CN108834041B - 基于张量重建的室内位置指纹定位Radio Map建立方法 - Google Patents

基于张量重建的室内位置指纹定位Radio Map建立方法 Download PDF

Info

Publication number
CN108834041B
CN108834041B CN201810482703.0A CN201810482703A CN108834041B CN 108834041 B CN108834041 B CN 108834041B CN 201810482703 A CN201810482703 A CN 201810482703A CN 108834041 B CN108834041 B CN 108834041B
Authority
CN
China
Prior art keywords
tensor
representing
radio map
reference point
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810482703.0A
Other languages
English (en)
Other versions
CN108834041A (zh
Inventor
马琳
赵琬
孙永亮
徐玉滨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201810482703.0A priority Critical patent/CN108834041B/zh
Publication of CN108834041A publication Critical patent/CN108834041A/zh
Application granted granted Critical
Publication of CN108834041B publication Critical patent/CN108834041B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/33Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明提供基于张量重建的室内位置指纹定位Radio Map建立方法,属于室内定位导航技术领域。本发明首先根据需要定位的室内环境,建立平面二维直角坐标系、部署无线路由器作为接入点、均匀设置参考点位置;然后构造每条采集路径对应的二维Radio Map,并将全部测量路径对应的二维Radio Map构成一个3模张量;再基于张量填充算法对参考点进行扩充;最后基于张量恢复算法对众包数据进行降噪。本发明解决了现有众包建立Radio Map技术存在每个数据包覆盖参考点数量少、采集数据包含大量噪声,从而导致定位精度较低的问题。本发明可用于室内位置指纹定位。

Description

基于张量重建的室内位置指纹定位Radio Map建立方法
技术领域
本发明涉及室内位置指纹定位Radio Map建立方法,属于室内定位导航技术领域。
背景技术
随着移动智能终端和互联网技术的广泛普及,高精度室内定位导航的应用需求日益增加。尤其是移动智能终端与基于位置服务的深度结合,逐渐改变了人们现有的生活方式和商业模式,并正在发挥着重要的基础支撑作用。已有的室内定位技术大多数是基于短距离无线通信的,如超宽带定位系统、红外线定位系统和蓝牙定位系统等。在通常情况下,基于短距离无线通信的定位需要在目标区域部署大量的专用传感器,通过感知携带专用信号收发器的物体进行定位,在特定范围的精度可达分米级。但是,这些系统在用户端和定位服务器端均需要额外的专用设备,硬件成本高、定位覆盖范围较小,且易受复杂室内环境和非视距传播的影响,无法推广应用。而无线局域网(Wireless Local Area Networks,WLAN)定位完全基于大型室内场所普遍存在的网络基础设施和移动终端,能做到近乎纯软件实现的室内定位,非常适用于大规模推广应用。
当前,绝大多数WLAN定位系统都利用WiFi信号的接收信号强度(Received SignalStrength,RSS)值,通过位置指纹识别算法完成定位(如图1所示)。位置指纹识别算法将WIFI室内定位分为离线与在线两个阶段。离线阶段,主要完成的工作是位置指纹地图(Radio Map)的建立。在线阶段,移动用户终端采集接收信号,并采用定位算法将用户收到的RSS值与Radio Map中的RSS信号空间进行匹配,进而得出用户的实际位置。其中,RadioMap保存了信号空间到位置空间的映射,是位置指纹技术的基础。传统的Radio Map建立需要人工逐点采集以完成。首先,专业人员在定位区域内标记出大量参考点(ReferencePoint,RP),并测量其准确的物理位置。然后,专业人员利用特定的移动终端在每个参考点上采集所有接入点(Access Point,AP)发出信标帧信号的RSS值。最后,将参考点上接收到的RSS值及其对应的位置坐标一起记录下来,从而形成Radio Map。一般来说,构建某一楼层的Radio Map所需时间是以天来计算的,而对于整栋建筑物来说,则是以周来计算的。此外,为了提高定位精度或增加定位区域面积,人们还会增加参考点的数量,提高其分布密度。加之Radio Map还会由于室内环境的变化而改变,需要被经常更新。综上所述,传统的RadioMap构建方法耗时费力、成本高昂,是阻碍基于位置指纹的WLAN室内定位系统推广的最大瓶颈。因此,如何低成本的建立定位区域的Radio Map来满足WLAN室内定位普及与推广的需要就成为现阶段室内定位领域中值得研究的问题。
近年来,由美国《Wired》杂志提出的众包(Crowdsourcing)概念逐渐被人们熟悉,并且在各领域都得到了广泛的应用。众包描述的是一种获取信息、解决问题的实践方法,其主要含义是由大量志愿者(而不是少量专业人员或雇员)以化整为零的方式合作完成一项繁琐而又枯燥的工作,从而提高效率、降低成本。然而,基于众包建立Radio Map的方法也存在着亟待解决的问题。首先,每个志愿者上传的众包数据只包含全部参考点中的一部分,而参考点数量的减少会导致定位精度的降低;为提高定位精度,需在目标区域内设置大量的参考点,并在每个参考点上进行多次测量。然而,这种方式需要消耗大量的人力与时间成本。其次,上报众包数据的用户间使用习惯的差异以及不同时刻下门窗开关、行人走动等室内环境的变化都会影响信号的强度值,从而引入大量噪声。针对上述问题,急需一种针对志愿者上传的众包数据进行噪声的滤除,从而保证较高的定位精度的技术。
发明内容
本发明为解决现有众包建立Radio Map技术存在每个数据包覆盖参考点数量少、采集数据包含大量噪声,从而导致定位精度较低的问题,提供了基于张量重建的室内位置指纹定位Radio Map建立方法。
本发明所述基于张量重建的室内位置指纹定位Radio Map建立方法,通过以下技术方案实现:
步骤一、根据需要定位的室内环境,选择坐标原点P0(x0,y0),建立平面二维直角坐标系;
步骤二、根据室内环境,部署无线路由器作为接入点;
步骤三、根据室内环境,均匀设置参考点位置;
步骤四、构造每条采集路径对应的二维Radio Map;
步骤五、将全部测量路径对应的二维Radio Map构成一个3模张量;
步骤六、基于张量填充算法对参考点进行扩充;
步骤七、基于张量恢复算法对众包数据进行降噪。
进一步的,步骤四具体过程包括:
志愿者携带手机在需要定位的室内环境中行走并进行WiFi信号采集,每条采集路径对应一张二维Radio Map,该路径覆盖到的参考点称为已测量参考点,该路径未覆盖到的参考点称为未测量参考点;每条采集路径对应的二维Radio Map中,已测量参考点处存储对应于各接入点的WiFi信号强度值,未测量参考点处各接入点的WiFi信号强度值记为-130dBm;
设在目标区域内有P个参考点、Q个接入点、S条采集路径,则
Figure BDA0001665978850000021
表示第k条采集路径在第i个参考点处的指纹信息,
Figure BDA0001665978850000022
I2=Q+2;
Figure BDA0001665978850000023
表示实数域,
Figure BDA0001665978850000024
表示单个元素为I2×1的列向量的欧式空间;
则有:
Figure BDA0001665978850000031
其中,
Figure BDA0001665978850000032
表示第k条采集路径在第i个参考点的坐标,
Figure BDA0001665978850000033
表示第k条采集路径在第i个参考点处接收到所有信号的强度值构成的向量,
Figure BDA0001665978850000034
第k条路径数据构成的二维Radio Map
Figure BDA0001665978850000035
表示为:
Figure BDA0001665978850000036
其中,I1=P,[·]T表示矩阵转置;
Figure BDA0001665978850000037
表示单个元素为I1×I2的矩阵的欧式空间。
进一步的,步骤五的具体过程为:
将全部测量路径对应的二维Radio Map构成一个3模张量
Figure BDA0001665978850000038
Figure BDA0001665978850000039
其中,I3=S,foldn(·)函数表示unfoldn(·)的逆运算,unfoldn(·)函数表示张量沿第n模展开运算;
Figure BDA00016659788500000310
沿第n模展开为矩阵
Figure BDA00016659788500000311
进一步的,步骤六的具体过程包括:
步骤六一:将参考点扩充问题建模为如下低秩张量填充问题:
Figure BDA00016659788500000312
其中,Ω表示张量
Figure BDA00016659788500000313
中已观测到元素的位置集合,
Figure BDA00016659788500000314
表示
Figure BDA00016659788500000315
中Ω元素位置集合对应的值,
Figure BDA00016659788500000316
表示参考点扩充后的无空缺张量,
Figure BDA00016659788500000317
表示
Figure BDA00016659788500000318
中Ω元素位置集合对应的值,约束条件
Figure BDA00016659788500000319
表示填充过程不改变张量中已有元素的值;rank(·)为求秩函数;
将式(4)中问题进行凸松弛而转化为:
Figure BDA00016659788500000320
其中,||·||*为矩阵的核范数;权重参数wn满足约束条件wn≥0和
Figure BDA00016659788500000321
Figure BDA00016659788500000322
表示
Figure BDA00016659788500000323
沿第n模展开的矩阵,N表示张量的模数;
步骤六二:将步骤六一中优化问题构造增广拉格朗日函数从而转化为无约束条件优化问题:
引入辅助张量集合
Figure BDA0001665978850000041
并将问题等价转化为:
Figure BDA0001665978850000042
Figure BDA0001665978850000043
表示单个元素为I1×I2×I3的张量的欧式空间,
Figure BDA0001665978850000044
表示第n个辅助张量
Figure BDA0001665978850000045
沿第n模展开的矩阵;
对式(6)中优化问题构造增广拉格朗日函数,表示为:
Figure BDA0001665978850000046
其中,
Figure BDA0001665978850000047
表示拉格朗日乘子张量集合,λ为惩罚因子;||·||F表示Frobenius范数;<·>为内积运算;
步骤六三:对步骤六二中无约束条件优化问题进行求解。
进一步的,步骤六三的具体过程包括:
对式(7)中问题进行求解,
Figure BDA0001665978850000048
和λ的迭代过程如下:
1)对于
Figure BDA0001665978850000049
Figure BDA00016659788500000410
赋值运算符:=表示将运算符右边的值赋值给左边的参数;
式(8)被转化为:
Figure BDA00016659788500000411
其中,
Figure BDA00016659788500000412
为收缩算子,U为运算对象奇异值分解后的左乘正交矩阵,V为运算对象奇异值分解后的右乘正交矩阵,
Figure BDA00016659788500000413
表示运算对象奇异值分解后的对角阵中将小于wn/λ的元素替换为零后所构成的对角阵;
Figure BDA0001665978850000051
表示第n个拉格朗日乘子张量
Figure BDA0001665978850000052
沿第n模展开的矩阵;
2)对于
Figure BDA0001665978850000053
Figure BDA0001665978850000054
式(10)被转化为:
Figure BDA0001665978850000055
其中,ΩC表示Ω的补集;
Figure BDA0001665978850000056
表示
Figure BDA0001665978850000057
中ΩC元素位置集合对应的值;
3)对于
Figure BDA0001665978850000058
Figure BDA0001665978850000059
4)对于λ:
λ:=tλ (13)
其中,t表示张量填充算法对应优化问题的迭代步长,t>1;
张量填充算法的迭代终止条件设置为:
Figure BDA00016659788500000510
其中,
Figure BDA00016659788500000511
表示第m次迭代后的
Figure BDA00016659788500000512
值,δ1表示张量填充迭代阈值;
满足式(14)时迭代终止。
进一步的,步骤七的具体过程包括:
步骤七一:将对众包数据降噪的问题建模为低秩张量恢复问题:
设去噪后信号空间张量为
Figure BDA00016659788500000513
噪声空间张量为ε,则有:
Figure BDA00016659788500000514
通过求解如下优化模型来分离
Figure BDA00016659788500000515
和ε:
Figure BDA0001665978850000061
Figure BDA0001665978850000062
表示
Figure BDA0001665978850000063
沿第n模展开的矩阵;
将最优化问题(16)凸松弛到如下形式:
Figure BDA0001665978850000064
其中,αn≥0为
Figure BDA0001665978850000065
的权重,且满足
Figure BDA0001665978850000066
γ为||ε||0的权重;步骤七二:引入辅助张量集合
Figure BDA0001665978850000067
并将问题等价转化为:
Figure BDA0001665978850000068
对式(18)优化问题的增广拉格朗日函数如下:
Figure BDA0001665978850000069
其中,μ为惩罚因子,
Figure BDA00016659788500000610
表示拉格朗日乘子张量集合;步骤七三:张量恢复算法各参数迭代过程如下:
1)对于ε:
Figure BDA00016659788500000611
得到下式:
Figure BDA00016659788500000612
2)对于
Figure BDA00016659788500000613
Figure BDA00016659788500000614
得到下式:
Figure BDA0001665978850000071
其中,
Figure BDA0001665978850000072
Figure BDA0001665978850000073
表示运算对象奇异值分解后的对角阵中将小于αn/μ的元素替换为零后所构成的对角阵;
3)对于
Figure BDA0001665978850000074
Figure BDA0001665978850000075
4)对于μ:
μ:=min(ρμ,μ) (25)
其中,张量恢复算法对应优化问题的迭代步长ρ>1;
张量恢复算法的迭代终止条件为:
Figure BDA0001665978850000076
其中,δ2表示张量恢复迭代阈值;
满足迭代终止条件时算法终止,计算去噪后信号空间张量
Figure BDA0001665978850000077
Figure BDA0001665978850000078
进一步的,步骤二中所述部署无线路由器,应保证环境中任意位置均能够采集到来自至少3个接入点的信号,且信号功率大于-100dBm。
进一步的,步骤三中所述均匀设置参考点位置的具体过程为:将室内环境划分为0.5米×0.5米的方格,每个方格的顶点标注为参考点。
本发明最为突出的特点和显著的有益效果是:
(1)本发明针对传统的为减小Radio Map建立工作量所采用的基于空间插值的参考点扩充方法无法得到最优解的问题,提出基于张量填充的参考点填充算法,将求解数据相关性最强的问题转化为求解张量的秩最小的问题,并通过核范数运算近似替代秩的求解使得将非凸问题转化为凸优化问题,再求得最优解,可用较少工作量较低成本获得足够的参考点。相比于基于空间插值的参考点扩充法,本发明所提出的方法不受数据排列顺序的影响,可充分利用全局信息得到最优解,可大幅减少建立Radio Map工作量的同时保证较高的定位精度。
(2)本发明针对众包数据采集过程中由于用户习惯差异、室内环境变化等引入噪声干扰的问题,提出基于张量恢复的数据去噪,通过联合求解信号空间应有的低秩性和噪声空间应有的稀疏性将二者分开,从而去除噪声,进一步提高定位精度。
综上所述,本发明能够在降低Radio Map建立成本的同时保证较高的定位精度,进行仿真实验表明,相比现有方法,平均定位误差约降低20%。
附图说明
图1是基于位置指纹的WLAN室内定位系统示意图;
图2是在室内地图上选择坐标原点并建立坐标系示意图;
图3是室内环境的接入点部署示意图;
图4是定位区域内参考点的局部分布示意图;
图5是单条采集路径对应的参考点测量情况示意图;
图6是基于张量填充算法的参考点扩充示意图;
图7是基于张量恢复算法的众包数据降噪示意图;
图8是实施例中定位结果累积分布函数图。
具体实施方式
具体实施方式一:结合图2~图7对本实施方式进行说明,本实施方式给出的基于张量重建的室内位置指纹定位Radio Map建立方法,具体包括以下步骤:
步骤一、根据需要定位的室内环境,选择坐标原点P0(x0,y0),建立平面二维直角坐标系,如图2所示;
步骤二、根据室内环境,部署无线路由器作为接入点,室内环境的接入点部署如图3所示;
步骤三、根据室内环境,均匀设置参考点位置;
步骤四、构造每条采集路径对应的二维Radio Map;
步骤五、将全部测量路径对应的二维Radio Map构成一个3模张量;
步骤六、基于张量填充算法对参考点进行扩充;
步骤七、基于张量恢复算法对众包数据进行降噪。
具体实施方式二:本实施方式与具体实施方式一不同的是,步骤四具体过程包括:
志愿者携带手机在需要定位的室内环境中行走并进行WiFi信号采集,每次采集经过的路径称为一条采集路径,每条采集路径对应一张二维Radio Map,该路径覆盖到的参考点称为已测量参考点,该路径未覆盖到的参考点称为未测量参考点(图2所示室内环境某条采集路径对应的参考点测量情况如图5所示);每条采集路径对应的二维Radio Map中,已测量参考点处存储对应于各接入点的WiFi信号强度值,未测量参考点处各接入点的WiFi信号强度值记为-130dBm;
本实施方式中,只对全部参考点中的一部分进行测量并记为标签数据,从而减小建立Raido Map的工作量。标签数据既包括参考点的坐标,也包括参考点处得到的信号向量。
设在目标区域内有P个参考点、Q个接入点、S条采集路径,则
Figure BDA0001665978850000091
表示第k条采集路径在第i个参考点处的指纹信息,
Figure BDA0001665978850000092
I2=Q+2;
Figure BDA0001665978850000093
表示实数域,
Figure BDA0001665978850000094
表示单个元素为I2×1的列向量的欧式空间;
则有:
Figure BDA0001665978850000095
其中,
Figure BDA0001665978850000096
表示第k条采集路径在第i个参考点的坐标,
Figure BDA0001665978850000097
表示第k条采集路径在第i个参考点的横坐标,
Figure BDA0001665978850000098
表示第k条采集路径在第i个参考点的纵坐标;
Figure BDA0001665978850000099
表示第k条采集路径在第i个参考点处接收到所有信号的强度值构成的向量,
Figure BDA00016659788500000910
第k条路径数据构成的二维Radio Map
Figure BDA00016659788500000911
可以表示为:
Figure BDA00016659788500000912
其中,I1=P,[·]T表示矩阵转置;
Figure BDA00016659788500000913
表示单个元素为I1×I2的矩阵的欧式空间。
其他步骤及参数与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是,步骤五的具体过程为:
将全部测量路径对应的二维Radio Map构成一个3模张量
Figure BDA00016659788500000914
Figure BDA00016659788500000915
其中,I3=S,foldn(·)函数表示unfoldn(·)的逆运算,unfoldn(·)函数表示张量沿第n模展开运算;
Figure BDA00016659788500000916
沿第n模展开为矩阵
Figure BDA00016659788500000917
其他步骤及参数与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式三不同的是,如图6所示,步骤六的具体过程包括:
参考点填充,旨在估计未测量参考点处的信号向量值。根据无线信号传播模型指纹数据间存在较强的相关性,所以参考点扩充问题可以建模为低秩张量填充问题。
步骤六一:将参考点扩充问题建模为如下低秩张量填充问题:
Figure BDA0001665978850000101
其中,Ω表示张量
Figure BDA0001665978850000102
中已观测到元素的位置集合,
Figure BDA0001665978850000103
表示
Figure BDA0001665978850000104
中Ω元素位置集合对应的值,
Figure BDA0001665978850000105
表示参考点扩充后的无空缺张量,
Figure BDA0001665978850000106
表示
Figure BDA0001665978850000107
中Ω元素位置集合对应的值,约束条件
Figure BDA0001665978850000108
表示填充过程不改变张量中已有元素的值;rank(·)为求秩函数,当运算对象为矩阵时表示矩阵的秩,当运算对象为张量时表示张量的秩;s.t.f(·)用于优化问题的模型描述,表示约束条件为f(·),其中s.t.是subject to的缩写,表示优化问题的目标函数受约束于f(·),使得变量满足条件。
由于目前没有方法可以直接计算张量(模数大于2时)的秩,通常用张量沿各模式展开的矩阵的秩的加权和近似替代张量的秩,并将上述问题转化为:
Figure BDA0001665978850000109
Figure BDA00016659788500001010
权重参数wn满足约束条件wn≥0和
Figure BDA00016659788500001011
Figure BDA00016659788500001012
表示
Figure BDA00016659788500001013
沿第n模展开的矩阵,N表示张量的模数;由于矩阵的核范数是秩函数的凸包络,所以将式(4)中问题进行凸松弛而转化为式(5),通过求解式(5)中凸优化问题完成未测量参考点处RSS值的估计工作;
Figure BDA00016659788500001014
其中,||·||*为矩阵的核范数,表示矩阵奇异值的累加;
步骤六二:将步骤六一中优化问题构造增广拉格朗日函数从而转化为无约束条件优化问题:
因为各个模式展开矩阵核范数间相互依赖而不易求解,所以引入辅助张量集合
Figure BDA0001665978850000111
并将问题等价转化为:
Figure BDA0001665978850000112
Figure BDA0001665978850000113
表示单个元素为I1×I2×I3的张量的欧式空间,
Figure BDA0001665978850000114
表示第n个辅助张量
Figure BDA0001665978850000115
沿第n模展开的矩阵;
对式(6)中优化问题构造增广拉格朗日函数,可以表示为:
Figure BDA0001665978850000116
其中,
Figure BDA0001665978850000117
表示拉格朗日乘子张量集合,λ为惩罚因子;||·||F表示Frobenius范数;<·>为内积运算;
步骤六三:对步骤六二中无约束条件优化问题进行求解。
其他步骤及参数与具体实施方式三相同。
具体实施方式五:本实施方式与具体实施方式四不同的是,步骤六三的具体过程包括:
对式(7)中问题进行求解,
Figure BDA0001665978850000118
和λ的迭代过程如下:
1)对于
Figure BDA0001665978850000119
Figure BDA00016659788500001110
赋值运算符:=表示将运算符右边的值赋值给左边的参数;
式(8)可以被转化为:
Figure BDA00016659788500001111
其中,
Figure BDA00016659788500001112
为收缩算子,U为运算对象奇异值分解后的左乘正交矩阵,V为运算对象奇异值分解后的右乘正交矩阵,
Figure BDA00016659788500001113
表示运算对象奇异值分解后的对角阵中将小于wn/λ的元素替换为零后所构成的对角阵;
Figure BDA00016659788500001114
表示第n个拉格朗日乘子张量
Figure BDA00016659788500001115
沿第n模展开的矩阵;
2)对于
Figure BDA0001665978850000121
Figure BDA0001665978850000122
可得到最优解:
Figure BDA0001665978850000123
其中,ΩC表示Ω的补集;
Figure BDA0001665978850000124
表示
Figure BDA0001665978850000125
中ΩC元素位置集合对应的值;
3)对于
Figure BDA0001665978850000126
Figure BDA0001665978850000127
4)对于λ:
λ:=tλ (13)
其中,t表示张量填充算法对应优化问题的迭代步长,t>1;
张量填充算法的迭代终止条件可设置为:
Figure BDA0001665978850000128
其中,
Figure BDA0001665978850000129
表示第m次迭代后的
Figure BDA00016659788500001210
值,δ1表示张量填充迭代阈值,δ1应取一个比较小的正数;
满足式(14)时迭代终止。
其他步骤及参数与具体实施方式四相同。
具体实施方式六:本实施方式与具体实施方式五不同的是,如图7所示,步骤七的具体过程包括:
众包数据进行降噪旨在排除用户习惯差异、室内环境变化等引入的噪声干扰问题。由于,相对于全部采集数据元素,含噪声元素数量较少,故噪声空间具有稀疏性。因此,通过联合求解信号空间应有的低秩性和噪声空间应有的稀疏性可将二者分开,从而去除噪声。
步骤七一:将对众包数据降噪的问题建模为低秩张量恢复问题:
设去噪后信号空间张量为
Figure BDA0001665978850000131
噪声空间张量为ε,则有:
Figure BDA0001665978850000132
通过求解如下优化模型来分离低秩的去噪后信号空间张量
Figure BDA0001665978850000133
和稀疏的噪声空间张量ε:
Figure BDA0001665978850000134
Figure BDA0001665978850000135
表示
Figure BDA0001665978850000136
沿第n模展开的矩阵;
可将最优化问题(16)凸松弛到如下形式:
Figure BDA0001665978850000137
其中,αn≥0为
Figure BDA0001665978850000138
的权重,且满足
Figure BDA0001665978850000139
γ为||ε||0的权重;
步骤七二:引入辅助张量集合
Figure BDA00016659788500001310
并将问题等价转化为:
Figure BDA00016659788500001311
对式(18)优化问题的增广拉格朗日函数如下:
Figure BDA00016659788500001312
其中,μ为惩罚因子,
Figure BDA00016659788500001313
表示拉格朗日乘子张量集合;
步骤七三:张量恢复算法各参数迭代过程如下:
1)对于ε:
Figure BDA00016659788500001314
得到下式:
Figure BDA00016659788500001315
2)对于
Figure BDA00016659788500001316
Figure BDA0001665978850000141
得到下式:
Figure BDA0001665978850000142
其中,
Figure BDA0001665978850000143
Figure BDA0001665978850000144
表示运算对象奇异值分解后的对角阵中将小于αn/μ的元素替换为零后所构成的对角阵;
3)对于
Figure BDA0001665978850000145
Figure BDA0001665978850000146
4)对于μ:
μ:=min(ρμ,μ) (25)
其中,张量恢复算法对应优化问题的迭代步长ρ>1;
张量恢复算法的迭代终止条件为:
Figure BDA0001665978850000147
其中,δ2表示张量恢复迭代阈值,δ2应取一个比较小的正数;
满足迭代终止条件时算法终止,计算去噪后信号空间张量
Figure BDA0001665978850000148
Figure BDA0001665978850000149
其他步骤及参数与具体实施方式五相同。
具体实施方式七:本实施方式与具体实施方式六不同的是,步骤二中所述部署无线路由器,应保证环境中任意位置均能够采集到来自至少3个接入点的信号,且信号功率大于-100dBm。
其他步骤及参数与具体实施方式六相同。
具体实施方式八:本实施方式与具体实施方式七不同的是,将室内环境划分为0.5米×0.5米的方格,每个方格的顶点标注为参考点。如图4所示,相邻两个参考点间的距离为0.5米,图中参考点用叉号标记。
其他步骤及参数与具体实施方式七相同。
实施例
采用以下实施例验证本发明的有益效果:
本实施例所述基于张量重建的室内位置指纹定位Radio Map建立方法按照以下步骤进行:
本实施例实验环境为哈尔滨工业大学科学园2A栋通信所12层,一个部有27个AP(Linksys WLT54G)的典型办公环境。如图3所示,定位区域是长度为49.4米,宽度为14.1米的走廊,将走廊划分为0.5米×0.5米的方格,方格顶角用以标注参考点。在定位区域内,共标注823个参考点。27个AP工作在IEEE 802.11b/g模式,主要分布在走廊与办公室之间的墙壁上,能够保证环境中任意位置均能够采集到来自至少3个接入点的信号,且信号功率大于-100dBm。
在离线阶段构建Radio Map和在线测试数据采集时,使用联想终端设备V450作为信号采集器。定位区域内参考点的局部分布如图4所示,相邻两个参考点间的距离为0.5米,每个参考点用叉号标记。
根据文献[Zhou M,Tang Y,Tian Z,et al.Semi-Supervised Learning forIndoor Hybrid Fingerprint Database Calibration With Low Effort[J].IEEEAccess,2017,5(99):4388-4400]所提假设检验方法,本实施例Radio Map建立过程中需要进行20次数据采集,即S的值为20。将利用传统方法在所有参考点处进行数据采集并存储的Radio Map称为全工作量Radio Map,而将众包数据中每条用户轨迹对应的指纹信息所构成的Radio Map称为众包Radio Map。本实施例中统一选取用户轨迹中包含参考点的数量是全部参考点百分之二十的数据包进行仿真,以便衡量方法性能,并将其对应的指纹信息称为20%工作量众包Radio Map,其中一条用户轨迹如图5所示。
将单次采集数据记为式(2)的形式:
Figure BDA0001665978850000151
多次采集数据构成一个3模张量
Figure BDA0001665978850000152
表示为:
Figure BDA0001665978850000153
然后基于张量填充算法对参考点进行扩充;本实施例中基于张量填充的参考点扩充算法流程如表1所示:
表1基于张量填充的参考点扩充算法流程
Figure BDA0001665978850000161
其中,o表示零张量。
最后基于张量恢复算法对众包数据进行降噪;本实施例中基于张量恢复的众包数据降噪算法流程如表2所示:
表2基于张量恢复的众包数据降噪算法流程
Figure BDA0001665978850000162
Figure BDA0001665978850000171
结果分析:
为量化填充误差并进行各算法间的比较,定义平均填充误差ErrC对填充效果进行衡量,ErrC的定义如下:
Figure BDA0001665978850000172
其中,
Figure BDA0001665978850000173
表示由理想不含空缺元素的全工作量Radio Map所构成的张量,
Figure BDA0001665978850000174
表示为利用填充算法得到的张量,I1、I2与I3分别表示张量在三个方向上的维度。可知ErrC的数值越小,平均填充效果越好。
根据以上定义的平均填充误差,分别衡量本实施例方法和三次样条插值法的填充效果,结果如表3所示。
表3参考点扩充平均误差
Figure BDA0001665978850000175
由表3可知,在本实施例中,利用插值法进行参考点扩充时受数据排列方式的影响较大,而利用本发明方法扩充时在各种数据排列方式下的填充结果一致,且平均填充误差较小,因此本实施例所提方法对未测量参考点信号值的估计更加准确。
为对比由上述几种方法建立的Radio Map对定位精度的影响,利用KNN算法(k-NearestNeighbor,K最近邻分类算法)进行在线定位实验,定位结果的累计分布函数如图8所示。
其中,场景1为利用全工作量Radio Map进行定位的情况;场景2到为利用本实施例方法对20%工作量众包Radio Map填充后的Radio Map进行定位的情况;场景3到场景5为利用文献[Zhou M,Tang Y,Tian Z,et al.Semi-Supervised Learning for Indoor HybridFingerprint Database Calibration With Low Effort[J].IEEE Access,2017,5(99):4388-4400]中插值法对20%工作量众包Radio Map填充后的Radio Map进行定位的情况,场景3中数据在填充前按照距x轴的距离排列,场景4中数据在填充前按照距y轴的距离排列,场景5中数据在填充前按照距原点的距离排列;场景6为直接利用20%工作量众包RadioMap进行定位的情况。
由图8可知,运用插值法(场景3到场景5)进行参考点扩充时,可一定程度的提高定位精度,但其受到参考点排列顺序的影响。然而,本发明所提方法具有唯一解,并且平均定位误差相比插值法降低约20%。
本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,本领域技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (6)

1.基于张量重建的室内位置指纹定位Radio Map建立方法,其特征在于,所述方法具体包括以下步骤:
步骤一、根据需要定位的室内环境,选择坐标原点P0(x0,y0),建立平面二维直角坐标系;
步骤二、根据室内环境,部署无线路由器作为接入点;
步骤三、根据室内环境,均匀设置参考点位置;
步骤四、构造每条采集路径对应的二维Radio Map;
步骤五、将全部测量路径对应的二维Radio Map构成一个3模张量;
步骤六、基于张量填充算法对参考点进行扩充;具体过程为:
步骤六一:将参考点扩充问题建模为如下低秩张量填充问题:
Figure FDA0002540993800000011
其中,Ω表示张量
Figure FDA0002540993800000012
中已观测到元素的位置集合,
Figure FDA0002540993800000013
表示
Figure FDA0002540993800000014
中Ω元素位置集合对应的值,
Figure FDA0002540993800000015
表示参考点扩充后的无空缺张量,
Figure FDA0002540993800000016
表示
Figure FDA0002540993800000017
中Ω元素位置集合对应的值,约束条件
Figure FDA0002540993800000018
表示填充过程不改变张量中已有元素的值;rank(·)为求秩函数;
将式(4)中问题进行凸松弛而转化为:
Figure FDA0002540993800000019
其中,||·||*为矩阵的核范数;权重参数wn满足约束条件wn≥0和
Figure FDA00025409938000000110
Figure FDA00025409938000000111
表示
Figure FDA00025409938000000112
沿第n模展开的矩阵,N表示张量的模数;
步骤六二:将步骤六一中优化问题构造增广拉格朗日函数从而转化为无约束条件优化问题:
引入辅助张量集合
Figure FDA00025409938000000113
并将问题等价转化为:
Figure FDA00025409938000000114
Figure FDA00025409938000000115
表示单个元素为I1×I2×I3的张量的欧式空间,
Figure FDA00025409938000000116
表示第n个辅助张量
Figure FDA00025409938000000117
沿第n模展开的矩阵;
对式(6)中优化问题构造增广拉格朗日函数,表示为:
Figure FDA0002540993800000021
其中,
Figure FDA0002540993800000022
表示拉格朗日乘子张量集合,λ为惩罚因子;||·||F表示Frobenius范数;<·>为内积运算;
步骤六三:对步骤六二中无约束条件优化问题进行求解;
步骤七、基于张量恢复算法对众包数据进行降噪;具体过程为:
步骤七一:将对众包数据降噪的问题建模为低秩张量恢复问题:
设去噪后信号空间张量为
Figure FDA0002540993800000023
噪声空间张量为ε,则有:
Figure FDA0002540993800000024
通过求解如下优化模型来分离
Figure FDA0002540993800000025
和ε:
Figure FDA0002540993800000026
Figure FDA0002540993800000027
表示
Figure FDA0002540993800000028
沿第n模展开的矩阵;
将最优化问题(16)凸松弛到如下形式:
Figure FDA0002540993800000029
Figure FDA00025409938000000210
其中,αn≥0为
Figure FDA00025409938000000211
的权重,且满足
Figure FDA00025409938000000212
γ为||ε||0的权重;
步骤七二:引入辅助张量集合
Figure FDA00025409938000000213
并将问题等价转化为:
Figure FDA00025409938000000214
Figure FDA00025409938000000215
对式(18)优化问题的增广拉格朗日函数如下:
Figure FDA00025409938000000216
其中,μ为惩罚因子,
Figure FDA00025409938000000217
表示拉格朗日乘子张量集合;
步骤七三:张量恢复算法各参数迭代过程如下:
1)对于ε:
Figure FDA0002540993800000031
得到下式:
Figure FDA0002540993800000032
2)对于
Figure FDA0002540993800000033
Figure FDA0002540993800000034
得到下式:
Figure FDA0002540993800000035
其中,
Figure FDA0002540993800000036
Figure FDA0002540993800000037
表示运算对象奇异值分解后的对角阵中将小于αn/μ的元素替换为零后所构成的对角阵;
3)对于
Figure FDA0002540993800000038
Figure FDA0002540993800000039
4)对于μ:
μ:=min(ρμ,μ) (25)
其中,张量恢复算法对应优化问题的迭代步长ρ>1;
张量恢复算法的迭代终止条件为:
Figure FDA00025409938000000310
其中,δ2表示张量恢复迭代阈值;
满足迭代终止条件时算法终止,计算去噪后信号空间张量
Figure FDA00025409938000000311
Figure FDA00025409938000000312
2.根据权利要求1所述基于张量重建的室内位置指纹定位Radio Map建立方法,其特征在于,步骤四具体过程包括:
志愿者携带手机在需要定位的室内环境中行走并进行WiFi信号采集,每条采集路径对应一张二维Radio Map,该路径覆盖到的参考点称为已测量参考点,该路径未覆盖到的参考点称为未测量参考点;每条采集路径对应的二维Radio Map中,已测量参考点处存储对应于各接入点的WiFi信号强度值,未测量参考点处各接入点的WiFi信号强度值记为-130dBm;
设在目标区域内有P个参考点、Q个接入点、S条采集路径,则
Figure FDA0002540993800000041
表示第k条采集路径在第i个参考点处的指纹信息,
Figure FDA0002540993800000042
I2=Q+2;
Figure FDA0002540993800000043
表示实数域,
Figure FDA0002540993800000044
表示单个元素为I2×1的列向量的欧式空间;
则有:
Figure FDA0002540993800000045
其中,
Figure FDA0002540993800000046
表示第k条采集路径在第i个参考点的坐标,
Figure FDA0002540993800000047
表示第k条采集路径在第i个参考点处接收到所有信号的强度值构成的向量,
Figure FDA0002540993800000048
第k条路径数据构成的二维Radio Map
Figure FDA0002540993800000049
表示为:
Figure FDA00025409938000000410
其中,I1=P,[·]T表示矩阵转置;
Figure FDA00025409938000000411
表示单个元素为I1×I2的矩阵的欧式空间。
3.根据权利要求1或2所述基于张量重建的室内位置指纹定位Radio Map建立方法,其特征在于,步骤五的具体过程为:
将全部测量路径对应的二维Radio Map构成一个3模张量
Figure FDA00025409938000000412
Figure FDA00025409938000000413
其中,I3=S,foldn(·)函数表示unfoldn(·)的逆运算,unfoldn(·)函数表示张量沿第n模展开运算;
Figure FDA00025409938000000414
沿第n模展开为矩阵
Figure FDA00025409938000000415
4.根据权利要求3所述基于张量重建的室内位置指纹定位Radio Map建立方法,其特征在于,步骤六三的具体过程包括:
对式(7)中问题进行求解,
Figure FDA00025409938000000416
和λ的迭代过程如下:
1)对于
Figure FDA0002540993800000051
Figure FDA0002540993800000052
赋值运算符:=表示将运算符右边的值赋值给左边的参数;
式(8)被转化为:
Figure FDA0002540993800000053
其中,
Figure FDA0002540993800000054
为收缩算子,U为运算对象奇异值分解后的左乘正交矩阵,V为运算对象奇异值分解后的右乘正交矩阵,
Figure FDA0002540993800000055
表示运算对象奇异值分解后的对角阵中将小于wn/λ的元素替换为零后所构成的对角阵;
Figure FDA0002540993800000056
表示第n个拉格朗日乘子张量
Figure FDA0002540993800000057
沿第n模展开的矩阵;
2)对于
Figure FDA0002540993800000058
Figure FDA0002540993800000059
式(10)被转化为:
Figure FDA00025409938000000510
其中,ΩC表示Ω的补集;
Figure FDA00025409938000000511
表示
Figure FDA00025409938000000512
中ΩC元素位置集合对应的值;
3)对于
Figure FDA00025409938000000513
Figure FDA00025409938000000514
4)对于λ:
λ:=tλ (13)
其中,t表示张量填充算法对应优化问题的迭代步长,t>1;
张量填充算法的迭代终止条件设置为:
Figure FDA0002540993800000061
其中,
Figure FDA0002540993800000062
表示第m次迭代后的
Figure FDA0002540993800000063
值,δ1表示张量填充迭代阈值;
满足式(14)时迭代终止。
5.根据权利要求4所述基于张量重建的室内位置指纹定位Radio Map建立方法,其特征在于,步骤二中所述部署无线路由器,应保证环境中任意位置均能够采集到来自至少3个接入点的信号,且信号功率大于-100dBm。
6.根据权利要求5所述基于张量重建的室内位置指纹定位Radio Map建立方法,其特征在于,步骤三中所述均匀设置参考点位置的具体过程为:将室内环境划分为0.5米×0.5米的方格,每个方格的顶点标注为参考点。
CN201810482703.0A 2018-05-18 2018-05-18 基于张量重建的室内位置指纹定位Radio Map建立方法 Expired - Fee Related CN108834041B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810482703.0A CN108834041B (zh) 2018-05-18 2018-05-18 基于张量重建的室内位置指纹定位Radio Map建立方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810482703.0A CN108834041B (zh) 2018-05-18 2018-05-18 基于张量重建的室内位置指纹定位Radio Map建立方法

Publications (2)

Publication Number Publication Date
CN108834041A CN108834041A (zh) 2018-11-16
CN108834041B true CN108834041B (zh) 2020-08-11

Family

ID=64147882

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810482703.0A Expired - Fee Related CN108834041B (zh) 2018-05-18 2018-05-18 基于张量重建的室内位置指纹定位Radio Map建立方法

Country Status (1)

Country Link
CN (1) CN108834041B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110933596B (zh) * 2019-12-04 2021-04-13 哈尔滨工业大学 一种基于度量学习的指纹定位方法
CN111757250B (zh) * 2020-05-27 2022-04-29 重庆邮电大学 一种基于张量分解的信道状态信息定位指纹构造方法
CN113676857B (zh) * 2021-08-19 2023-05-26 重庆邮电大学 一种面向室内Wi-Fi定位的信道状态信息特征提取方法
CN115022964B (zh) * 2022-05-31 2023-05-09 西安交通大学 一种基于图信号的室内定位无线电地图重构方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222787A (zh) * 2015-09-10 2016-01-06 上海市计量测试技术研究院 基于矩阵填充的位置指纹库构建方法
CN105652235A (zh) * 2015-12-29 2016-06-08 哈尔滨工业大学 基于线性回归算法的wlan室内定位多用户rss融合方法
CN107220211A (zh) * 2016-12-14 2017-09-29 北京理工大学 一种融合张量填充和张量恢复的数据重建方法
WO2018037137A1 (es) * 2016-08-24 2018-03-01 Board Of Regents, The University Of Texas System Simulación y modelización específica de paciente a escala de tejido del crecimiento del cáncer de próstata

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222787A (zh) * 2015-09-10 2016-01-06 上海市计量测试技术研究院 基于矩阵填充的位置指纹库构建方法
CN105652235A (zh) * 2015-12-29 2016-06-08 哈尔滨工业大学 基于线性回归算法的wlan室内定位多用户rss融合方法
WO2018037137A1 (es) * 2016-08-24 2018-03-01 Board Of Regents, The University Of Texas System Simulación y modelización específica de paciente a escala de tejido del crecimiento del cáncer de próstata
CN107220211A (zh) * 2016-12-14 2017-09-29 北京理工大学 一种融合张量填充和张量恢复的数据重建方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Radio Map Noise Reduction Method Using Hankel Matrix for WLAN Indoor Positioning System;Lin Ma et.al;《IEEE Xplore Digital Library》;20171208;全文 *
绿色WLAN室内定位系统中Radio_Map填充与恢复算法研究;李佳;《万方数据》;20170726;正文第3章 *

Also Published As

Publication number Publication date
CN108834041A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
CN108834041B (zh) 基于张量重建的室内位置指纹定位Radio Map建立方法
CN108107461B (zh) 一种基于移动终端室内外定位无缝切换方法
CN103874118B (zh) WiFi室内定位中基于贝叶斯回归的Radio Map校正方法
KR102116824B1 (ko) 딥러닝 기반 측위 시스템 및 이의 구축 방법
CN105636201B (zh) 基于稀疏信号指纹数据库的室内定位方法
KR102110813B1 (ko) 무선 환경 변화에 강인한 slam 방법 및 장치
CN104519571B (zh) 一种基于rss的室内定位方法
CN105263113A (zh) 一种基于众包的WiFi位置指纹地图构建方法及其系统
CN104038901B (zh) 一种减少指纹数据采集工作量的室内定位方法
CN105911518A (zh) 机器人定位方法
CN104581644B (zh) 基于径向基插值的室内wlan指纹数据库多点自适应更新方法
CN102231912A (zh) 一种基于rssi测距的室内无线传感器网络定位方法
CN111901749A (zh) 一种基于多源融合的高精度三维室内定位方法
CN104869536A (zh) 无线室内定位指纹地图的自动更新方法及装置
CN109151750A (zh) 一种基于循环神经网络模型的lte室内定位楼层判别方法
CN112616184B (zh) 基于多基站信道状态信息融合的移动设备位置估计方法
CN114916059B (zh) 基于区间随机对数阴影模型的WiFi指纹稀疏地图扩建方法
CN108632752B (zh) 基于张量填充的室内位置指纹定位Radio Map建立方法
CN113207089A (zh) 基于csi与众包迁移自校准更新的位置指纹定位方法
Braham et al. Coverage mapping using spatial interpolation with field measurements
CN106358233B (zh) 一种基于多维尺度分析算法的rss数据平滑方法
CN115942231A (zh) 一种基于rss的5g室外定位方法
Dong et al. A wifi fingerprint augmentation method for 3-d crowdsourced indoor positioning systems
CN110991705A (zh) 一种基于深度学习的城市扩展预测方法及系统
CN112488151B (zh) 一种半监督的基于流形学习的位置指纹库构建方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200811

Termination date: 20210518