CN108872764A - 一种变压器筒式绕组故障定位的扫频阻抗法 - Google Patents

一种变压器筒式绕组故障定位的扫频阻抗法 Download PDF

Info

Publication number
CN108872764A
CN108872764A CN201810498219.7A CN201810498219A CN108872764A CN 108872764 A CN108872764 A CN 108872764A CN 201810498219 A CN201810498219 A CN 201810498219A CN 108872764 A CN108872764 A CN 108872764A
Authority
CN
China
Prior art keywords
transformer
cartridge type
impedance
frequency
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810498219.7A
Other languages
English (en)
Inventor
吴红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANHUI SHENHONG TRANSFORMER Co Ltd
Original Assignee
ANHUI SHENHONG TRANSFORMER Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANHUI SHENHONG TRANSFORMER Co Ltd filed Critical ANHUI SHENHONG TRANSFORMER Co Ltd
Priority to CN201810498219.7A priority Critical patent/CN108872764A/zh
Publication of CN108872764A publication Critical patent/CN108872764A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/72Testing of electric windings

Abstract

本发明公开了一种变压器筒式绕组故障定位的扫频阻抗法,其具体步骤如下:建立变压器绕组等效电路模型;建立扫频阻抗测试系统;通过调节信号发生器发出不同频率的正弦信号,测量计算出正常筒式绕组谐振频率时的阻抗值;通过调节信号发生器发出不同频率的正弦信号,测量计算出有短路故障的筒式绕组谐振频率时的阻抗值;再对故障点定位。采用本技术方案,本发明在扫频阻抗法的基础上,提出了一种新的变压器筒式绕组故障定位的方法,该方法通过比对变压器绕组故障前后频率阻抗的变化,得到不同故障点处阻抗的变化规律,进而实现了绕组缺陷故障定位,可以及时修复变压器的故障位置。

Description

一种变压器筒式绕组故障定位的扫频阻抗法
技术领域
[0001] 本发明涉及一种变压器筒式绕组故障定位的扫频阻抗法,应用于变压器筒式绕组 故障定位的技术领域。
背景技术
[0002] 电力变压器故障多数是绕组绝缘故障,操作或雷击过电压、浪涌电流是影响它寿 命的重要因素。随着对电力系统高质量和高可靠性供电需求的不断增加,电力变压器绕 组故障的研宄显得尤为必要。
[0003] 引起变压器绕组绝缘恶化的因素较多,包括主变长期过载、机械振动、高频瞬态过 电压、短路故障大电流、主变油温持续过高等等。绕组早期缺陷对变压器性能的影响基本上 可以忽略不计,但如不及时修复,变压器绝缘会逐步遭到破坏,最终可能引起永久性故障。
[0004] 因此,对绕组缺陷的早期故障诊断及定位,防止缺陷进一步扩大,是保障电力变压 器安全运行、减少停运时间以及延长变压器寿命的非常重要的手段。对变压器绕组故障诊 断的方法有频域响应法、短路阻抗法和低压脉冲法。近年来,有部分学者结合频域响应法和 短路阻抗法提出了新的研究方法:扫频阻抗。该方法克服了频域响应法不直观,无定量标准 而且易受测量方式影响以及短路阻抗法灵敏度低的缺点。
[0005] 目前对扫频阻抗法的研宄大都停留在绕组故障诊断,鲜有故障定位的探讨,为此, 我们设计一种变压器筒式绕组故障定位的扫频阻抗法。
发明内容
[0006] 为解决现有技术方案的缺陷,本发明公开了一种变压器筒式绕组故障定位的扫频 阻抗法。
[0007] 本发明公开了一种变压器筒式绕组故障定位的扫频阻抗法,其具体步骤如下: 51、 建立变压器绕组等效电路模型,变压器在不同的频段有着不同的等效电路模型,如 低频段、高频段电路模型,通过建立的变压器绕组等效电路模型可以预先获得无故障时变 压器绕组的阻抗特性; 52、 建立扫频阻抗测试系统,该系统是由信号发生器发出50Hz〜1MHz的正弦信号,经 功率放大器处理放大后施加在待测的变压器绕组电路模型上,再由数据采集卡测量到变压 器绕组的电压和电流,通过计算机计算可得到该模型的阻抗值; 53、 待测的变压器绕组电路模型为给定的正常筒式绕组变压器时,其正常运行时的阻 抗特性和谐振频率是一定的,采用S2中的扫频阻抗测试系统,通过调节信号发生器发出不 同频率的正弦信号,测量计算出正常筒式绕组谐振频率时的阻抗值; 54、 待测的变压器绕组电路模型为有短路故障的筒式绕组变压器时,采用S2中的扫频 阻抗测试系统,通过调节信号发生器发出不同频率的正弦信号,测量计算出有短路故障的 筒式绕组谐振频率时的阻抗值,使得有短路故障发生时,谐振频率增加,短路的层数越多, 谐振频率越尚; S5、故障点定位: 1) 筒式绕组变压器的半径方向定位:通过计算式(a)获得故障点半径的R数值,其式(a) 中为正常筒式绕组谐振频率时的阻抗值,为有短路故障的筒式绕组谐振频率时的阻抗值; 2) 筒式绕组变压器的中心的轴方向定位:通过计算式(b)获得故障点远离筒式绕组中 心距离的L数值,其式(b)中为筒式绕组的高度; 3) 可以根据公式(a)和(b),即可计算得出对应出筒式绕组半径及中心的轴方向故障位 置,实现变压器筒式绕组的故障定位。
[0008]优选的,所述S1步骤中变压器绕组等效电路模型在低频段时,变压器可以看作是 电阻、电感等元件的组合,其中电感阻抗大小与频率成正比,所以随着频率的增加,变压器 的阻抗随之增加。
[0009]优选的,所述S1步骤中变压器绕组等效电路模型在高频时,变压器可表征为一系 列电阻、电抗以及电容等分布参数的组合,由于同时存在电抗和电容,频率阻抗曲线呈现出 谐振特性。
[0010]优选的,所述S2步骤中计算机是通过计算式(1)获得该模型的阻抗值;再经归一化 处理后,对于单相变压器,通过计算式(2)获得其阻抗值;而对于三相变压器,线电压与相电 压进行转换后,通过计算式(3)获得其阻抗值。
[0011]优选的,所述计算式(3)中,为变压器的额定电压,V;为变压器的额定电流,A。
[0012]有益效果是:本发明在扫频阻抗法的基础上,提出了 一种新的变压器筒式绕组故 障定位的方法,该方法通过比对变压器绕组故障前后频率阻抗的变化,得到不同故障点处 阻抗的变化规律,进而实现了绕组缺陷故障定位,可以及时修复变压器的故障位置。
附图说明
[0013]图1是本发明一种变压器筒式绕组故障定位的扫频阻抗法的测试系统图; 图2是本发明一种变压器筒式绕组故障定位的扫频阻抗法的低频时变压器等效电路模 型图; 图3是本发明一种变压器筒式绕组故障定位的扫频阻抗法的高频时变压器等效电路模 型图。
具体实施方式
[0014]本发明公开了一种变压器筒式绕组故障定位的扫频阻抗法,其具体步骤如下: 51、 如图2、图3所示建立变压器绕组等效电路模型,变压器在不同的频段有着不同的等 效电路模型,如低频段、高频段电路模型,通过建立的变压器绕组等效电路模型可以预先获 得无故障时变压器绕组的阻抗特性; 其中变压器绕组等效电路模型在低频段时,变压器可以看作是电阻、电感等元件的组 合,其中电感阻抗大小与频率成正比,所以随着频率的增加,变压器的阻抗随之增加; 变压器绕组等效电路模型在高频时,变压器可表征为一系列电阻、电抗以及电容等分 布参数的组合,由于同时存在电抗和电容,频率阻抗曲线呈现出谐振特性; 52、 如图1所示建立扫频阻抗测试系统,该系统是由信号发生器发出50Hz〜1MHz的正 弦信号,经功率放大器处理放大后施加在待测的变压器绕组电路模型上,再由数据采集卡 测量到变压器绕组的电压和电流,通过计算机计算可得到该模型的阻抗值; 其中计算机是通过计算式(1)获得该模型的阻抗值;再经归一化处理后,对于单相变压 器,通过计算式(2)获得其阻抗值;而对于三相变压器,线电压与相电压进行转换后,通过计 算式(3)获得其阻抗值,计算式(3)中,为变压器的额定电压,V;为变压器的额定电流,A; 53、 待测的变压器绕组电路模型为给定的正常筒式绕组变压器时,其正常运行时的阻 抗特性和谐振频率是一定的,采用S2中的扫频阻抗测试系统,通过调节信号发生器发出不 同频率的正弦信号,测量计算出正常筒式绕组谐振频率时的阻抗值; 54、 待测的变压器绕组电路模型为有短路故障的筒式绕组变压器时,采用S2中的扫频 阻抗测试系统,通过调节信号发生器发出不同频率的正弦信号,测量计算出有短路故障的 筒式绕组谐振频率时的阻抗值,使得有短路故障发生时,谐振频率增加,短路的层数越多, 谐振频率越尚; 55、 故障点定位: 1) 筒式绕组变压器的半径方向定位:通过计算式(a)获得故障点半径的R数值,其式(a) 中为正常筒式绕组谐振频率时的阻抗值,为有短路故障的筒式绕组谐振频率时的阻抗值; 2) 筒式绕组变压器的中心的轴方向定位:通过计算式(b)获得故障点远离筒式绕组中 心距离的L数值,其式(b)中为筒式绕组的高度; 3) 可以根据公式(a)和(b),即可计算得出对应出筒式绕组半径及中心的轴方向故障位 置,实现变压器筒式绕组的故障定位。
[0015] 最后应说明的是:以上实施例仅用以说明本发明而并非限制本发明所描述的技术 方案;因此,尽管本说明书参照上述的各个实施例对本发明己进行了详细的说明,但是,本 领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换;而一切不脱离本 发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围中。

Claims (5)

1.一种变压器筒式绕组故障定位的扫频阻抗法,其特征在于:其具体步骤如下: 51、 建立变压器绕组等效电路模型,变压器在不同的频段有着不同的等效电路模型,如 低频段、高频段电路模型,通过建立的变压器绕组等效电路模型可以预先获得无故障时变 压器绕组的阻抗特性; 52、 建立扫频阻抗测试系统,该系统是由信号发生器发出50Hz〜1MHz的正弦信号,经 功率放大器处理放大后施加在待测的变压器绕组电路模型上,再由数据采集卡测量到变压 器绕组的电压和电流,通过计算机计算可得到该模型的阻抗值; 53、 待测的变压器绕组电路模型为给定的正常筒式绕组变压器时,其正常运行时的阻 抗特性和谐振频率是一定的,采用S2中的扫频阻抗测试系统,通过调节信号发生器发出不 同频率的正弦信号,测量计算出正常筒式绕组谐振频率时的阻抗值; 54、 待测的变压器绕组电路模型为有短路故障的筒式绕组变压器时,采用S2中的扫频 阻抗测试系统,通过调节信号发生器发出不同频率的正弦信号,测量计算出有短路故障的 筒式绕组谐振频率时的阻抗值,使得有短路故障发生时,谐振频率增加,短路的层数越多, 谐振频率越局; 55、 故障点定位: 1) 筒式绕组变压器的半径方向定位:通过计算式(a)获得故障点半径的R数值,其式(a) 中为正常筒式绕组谐振频率时的阻抗值,为有短路故障的筒式绕组谐振频率时的阻抗值; 2) 筒式绕组变压器的中心的轴方向定位:通过计算式(b)获得故障点远离筒式绕组中 心距离的L数值,其式(b)中为筒式绕组的高度; 3) 可以根据公式(a)和(b),即可计算得出对应出筒式绕组半径及中心的轴方向故障位 置,实现变压器筒式绕组的故障定位。
2. 根据权利要求1所述的一种变压器筒式绕组故障定位的扫频阻抗法,其特征在于:所 述S1步骤中变压器绕组等效电路模型在低频段时,变压器可以看作是电阻、电感等元件的 组合,其中电感阻抗大小与频率成正比,所以随着频率的增加,变压器的阻抗随之增加。
3. 根据权利要求1所述的一种变压器筒式绕组故障定位的扫频阻抗法,其特征在于:所 述S1步骤中变压器绕组等效电路模型在高频时,变压器可表征为一系列电阻、电抗以及电 容等分布参数的组合,由于同时存在电抗和电容,频率阻抗曲线呈现出谐振特性。
4. 根据权利要求1所述的一种变压器筒式绕组故障定位的扫频阻抗法,其特征在于:所 述S2步骤中计算机是通过计算式(1)获得该模型的阻抗值;再经归一化处理后,对于单相变 压器,通过计算式(2)获得其阻抗值;而对于三相变压器,线电压与相电压进行转换后,通过 计算式(3)获得其阻抗值。
5.根据权利要求4所述的一种变压器筒式绕组故障定位的扫频阻抗法,其特征在于:所 述计算式(3)中,为变压器的额定电压,V;为变压器的额定电流,A。
CN201810498219.7A 2018-05-23 2018-05-23 一种变压器筒式绕组故障定位的扫频阻抗法 Pending CN108872764A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810498219.7A CN108872764A (zh) 2018-05-23 2018-05-23 一种变压器筒式绕组故障定位的扫频阻抗法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810498219.7A CN108872764A (zh) 2018-05-23 2018-05-23 一种变压器筒式绕组故障定位的扫频阻抗法

Publications (1)

Publication Number Publication Date
CN108872764A true CN108872764A (zh) 2018-11-23

Family

ID=64334370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810498219.7A Pending CN108872764A (zh) 2018-05-23 2018-05-23 一种变压器筒式绕组故障定位的扫频阻抗法

Country Status (1)

Country Link
CN (1) CN108872764A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721898A (zh) * 2012-02-27 2012-10-10 衢州电力局 变压器绕组变形在线测量方法及系统
CN107037312A (zh) * 2016-11-28 2017-08-11 国家电网公司 一种用于扫频阻抗法的变压器绕组仿真模型建立方法
CN107037313A (zh) * 2016-11-28 2017-08-11 国家电网公司 建立变压器绕组变形故障与扫频阻抗特征对应关系的方法
CN107179469A (zh) * 2017-06-27 2017-09-19 海南电网有限责任公司电力科学研究院 变压器绕组变形与短路阻抗变化关系分析方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721898A (zh) * 2012-02-27 2012-10-10 衢州电力局 变压器绕组变形在线测量方法及系统
CN107037312A (zh) * 2016-11-28 2017-08-11 国家电网公司 一种用于扫频阻抗法的变压器绕组仿真模型建立方法
CN107037313A (zh) * 2016-11-28 2017-08-11 国家电网公司 建立变压器绕组变形故障与扫频阻抗特征对应关系的方法
CN107179469A (zh) * 2017-06-27 2017-09-19 海南电网有限责任公司电力科学研究院 变压器绕组变形与短路阻抗变化关系分析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙翔等: "电力变压器绕组变形检测与诊断技术的现状与发展", 《高电压技术》 *
徐海瑞: "一种变压器筒式绕组故障定位的扫频阻抗法", 《变压器》 *

Similar Documents

Publication Publication Date Title
BRPI0715913A2 (pt) detecÇço de defeito em aterramento
CN105182099A (zh) 基于频率响应分析法诊断变压器绕组变形程度和故障方法
WO2011000134A1 (zh) 利用振动波形检测变压器绕组状态的方法
CN105699840A (zh) 一种判断电抗器匝间短路故障的方法
CN103412229B (zh) 一种并联补偿电容器组的故障定位方法
WO2012000510A1 (en) Method and system for monitoring structural health of a filter in a wind turbine, and a wind turbine
AU2017279740A1 (en) A method of determining a characteristic of a power transformer and a system therefor
CN107884645A (zh) 基于电压比较的电力电容器运行状态监测方法
Bagheri et al. Loss of low-frequency data in on-line frequency response analysis of transformers
Mukherjee et al. Estimating the equivalent air-cored inductance of transformer winding from measured FRA
CN104218526B (zh) 采用分段相角补偿的发电机注入式定子接地保护方法
Bagheri et al. Frequency response analysis to recognize inductance variation in transformer due to internal short circuit
Harrold et al. Radio frequency sensing of incipient arcing faults within large turbine generators
CN108872764A (zh) 一种变压器筒式绕组故障定位的扫频阻抗法
Sano et al. Experimental investigation on FRA diagnosis of transformer faults
Aburaghiega et al. Power Transformer Health Monitoring: A shift from off-line to on-line detection
CN107436399A (zh) 高海拔地区750kV并联电抗器局部放电试验装置
CN202735463U (zh) 电力变压器绕组匝间短路故障诊断系统
Wu et al. A new testing method for the diagnosis of winding faults in transformer
CN110967654A (zh) 一种干式空心串联电抗器匝间故障监测及保护识别方法
CN103163433A (zh) 发电机定子、配电网绝缘在线监测及其接地选线方法
CN103414159B (zh) 解决发电机定子接地保护滞后切除故障的方法
CN109239513B (zh) 一种发电机定子绕组单相接地故障的选相方法
CN102385024A (zh) 电机绕组接地点检测设备和检测方法
CN104316791A (zh) 一种输电线路高阻接地故障原因分析查找方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181123