运动状态的方法和设备
CN110705120A (zh) * 2019-10-12 2020-01-17 中国水利水电第七工程局有限公司 一种隧道无轨自行式变质量平台车的重心位置动态计算方法
CN111103566A (zh) * 2019-11-28 2020-05-05 中国科学院上海微系统与信息技术研究所 一种航向角确定方法、系统、电子设备及存储介质
CN111238471A (zh) * 2020-01-17 2020-06-05 青岛农业大学 一种适用于农业机械直线导航的侧滑角度估计方法及估计器
CN113030504A (zh) * 2021-03-18 2021-06-25 北京航迹科技有限公司 车辆测速方法、装置、车载计算机设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100599567B1 (ko) * 2004-08-17 2006-07-13 현대모비스 주식회사 지피에스를 이용한 차량의 횡미끌림각 추정 방법
JP2007003461A (ja) * 2005-06-27 2007-01-11 Churyo Eng Kk 移動局の横滑角計測装置
CN102416956A (zh) * 2011-09-09 2012-04-18 中南大学 汽车质心侧偏角和轮胎侧偏角软测量方法
CN102621570A (zh) * 2012-04-11 2012-08-01 清华大学 基于双全球定位和惯性测量的汽车动力学参数测量方法
CN102954783A (zh) * 2012-11-05 2013-03-06 清华大学 基于全球定位系统数据采集的车身侧偏角计算方法
CN107600073A (zh) * 2017-08-10 2018-01-19 同济大学 一种基于多源信息融合的车辆质心侧偏角估计系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100599567B1 (ko) * 2004-08-17 2006-07-13 현대모비스 주식회사 지피에스를 이용한 차량의 횡미끌림각 추정 방법
JP2007003461A (ja) * 2005-06-27 2007-01-11 Churyo Eng Kk 移動局の横滑角計測装置
CN102416956A (zh) * 2011-09-09 2012-04-18 中南大学 汽车质心侧偏角和轮胎侧偏角软测量方法
CN102621570A (zh) * 2012-04-11 2012-08-01 清华大学 基于双全球定位和惯性测量的汽车动力学参数测量方法
CN102954783A (zh) * 2012-11-05 2013-03-06 清华大学 基于全球定位系统数据采集的车身侧偏角计算方法
CN107600073A (zh) * 2017-08-10 2018-01-19 同济大学 一种基于多源信息融合的车辆质心侧偏角估计系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUNG BONG HONG 等: "Multi-rate Vehicle Side Slip Angle Estimation Using Low-cost GPS/IMU", 《2017 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2017)》 *
陈慧 等: "车辆质心侧偏角估计综述", 《机械工程学报》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109927726A (zh) * 2019-03-13 2019-06-25 深兰科技(上海)有限公司 一种调整目标车辆运动状态的方法和设备
CN110705120A (zh) * 2019-10-12 2020-01-17 中国水利水电第七工程局有限公司 一种隧道无轨自行式变质量平台车的重心位置动态计算方法
CN110705120B (zh) * 2019-10-12 2023-05-23 中国水利水电第七工程局有限公司 一种隧道无轨自行式变质量平台车的重心位置动态计算方法
CN111103566A (zh) * 2019-11-28 2020-05-05 中国科学院上海微系统与信息技术研究所 一种航向角确定方法、系统、电子设备及存储介质
CN111103566B (zh) * 2019-11-28 2023-09-05 中国科学院上海微系统与信息技术研究所 一种航向角确定方法、系统、电子设备及存储介质
CN111238471A (zh) * 2020-01-17 2020-06-05 青岛农业大学 一种适用于农业机械直线导航的侧滑角度估计方法及估计器
CN111238471B (zh) * 2020-01-17 2021-08-24 青岛农业大学 一种适用于农业机械直线导航的侧滑角度估计方法及估计器
CN113030504A (zh) * 2021-03-18 2021-06-25 北京航迹科技有限公司 车辆测速方法、装置、车载计算机设备和存储介质
CN113030504B (zh) * 2021-03-18 2023-03-07 北京航迹科技有限公司 车辆测速方法、装置、车载计算机设备和存储介质

Also Published As

Publication number Publication date
CN108873043B (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
CN108873043A (zh) 车辆侧滑角度的计算方法及装置
CN104198765B (zh) 车辆运动加速度检测的坐标系转换方法
CN104061899B (zh) 一种基于卡尔曼滤波的车辆侧倾角与俯仰角估计方法
US10241215B2 (en) Sensor alignment calibration
CN109991636A (zh) 基于gps、imu以及双目视觉的地图构建方法及系统
CN103235328B (zh) 一种gnss与mems组合导航的方法
CN110779521A (zh) 一种多源融合的高精度定位方法与装置
US8170726B2 (en) System and method for road angle estimation
KR101454153B1 (ko) 가상차선과 센서 융합을 통한 무인 자율주행 자동차의 항법시스템
CN101846734B (zh) 农用机械导航定位方法、系统及农用机械工控机
JP5586994B2 (ja) 位置標定装置、位置標定装置の位置標定方法および位置標定プログラム
CN109141410B (zh) Agv组合导航的多传感器融合定位方法
CN104713555A (zh) 应用全天域中性点辅助定向的车辆自主导航方法
CN105823481A (zh) 一种基于单天线的gnss-ins车辆定姿方法
CN101109959A (zh) 一种适用于任意运动微小型系统的定姿系统
JP7036080B2 (ja) 慣性航法装置
CN102621570B (zh) 基于双全球定位和惯性测量的汽车动力学参数测量方法
CN104729506A (zh) 一种视觉信息辅助的无人机自主导航定位方法
CN102243315A (zh) 具有辅助定位功能的移动终端及方法
CN107607113A (zh) 一种两轴姿态倾角测量方法
US9140802B2 (en) Auxiliary as vehicle speed when difference between auxiliary and propagation above threshold
CN102416956A (zh) 汽车质心侧偏角和轮胎侧偏角软测量方法
CN108051839A (zh) 一种车载三维定位装置及三维定位的方法
KR102245884B1 (ko) 차재기, 연산 장치 및 프로그램
CN109813306A (zh) 一种无人车规划轨迹卫星定位数据可信度计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant