CN108843403B - 一种在基体表面产生连续气膜的方法 - Google Patents

一种在基体表面产生连续气膜的方法 Download PDF

Info

Publication number
CN108843403B
CN108843403B CN201810607742.9A CN201810607742A CN108843403B CN 108843403 B CN108843403 B CN 108843403B CN 201810607742 A CN201810607742 A CN 201810607742A CN 108843403 B CN108843403 B CN 108843403B
Authority
CN
China
Prior art keywords
groove
gas
groove body
degrees
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810607742.9A
Other languages
English (en)
Other versions
CN108843403A (zh
Inventor
张文武
郭春海
王玉峰
张天润
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Iii Lasers Technology Co ltd
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Iii Lasers Technology Co ltd
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Iii Lasers Technology Co ltd, Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Iii Lasers Technology Co ltd
Priority to CN201810607742.9A priority Critical patent/CN108843403B/zh
Publication of CN108843403A publication Critical patent/CN108843403A/zh
Priority to PCT/CN2018/125087 priority patent/WO2019237720A1/zh
Application granted granted Critical
Publication of CN108843403B publication Critical patent/CN108843403B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明公开了一种在基体表面产生连续气膜的方法。该方法在基体的表面A设置若干内凹的槽体结构,每个槽体结构底部设置若干贯穿至基体表面B的离散孔,并且设置槽体沿深度方向由两部分组成,自槽体底部深度为H1的部分为中间展开槽,剩余部分为表面调制槽,使基体表面B侧的气体自离散孔进入槽体后,首先在中间展开槽内充分扩散、混合,形成均匀的正压气体,然后通过表面调制槽调制后流出,从而在基体A表面形成连续、均匀、贴附的气膜。

Description

一种在基体表面产生连续气膜的方法
技术领域
本申请涉及基体表面处理技术领域,尤其涉及一种基体表面连续气膜的发生方法。
背景技术
在基体表面形成气膜有很多用途,形成热气膜可对基体进行加热等,形成冷却气膜可对基体进行冷却保护。
在工业与航空航天等技术领域中,很多基体工作在高温燃气环境中,需要经受高温火焰引起的热应力和热腐蚀。例如,燃烧室是将燃油的化学能转变为热能的装置,是发动机和燃气轮机的核心部件之一。燃烧室的燃烧过程主要发生在燃烧室的火焰筒内,火焰筒壁面需承受高温火焰引起的热应力和热腐蚀,苛刻的使用环境对其使用寿命和可靠性提出了巨大挑战。又例如,叶片是航空发动机、燃气轮机等动力装置的核心部件,其中涡轮叶片作为热能转换的关键部件,需要工作于高温高压交变载荷下,需要承受高出自身熔点的工作温度。另外,对于某些高危环境中的建筑材料而言,当发生火灾、爆炸等意外环境时,这些建筑材料需经受高温火焰、气体的热应力和热腐蚀。这样苛刻的环境对基体的使用寿命和可靠性提出了巨大挑战,为此提出对基体进行冷却保护。
气膜冷却是当前采用的高效冷却技术之一,其基本原理是从压气机引入冷却空气,冷却空气通过密布于基体上的冷却孔流出并覆盖于基体表面形成温度较低的冷气膜,从而达到隔绝高温燃气与基体表面的目的,降低基体表面温度,实现对基体表面冷却保护的作用,保证基体长期运行的可靠性。
早期的气膜冷却是由壁面狭缝或者小孔吹出的冷流来阻隔主燃气,如美国专利US4896510A所示,具有整体机构刚性好、冷却流量可控性好等优势,但存在冷气需求量大,对火焰筒壁面冷却不均匀等问题。多斜孔气膜冷却通过斜孔结构以一定的角度射出冷气,在火焰筒壁面形成隔离气膜,起到保护壁面的作用。早期,斜孔多为直圆孔,存在单孔保护面积偏小,吹风比大时气膜剥离严重等问题,需要很密集的气膜孔。后来在气膜冷却技术中采用先进的扩散孔和复杂三维异型孔,相对于简单直圆孔可以大幅度增加单孔降温保护面积和在各种吹风比下的气膜贴附度,如美国专利US2008/0271457A1所示。但是,使用气膜孔时,基体表面气膜的均匀度与孔的分布和形状密切相关,气膜覆盖均匀性不足,成为制约基体表面降温防护的主要技术瓶颈。
专利文献US2010/0040478A1将离散冷却孔与浅槽相结合,在基体的一个表面设置若干浅槽,在每个浅槽的槽体底部大体沿着该浅槽的长度方向设置若干贯穿该基体另一个表面的斜孔。在该结构中,工作状态时高温燃气作用在设置浅槽的基体侧,冷却气体自斜孔进入浅槽后一方面冷却气体沿着槽体长度方向流动,由于与槽体底部的夹角较小而易倾向基体表面流动,另一方面由于浅槽的设置,冷却气体的流动受到槽体两侧壁的限制,从而防止了冷却气体自冷却孔流出后大部分与高温燃气流相混合而阻碍在基体表面形成冷却气膜。
专利文献US2011/0097188A1也将离散冷却孔与浅槽相结合,并且提出冷却孔可以分为形状不同的两部分,即冷却孔结构为异形孔。
但是,上述两项专利技术中槽体深度小,为浅槽。例如,专利文献 US2010/0040478A1中指出槽体深度小于冷却孔的最小直径。这样的槽体只能对来自冷却孔的冷却气体辅助性地进行调节气流流向的作用,初始气膜仍是以冷却孔为主体形成,因此自槽体流出的气膜仍然存在均匀性不足,不能完全覆盖基体表面的问题。另外,还存在气膜冷却效果有限的问题。除此之外,这种结构中,为了形成连续气膜,需要设置较多的冷却孔,这将降低基体的力学强度。
因此,如何通过结构设计在基体表面形成连续的、均匀的气膜是科技工作者的研究课题之一,将对许多领域带来有益的技术效果。
发明内容
针对上述技术现状,本发明提供了一种在基体表面产生连续气膜的方法,利用方法可在基体表面形成连续的、均匀的气膜。
本发明的技术方案为:
一种在基体表面产生连续气膜的方法,包括如下步骤:
在基体的一个表面,称为表面A,设置若干内凹的槽体结构,所述槽体结构包括槽体底部,以及沿着槽体长度方向的两侧壁;
在每个槽体底部设置若干贯穿至基体另一表面的离散孔,该另一表面称为表面B,所述离散孔大体沿着该槽体的长度方向排列;
设槽体结构的深度为H,设置槽体沿深度方向由两部分组成,自槽体底部深度为H1的部分为第一部分,称为中间展开槽,剩余部分为第二部分,称为表面调制槽,即,表面调制槽的深度H2=H-H1,使基体的表面B侧的气体自离散孔进入槽体结构后,首先在中间展开槽内充分扩散、混合,形成均匀的正压气体,然后通过表面调制槽调制后流出,在基体的表面A形成均匀连续气膜。
作为优选,按照气膜贴附的气动需要对所述槽体沿深度方向的开口端进行优化设计,使气体经表面调制槽调制,自开口端流出,在基体表面形成连续的均匀贴附的气膜。作为一种优化的实现方式,所述表面调制槽的至少一侧壁是由第一部分的同侧壁横向扩张形成。
设所述离散孔的最大直径为d,所述槽体的最小宽度为D,作为优选,
D≥d。
本发明中,沿着槽体深度方向,槽体分为中间展开槽与表面调制槽,作为优选,H≥2d,进一步优选为H≥3d,更优选为H≥4d。
所述槽体沿深度方向的出口端部的轴线与基体表面A的法线夹角为α,作为优选,10°≤α≤90°,进一步优选为30°≤α≤80°,更优选为45°≤α≤70°。
作为一种实现方式,所述槽体的沿着槽体宽度方向的垂直截面中,中间展开槽的两侧壁为存间隔的两条直线段。每条直线段与槽底夹角优选为10°- 170°,进一步优选为30°-150°,更优选为60°-120°。两条直线段可以互相平行,也可以形成一定夹角。表面调制槽的侧壁可以是平直线段,也可以是弧线段,作为优选,表面调制槽的至少一侧壁为弧线段。另外,作为优选,中间展开槽的至少一侧壁与表面调制槽的同侧壁的连接处为倒角过渡连接,或者为圆弧过渡连接,以实现平滑连接。
为了使冷却气体在中间展开槽内充分扩散、混合,形成均匀的正压气体,作为优选,与表面调制槽相比,中间展开槽的深度H1较长,即,H1>H2,作为优选,H1:H2≥2:1;进一步优选为H1:H2≥3:1,更优选为H1:H2≥4:1。
所述的基体表面A与基体表面B可以互相平行,与可以呈一定夹角。
所述的离散孔可以是直圆孔,也可以是扩散孔,也可以是复杂的三维异形孔。作为优选,所述的离散孔的中心轴线与基体表面A的夹角为θ。夹角α与夹角θ可以不同。作为优选,夹角θ以减少孔加工厚度为主,一般优选为 0°≤θ≤60°,更优选为10°≤θ≤45°;夹角α以保障良好气膜贴附为主。作为优选,所述的离散孔的开口端设置倒角过渡结构或者圆弧过渡结构,以避免尖锐结构造成应力集中现象,以及气体流通不畅等问题。
各个槽体在基体表面的设置不限,根据基体表面的实际形状可以是存间距平行排列,也可以是交错排列等,以使各个槽体形成的连续气膜对基体表面形成全覆盖为主。
与现有技术相比,本发明在基体表面设置离散孔与槽体,并且沿着槽体深度方向将槽体设计为由两部分形成的异形槽,第一部分为中间扩展槽,第二部分相对于第一部分形成横向扩张,来自离散孔的气体首先在中间展开槽内充分扩散、混合,形成均匀的正压气体,然后通过表面调制槽调制后经开口端流出,从而在基体表面形成均匀、连续的气膜。与现有技术相比,具有如下有益效果:
形成冷却气膜,并且与现有的简单浅槽相比,本发明设置槽体为复杂异性的深槽,沿槽体深度方向,槽体分为中间展开槽与表面调制槽,
(1)现有方法中,离散孔与浅槽相结合,气体自离散孔喷出后,表面浅槽只是起到辅助性地调节气流流向的作用,因此气膜仍是以离散孔为主体形成的,并未进行充分扩展叠加而形成连续的均匀的正压气体。
而本发明中,将离散孔与槽体结合,并且沿着槽体深度方向将槽体设计为由两部分形成的异形槽,第一部分为中间扩展槽,第二部分相对于第一部分形成横向扩张,来自离散孔的气体首先在中间展开槽内充分扩散、混合,形成均匀的正压气体,然后通过表面调制槽调制后经开口端流出,从而在基体表面形成均匀、连续的气膜。
气体自离散孔进入槽体后,由于槽体为两段形成的异形槽,具有较大深度,沿着槽体宽度方向的垂直截面呈狭长结构,来自各离散孔的扩散气体不仅会沿槽体长度方向扩展、混合,而且能够沿着槽体深度方向扩散、混合、相互叠加,即,能够在中间展开槽充分扩散、混合,形成连续、均匀的正压气体,然后通过表面调制槽调制经开口端流出,按照气膜贴附的气动需要对开口端的形状进行优化设计,从而在基体表面形成均匀、连续、贴附的气膜。并且由于槽体深度较大,由槽体开口端流出的气体具有强大的气压,因此在基体表面形成的连续均匀的气膜强力贴附在基体表面。
(2)气体在本发明的气膜冷却结构内的气动仿真图如2所示,证实了本发明中气体可以经离散孔喷射至槽体,在槽体内扩展、混合,形成连续、均匀的正压气体,然后在基体表面形成连续、连续、均匀、贴附的气膜覆盖。
(3)本发明的连续气膜发生结构可以用于在基体表面形成热气膜,也可用于在基体表面形成冷却气膜,对基体实现冷却保护,以防止基体在高温热气环境中的热损伤与热腐蚀。实验证实,当基体处于高温热气环境中时,利用本发明的方法产生的冷却气膜具有良好的冷却效果,等效冷却效率=(热气温度- 在C点测得的温度)/(热气温度-冷却气体温度)时,在冷却气体的吹风比 M=1.5情况下,利用本发明的方法产生的冷却气膜具有等效冷却效率为0.5以上的C点距离基体表面A十毫米以上,当冷却气体吹风比增大,C点的等效冷却效率可提高至0.7以上。
附图说明
图1是本发明的方法中气体的气动仿真图;
图2是本发明实施例1中对涡轮叶片的结构设置示意图;
图3是图2的水平截面结构示意图;
图4是图3中的一个槽体结构示意图;
图5是冷却气体在图3中的一个槽体结构中的传输示意图。
具体实施方式
下面结合实施例对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
图3-5中的附图标记为:100-涡轮叶片;101-涡轮叶片的一个表面;102-涡轮叶片的另一个表面;105-槽体;106-分割线;301-槽体的第二部分;302-槽体的第一部分;400-离散孔;500-槽体底部;600、700-槽体两侧壁。
实施例1:
本实施例中,基体是涡轮叶片1。如图2所示,涡轮叶片100是由分体Ⅰ和分体Ⅱ组合而成,其中分体Ⅰ和分体Ⅱ在分割线106处连结为一个完整涡轮叶片100。
涡轮叶片1的一个表面101设置多个彼此存间隔互相平行的槽体结构 105,槽体的长度可部分或整体贯穿涡轮叶片1的表面101。
图3是图2的水平截面的结构示意图。
图4是图3中一个槽体结构105的放大结构示意图。
从图4中可以看出,每个槽体包括槽体底部500,以及沿着槽体长度方向的两侧壁600与700;每个槽体底部设置若干贯穿至基体表面102的离散孔 400,这些离散孔大体沿着该槽体的长度方向排列。本实施例中,基体表面101 与基体表面102大体平行。
设离散孔400的最大直径为d,槽体的最小宽度为D,本实施例中D≥d。
设槽体的深度为H,设置槽体沿深度方向由互相连通的两部分组成,如图 4所示,自槽体底部深度为H1的部分为第一部分302,称为中间展开槽,剩余部分为第二部分301,称为表面调制槽,即,第二部分深度为H2=H-H1。本实施例中,中间展开槽的深度H1略大于表面调制槽的深度H2
本实施例中,中间展开槽呈倾斜的柱体结构,其垂直截面中两侧壁呈存间隔的两条直线段,两条直线段互相平行,每条直线段与槽底夹角为70°;表面调制槽的一个侧壁也为直线段,是由中间展开槽的同侧壁延伸形成,另一个侧壁呈弧线段,是由第一部分的同侧壁横向扩张形成。本实施例中,表面调制槽沿深度方向的开口端部的轴线与基体表面101的法线之间的夹角α为30°。
本实施例中,离散孔的中心轴线与基体表面102的法向之间的夹角θ为 15°,并且孔的开口端设置圆弧过渡结构,以避免尖锐结构应力集中现象。
图5是冷却气体在图3的一个槽体中的传输示意图。基体表面102侧的冷却气体自离散孔进入槽体后,首先在中间展开槽内充分扩散、混合,形成均匀的正压气体,然后通过表面调制槽调制后偏向基体表面A侧流出,在基体的表面A形成均匀、连续的气膜,并且由于槽体深度较大,由表面异形槽开口端流出的气体具有强大的气压,因此在基体表面形成的连续、均匀的气膜强力贴附在基体表面。
实施例2:
本实施例与实施例1基本相同,所不同的是:H1:H2≥2:1;离散孔的中心轴线与基体表面102的法向之间的夹角θ为0°;表面调制槽沿深度方向的开口端部的轴线与基体表面101的法线之间的夹角α为45°。
与实施例1相同,基体表面102侧的冷却气体自离散孔进入槽体后,首先在中间展开槽内充分扩散、混合,形成均匀的正压气体,然后通过表面调制槽调制后偏向基体表面A侧流出,在基体的表面A形成连续、均匀的气膜强力贴附在基体表面。
实施例3:
本实施例与实施例1基本相同,所不同的是:H1:H2≥3:1;离散孔的中心轴线与基体表面102的法向之间的夹角θ为10°;中间展开槽302的两侧壁呈存间隔的两条互相平行的直线段,每条直线段与槽底夹角为65°;表面调制槽沿深度方向的开口端部的轴线与基体表面101的法线之间的夹角α为50°。
与实施例1相同,基体表面102侧的冷却气体自离散孔进入槽体后,首先在中间展开槽内充分扩散、混合,形成均匀的正压气体,然后通过表面调制槽调制后偏向基体表面A侧流出,在基体的表面A形成连续、均匀的气膜强力贴附在基体表面。
实施例4:
本实施例与实施例1基本相同,所不同的是:H1:H2≥4:1;离散孔的中心轴线与基体表面102的法向之间的夹角θ为10°;中间展开槽302的两侧壁呈存间隔的两条互相平行的直线段,每条直线段与槽底夹角为75°;表面调制槽沿深度方向的开口端部的轴线与基体表面101的法线之间的夹角α为50°。
与实施例1相同,基体表面102侧的冷却气体自离散孔进入槽体后,首先在中间展开槽内充分扩散、混合,形成均匀的正压气体,然后通过表面调制槽调制后偏向基体表面A侧流出,在基体的表面A形成连续、均匀的气膜强力贴附在基体表面。
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充或类似方式替代等,均应包含在本发明的保护范围之内。

Claims (13)

1.一种在基体表面产生连续、均匀、强力贴附的气膜的方法,其特征是:包括如下步骤:
在基体的一个表面,称为表面A,设置若干内凹的槽体结构,所述槽体结构包括槽体底部,以及沿着槽体长度方向的两侧壁;
在每个槽体底部设置若干贯穿至基体另一表面的离散孔,该另一表面称为表面B,所述离散孔大体沿着该槽体的长度方向排列;
设槽体结构的深度为H,设置槽体沿深度方向由两部分组成,自槽体底部深度为H1的部分为第一部分,称为中间展开槽,剩余部分为第二部分,称为表面调制槽,即,表面调制槽的深度H2=H-H1,H1>2H2,所述离散孔的最大直径为d,所述槽体的最小宽度为D,D>d,H>4d,使基体的表面B侧的冷却气体自离散孔进入槽体结构后,不仅会沿槽体长度方向扩展、混合,而且能够沿着槽体深度方向扩散、混合、相互叠加,即,能够在中间展开槽充分扩散、混合,形成连续、均匀的正压气体,首先在中间展开槽内充分扩散、混合,形成均匀的正压气体,然后通过表面调制槽调制后流出,在基体的表面A形成均匀连续气膜;
所述中间展开槽呈倾斜的柱体结构;
所述槽体的沿着槽体宽度方向的垂直截面中,中间展开槽的两侧壁为存间隔的两条直线段,表面调制槽的一个侧壁也为直线段,是由中间展开槽的同侧壁沿所述同侧壁直线延伸方向相同的方向延伸形成,另一个侧壁呈弧线段,是由中间展开槽的同侧壁横向扩张形成;
所述基体处于高温热气环境中时,在冷却气体的吹风比M=1.5情况下,距离基体表面十毫米以上的距离处等效冷却效率为0.5以上。
2.如权利要求1所述的方法,其特征是:H1:H2≥3:1。
3.如权利要求2所述的方法,其特征是:H1:H2≥4:1。
4.如权利要求1所述的方法,其特征是:按照气膜贴附的气动需要设计所述表面调制槽。
5.如权利要求1所述的方法,其特征是:所述槽体沿深度方向的开口端部的轴线与基体表面A的法线夹角为α,10°≤α≤90°。
6.如权利要求5所述的方法,其特征是:30°≤α≤80°。
7.如权利要求6所述的方法,其特征是:45°≤α≤70°。
8.如权利要求1所述的方法,其特征是:所述直线段与槽底夹角为10°-170°。
9.如权利要求8所述的方法,其特征是:所述直线段与槽底夹角为30°-150°。
10.如权利要求9所述的方法,其特征是:所述直线段与槽底夹角为60°-120°。
11.如权利要求1所述的方法,其特征是:所述的离散孔的中心轴线与基体表面A的夹角为θ,0°≤θ≤60°。
12.如权利要求11所述的方法,其特征是:10°≤θ≤45°。
13.如权利要求1所述的方法,其特征是:所述的离散孔的开口端设置倒角过渡结构或者圆弧过渡结构。
CN201810607742.9A 2018-06-13 2018-06-13 一种在基体表面产生连续气膜的方法 Active CN108843403B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810607742.9A CN108843403B (zh) 2018-06-13 2018-06-13 一种在基体表面产生连续气膜的方法
PCT/CN2018/125087 WO2019237720A1 (zh) 2018-06-13 2018-12-28 一种在基体表面产生连续气膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810607742.9A CN108843403B (zh) 2018-06-13 2018-06-13 一种在基体表面产生连续气膜的方法

Publications (2)

Publication Number Publication Date
CN108843403A CN108843403A (zh) 2018-11-20
CN108843403B true CN108843403B (zh) 2022-10-25

Family

ID=64211110

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810607742.9A Active CN108843403B (zh) 2018-06-13 2018-06-13 一种在基体表面产生连续气膜的方法

Country Status (2)

Country Link
CN (1) CN108843403B (zh)
WO (1) WO2019237720A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108843403B (zh) * 2018-06-13 2022-10-25 中国科学院宁波材料技术与工程研究所 一种在基体表面产生连续气膜的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102140964B (zh) * 2010-02-03 2013-07-03 中国科学院工程热物理研究所 一种提高离散孔气膜冷却效率的结构
JP5530001B1 (ja) * 2013-05-22 2014-06-25 川崎重工業株式会社 ダブルジェット式フイルム冷却構造とその製造方法
CN203867627U (zh) * 2014-03-27 2014-10-08 中航商用航空发动机有限责任公司 用于燃气轮机的气膜冷却部件
CN204663588U (zh) * 2015-05-08 2015-09-23 中航商用航空发动机有限责任公司 一种凹槽气膜孔结构及燃气轮机
CN205558979U (zh) * 2016-04-22 2016-09-07 中航商用航空发动机有限责任公司 待冷却壁体结构、涡轮叶片以及航空发动机
CN106761947B (zh) * 2016-11-28 2018-11-20 西北工业大学 一种用于涡轮叶片的漏斗型气膜孔结构
CN106593543B (zh) * 2016-11-28 2018-04-17 西北工业大学 一种用于涡轮叶片的拱型凹槽气膜冷却结构
CN108590777B (zh) * 2018-06-13 2021-11-30 中国科学院宁波材料技术与工程研究所 一种基体表面连续气膜的发生结构
CN108843403B (zh) * 2018-06-13 2022-10-25 中国科学院宁波材料技术与工程研究所 一种在基体表面产生连续气膜的方法

Also Published As

Publication number Publication date
WO2019237720A1 (zh) 2019-12-19
CN108843403A (zh) 2018-11-20

Similar Documents

Publication Publication Date Title
CN108731030B (zh) 一种具有复合异型槽气膜冷却结构的燃烧室
CN108843404B (zh) 一种具有复合异型槽气膜冷却结构的涡轮叶片及其制备方法
CN102313299B (zh) 用于涡轮机的喷嘴
US8387396B2 (en) Airfoil, sleeve, and method for assembling a combustor assembly
CN108590777B (zh) 一种基体表面连续气膜的发生结构
KR100871284B1 (ko) 블록형 노심 초고온가스로의 냉각압력용기 구조
US20140023490A1 (en) Fastener
US20130180252A1 (en) Combustor assembly with impingement sleeve holes and turbulators
CN107683391B (zh) 具有优化冷却的燃烧室的环形壁
CN105276620A (zh) 一种航空发动机燃烧室火焰筒壁面复合冷却结构
CN104791848A (zh) 一种采用叶栅通道多斜孔冷却方式的燃烧室火焰筒壁面
US6553766B2 (en) Cooling structure of a combustor tail tube
CN111520760A (zh) 一种冲击/气膜双层壁复合冷却方式的燃烧室火焰筒壁面结构
CN111207412A (zh) 一种采用浮动瓦块的燃烧室火焰筒
KR20110112239A (ko) 경사 시일 냉각 시스템
CN105190179A (zh) 用于环筒燃气涡轮发动机的燃烧器衬套和用于构造这样的衬套的方法
CN108843403B (zh) 一种在基体表面产生连续气膜的方法
CN110873337A (zh) 具有冷却微通道的双燃料喷枪
CN208845235U (zh) 一种具有复合异型槽气膜冷却结构的涡轮叶片
JP4546100B2 (ja) 熱交換するための方法及び装置
CN106556030A (zh) 燃烧室燃油喷嘴及其热防护结构
CN209013233U (zh) 一种具有复合异型槽气膜冷却结构的燃烧室
CN112197296A (zh) 一种火焰筒壁板
CN208456670U (zh) 一种基体表面连续气膜的发生结构
CN215637322U (zh) 一种具有换热器的燃烧室结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant