CN108827586A - Aero-optical effect simulator - Google Patents

Aero-optical effect simulator Download PDF

Info

Publication number
CN108827586A
CN108827586A CN201810422333.1A CN201810422333A CN108827586A CN 108827586 A CN108827586 A CN 108827586A CN 201810422333 A CN201810422333 A CN 201810422333A CN 108827586 A CN108827586 A CN 108827586A
Authority
CN
China
Prior art keywords
fan
optical effect
black matrix
aero
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810422333.1A
Other languages
Chinese (zh)
Inventor
刘赫
邓昊
石万
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201810422333.1A priority Critical patent/CN108827586A/en
Publication of CN108827586A publication Critical patent/CN108827586A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/08Aerodynamic models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/06Measuring arrangements specially adapted for aerodynamic testing
    • G01M9/065Measuring arrangements specially adapted for aerodynamic testing dealing with flow
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/06Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics
    • G09B23/08Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics for statics or dynamics
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/06Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics
    • G09B23/08Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics for statics or dynamics
    • G09B23/12Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics for statics or dynamics of liquids or gases

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Algebra (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Telescopes (AREA)

Abstract

Aero-optical effect simulator belongs to Pneumatic optical technical field;The aero-optical effect simulator includes the black matrix of opening upwards, and the downward tank body of black matrix upper opening is arranged in, and is connected between the opening of black matrix and the opening of tank body by stretching structure, and stretching structure is internally provided with the double-deck fan;Stretching structure successively includes internal layer telescoping tube, insulating layer and outer layer telescoping tube from inside to outside, and internal layer telescoping tube includes that intermediate non-telescoping end and the telescoping tube composition for being connected to non-refreshing contracting end both ends is arranged in, and installs iris structure on non-refreshing contracting end;The double-deck fan includes the first fan and the second fan setting up and down, and the blade quantity difference of the first fan and the second fan, revolving speed is different, turns to different, each blade width difference in the first fan and the second fan;The present invention forms the characteristic of strong convection using hot and cold gas, directly generates the air-flow for generating aero-optical effect, realizes the purpose that aero-optical effect is directly simulated.

Description

Aero-optical effect simulator
The application is application for a patent for invention《A kind of aero-optical effect simulator》Divisional application.
The original bill applying date:2016-10-08.
Original bill application number:2016108763715.
Original bill denomination of invention:A kind of aero-optical effect simulator.
Technical field
Aero-optical effect simulator belongs to Pneumatic optical technical field.
Background technique
Aircraft is in atmosphere high speed flight, due to generating actual gas effect between its optical dome and free incoming flow It answers, SHOCK WAVE INDUCED boundary layer separation, interfering with each other without viscosity flow and boundary layer, to generate because of current density variation, temperature Complex flowfield caused by variation, constituent variation and gas molecule ionization etc., this causes heat, heat to infrared imaging detection system Radiation and image transmitting interference cause target offset, shake, obscure, and this effect is known as aero-optical effect.
Aero-optical effect brings adverse effect to infrared image terminal guidance, make target seeker to the detection of target, tracking with Recognition capability decline, and then influence terminal guidance precision.Since flow field density changes, change in the original of the light wherein propagated Path generates deviation and phase change, causes the offset for causing image on imaging plane, obscures, shake and energy loss.Such as Fruit can explore Pneumatic optical degeneration mechanism, it will be able to correct Pneumatic optical degeneration image, reduce aberration, improve optical imagery matter Amount.As it can be seen that exploring the committed step that Pneumatic optical degeneration mechanism is improving image quality.
Pneumatic optical degeneration mechanism is explored, needs to simulate aero-optical effect.Currently, many aero-optical effect simulation dresses Setting all is optical analog device, such as application No. is 201410456264.8 patents of invention《Pneumatic light based on distorted image Learn effect analog device》And algorithm simulation, such as application No. is 201310193486.0 patents of invention《A kind of simulation is pneumatic The method and system of optical effect》, these simulators or method all do not directly generate the air-flow for generating aero-optical effect, It is consequently belonging to indirect analog, and is not belonging to directly simulate, therefore also have any different apart from actual aero-optical effect.
Summary of the invention
To solve the above-mentioned problems, the invention discloses a kind of aero-optical effect simulator, which is utilized Hot and cold gas form the characteristic of strong convection, directly generate the air-flow for generating aero-optical effect, realize that aero-optical effect is straight Connect the purpose of simulation.
The object of the present invention is achieved like this:
The downward tank body of black matrix upper opening, black matrix is arranged in aero-optical effect simulator, the black matrix including opening upwards Opening and tank body opening between connected by stretching structure, the stretching structure is internally provided with the double-deck fan;
The black matrix successively includes ceramic layer, middle layer, cooling layer and shell from inside to outside;It is provided among the middle layer Resistance wire, inner wall are provided with temperature sensor, the cooling layer water-filling;
The top of the tank is provided with opening, and lid is provided in opening;
The stretching structure successively includes internal layer telescoping tube, insulating layer and outer layer telescoping tube, the internal layer telescoping tube from inside to outside Including intermediate non-telescoping end and the telescoping tube composition for being connected to non-refreshing contracting end both ends is arranged in, bilayer is installed on non-refreshing contracting end Fan;
The bilayer fan includes the first fan and the second fan setting up and down, the blade of first fan and the second fan Quantity is different, and revolving speed is different, turns to different, each blade width difference in the first fan and the second fan.
Above-mentioned vertical pneumatic optical effect simulator, further includes water tank and water pump, and the cooling layer top and bottom are each There is an one outlet, the water in water tank is pumped into cooling layer outlet at bottom by water pump, and water is from cooling layer top exit reflow tank.
Above-mentioned vertical pneumatic optical effect simulator, the lid are stove circle structure, including multiple diameters are different, successively phase Set, the annular ring that section is hierarchic structure.
Above-mentioned vertical pneumatic optical effect simulator, the tank body are stretching structure.
The above vertical pneumatic optical effect simulator, further includes optical imaging system, and the optical imaging system includes Light source, pin hole, collimation lens, grating, object lens and imaging sensor;The light beam that light source issues, forms point light source through needle passing hole, then Collimated light beam is formed after collimation lens collimates, illuminates grating, the grating and imaging sensor are separately positioned on object lens Object space and image space;Wherein, light source, pin hole, collimation lens and grating are arranged inside black matrix, and imaging sensor is arranged in tank body Portion, object lens are arranged inside black matrix or tank interior.
The grating can where it 90 degree of plane internal rotation.
Beneficial effect:
The first, due to using black matrix and tank body be open it is opposite by the way of be arranged, it is strong right to be formed using hot and cold gas The characteristic of stream directly generates the air-flow for generating aero-optical effect, realizes the purpose that aero-optical effect is directly simulated;
The second, due to connecting between the opening of black matrix and the opening of tank body by stretching structure, the length of stretching structure, energy are adjusted The convection current for enough changing hot and cold gas is strong, and then changes gas turbulence parameter, therefore can change aero-optical effect simulation effect Fruit, and then increase the simulation context of aero-optical effect simulator of the present invention;
Third, due to being provided with the double-deck fan, the bilayer fan includes the first fan and the second fan setting up and down, described The blade quantity of first fan and the second fan is different, and revolving speed is different, turns to different, each of the first fan and the second fan Blade width is different;This blade quantity is different, and revolving speed is different, turns to difference, the different design of each blade width can be true The randomness for protecting turbulent flow avoids turbulent flow simulation from having the problem of local period characteristic, emulation distortion.
Detailed description of the invention
Fig. 1 is the structural schematic diagram of aero-optical effect simulator of the present invention.
Fig. 2 is the structural schematic diagram of black matrix.
Fig. 3 is the structural schematic diagram of stretching structure.
Fig. 4 is the structural schematic diagram of black matrix in specific embodiment two.
Fig. 5 is the structural schematic diagram of lid.
Fig. 6 is the structural schematic diagram of optical imaging system in aero-optical effect simulator of the present invention.
In figure:1 black matrix, 11 ceramic layers, 12 middle layers, 13 cooling layers, 14 shells, 2 tank bodies, 3 stretching structures, 31 internal layers are stretched The draw, 32 insulating layers, 33 outer layer telescoping tubes, 4 double-deck fans, 41 first fans, 42 second fans, 5 lids, 6 water tanks, 7 water pumps, 8 Optical imaging system, 81 light sources, 82 pin holes, 83 collimation lenses, 84 gratings, 85 object lens, 86 imaging sensors.
Specific embodiment
The specific embodiment of the invention is described in further detail with reference to the accompanying drawing.
Specific embodiment one
The aero-optical effect simulator of the present embodiment, structural schematic diagram are as shown in Figure 1.The aero-optical effect simulator Black matrix 1 including opening upwards, is arranged in the downward tank body 2 of 1 upper opening of black matrix, the opening of the opening of black matrix 1 and tank body 2 it Between connected by stretching structure 3, the stretching structure 3 is internally provided with the double-deck fan 4;
The black matrix 1 successively includes ceramic layer 11, middle layer 12, cooling layer 13 and shell 14 from inside to outside;The middle layer Resistance wire is provided among 12, inner wall is provided with temperature sensor, 13 water-filling of cooling layer;The structural schematic diagram of black matrix 1 is such as Shown in Fig. 2;
It is provided with opening at the top of the tank body 2, lid 5 is provided in opening;
The stretching structure 3 successively includes internal layer telescoping tube 31, insulating layer 32 and outer layer telescoping tube 33, the internal layer from inside to outside Telescoping tube 31 includes that intermediate non-telescoping end is arranged in form with the telescoping tube for being connected to non-refreshing contracting end both ends, on non-refreshing contracting end The double-deck fan 4 is installed;The structural schematic diagram of stretching structure 3 is as shown in Figure 3;
The bilayer fan 4 includes the first fan 41 and the second fan 42 setting up and down, first fan 41 and the second wind The blade quantity of fan 42 is different, and revolving speed is different, turns to difference, each blade width in the first fan 41 and the second fan 42 is not Together.
Specific embodiment two
The vertical pneumatic optical effect simulator of the present embodiment is further limited and is also wrapped on the basis of specific embodiment one Water tank 6 and water pump 7 are included, respectively there are one outlet in 13 top and bottom of cooling layer, and the water in water tank 6 is pumped into cooling by water pump 7 13 outlet at bottom of layer, water is from 13 top exit reflow tank of cooling layer, as shown in Figure 4.
This structure design, using the slow thermal conductivity of water, had both realized the heat preservation to ceramic layer 11 and middle layer 12, it is ensured that The stability of the simulated aero-optical effect of aero-optical effect simulator, and realize the cooling to shell 14, it is ensured that it is real Test safety.
Specific embodiment three
The vertical pneumatic optical effect simulator of the present embodiment further limits described on the basis of specific embodiment one Lid 5 is stove circle structure, different including multiple diameters, be successively nested, the annular ring that section is hierarchic structure, as shown in figure 5, Fig. 5 Show three annular rings it is superimposed and superposition after stove circle structure schematic diagram.
This structure design can realize the openings of sizes of adjustment lid 5, and then not by adjusting the quantity of annular ring Under the premise of changing other structures, parameter and technical indicator, changes aero-optical effect and simulate effect, and then increase gas of the present invention The simulation context of dynamic optical effect simulator.
Specific embodiment four
The vertical pneumatic optical effect simulator of the present embodiment further limits described on the basis of specific embodiment one Tank body 2 is stretching structure.
This structure design can be realized by adjusting the length of tank body 2 and not change other structures, parameter and technology Under the premise of index, changes aero-optical effect and simulate effect, and then increase the mould of aero-optical effect simulator of the present invention Quasi- range.
In specific embodiment three and specific embodiment four, by change lid 5 openings of sizes or change tank body 2 length come Change aero-optical effect and simulate effect, and then increase the simulation context of aero-optical effect simulator of the present invention, is to use Air-flow carries out aero-optical effect and directly simulates the characteristic just having, which does not illustrate not only in the prior art, but also Also the cognition of those skilled in the art is had exceeded.
Specific embodiment five
The above vertical pneumatic optical effect simulator further includes optical imaging system 8, the optical imaging system such as Fig. 6 institute Show, including light source 81, pin hole 82, collimation lens 83, grating 84, object lens 85 and imaging sensor 86;The light beam that light source 81 issues, Point light source is formed through needle passing hole 82, collimated light beam is formed after collimating using collimation lens 83, illuminates grating 84, the grating 84 The object space and image space of object lens 85 are separately positioned on imaging sensor 86;Wherein, light source 81, pin hole 82, collimation lens 83 and light Grid 84 are arranged inside black matrix 1, and imaging sensor 86 is arranged inside tank body 2, and the setting of object lens 85 is in 1 inside of black matrix or tank body 2 It is internal.
This structure design can simulate effect to Pneumatic optical and be monitored, the figure obtained using imaging sensor 86 Calculating as carrying out the decaying of 84 contrast of grating controls resistance wire according to calculated result and adjusts the threshold value of temperature sensor, real Existing whole system closed-loop control is conducive to the accuracy for improving aero-optical effect simulation.
Specific embodiment six
The vertical pneumatic optical effect simulator of the present embodiment further limits described on the basis of specific embodiment five Grating 84 can where it 90 degree of plane internal rotation.
It has been investigated that carrying out the direct analog form of aero-optical effect using air-flow and using optical analog and algorithm mould The essential distinction of quasi- indirect analog mode is that air-flow, which optical analog and algorithm simulation can occur in two-dimensional directional, to be controlled Difference, such difference can not accurately control when aero-optical effect is directly simulated using air-flow, this characteristic is not only Do not illustrate in the prior art, and have exceeded the cognition of those skilled in the art, it is therefore necessary to all to two-dimensional directional It is monitored.And this structure qualification of the present embodiment, it can be realized the contrast variation for monitoring grating 84 in the two-dimensional direction Rule effectively avoids single direction from realizing and simulates, and the problem that other direction is not up to standard, is conducive to improve aero-optical effect mould Quasi- accuracy.
It should be noted that in the embodiment above, as long as reconcilable technical solution can carry out permutation and combination, this Field technical staff can be according to the exhaustive all possibility of mathematical knowledge of permutation and combination, and therefore, the present invention is no longer to permutation and combination Technical solution afterwards is illustrated one by one, but it is understood that presently disclosed for the technical solution after permutation and combination.

Claims (2)

1. aero-optical effect simulator, which is characterized in that the black matrix including opening upwards(1), it is arranged in black matrix(1)Top The tank body that Open Side Down(2), black matrix(1)Opening and tank body(2)Opening between pass through stretching structure(3)Connection, it is described to stretch Shrinking structure(3)It is internally provided with the double-deck fan(4);
The black matrix(1)It from inside to outside successively include ceramic layer(11), middle layer(12), cooling layer(13)And shell(14); The middle layer(12)Centre is provided with resistance wire, and inner wall is provided with temperature sensor, the cooling layer(13)Water-filling;
The tank body(2)Top is provided with opening, and lid is provided in opening(5);
The stretching structure(3)It from inside to outside successively include internal layer telescoping tube(31), insulating layer(32)With outer layer telescoping tube(33), The internal layer telescoping tube(31)Non-telescoping end including being arranged in intermediate is formed with the telescoping tube for being connected to non-refreshing contracting end both ends, The double-deck fan is installed on non-mind contracting end(4);
The bilayer fan(4)Including the first fan setting up and down(41)With the second fan(42), first fan(41) With the second fan(42)Blade quantity it is different, revolving speed is different, turns to different, the first fan(41)With the second fan(42)In Each blade width is different;
It further include optical imaging system(8), the optical imaging system(8)Including light source(81), pin hole(82), collimation lens (83), grating(84), object lens(85)And imaging sensor(86);Light source(81)The light beam of sending, through needle passing hole(82)Form point Light source, using collimation lens(83)Collimated light beam is formed after collimation, illuminates grating(84), the grating(84)With image sensing Device(86)It is separately positioned on object lens(85)Object space and image space;Wherein, light source(81), pin hole(82), collimation lens(83)And light Grid(84)It is arranged in black matrix(1)Inside, imaging sensor(86)It is arranged in tank body(2)Inside, object lens(85)It is arranged in black matrix(1) Internal or tank body(2)It is internal.
2. vertical pneumatic optical effect simulator according to claim 1, which is characterized in that the grating(84)It can 90 degree of plane internal rotation where it.
CN201810422333.1A 2016-10-08 2016-10-08 Aero-optical effect simulator Pending CN108827586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810422333.1A CN108827586A (en) 2016-10-08 2016-10-08 Aero-optical effect simulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810422333.1A CN108827586A (en) 2016-10-08 2016-10-08 Aero-optical effect simulator
CN201610876371.5A CN106441796B (en) 2016-10-08 2016-10-08 A kind of aero-optical effect simulator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201610876371.5A Division CN106441796B (en) 2016-10-08 2016-10-08 A kind of aero-optical effect simulator

Publications (1)

Publication Number Publication Date
CN108827586A true CN108827586A (en) 2018-11-16

Family

ID=58172037

Family Applications (4)

Application Number Title Priority Date Filing Date
CN201810422330.8A Pending CN108507755A (en) 2016-10-08 2016-10-08 Turbulence effect simulator
CN201610876371.5A Expired - Fee Related CN106441796B (en) 2016-10-08 2016-10-08 A kind of aero-optical effect simulator
CN201810421662.4A Expired - Fee Related CN108387362B (en) 2016-10-08 2016-10-08 A kind of aero-optical effect simulator
CN201810422333.1A Pending CN108827586A (en) 2016-10-08 2016-10-08 Aero-optical effect simulator

Family Applications Before (3)

Application Number Title Priority Date Filing Date
CN201810422330.8A Pending CN108507755A (en) 2016-10-08 2016-10-08 Turbulence effect simulator
CN201610876371.5A Expired - Fee Related CN106441796B (en) 2016-10-08 2016-10-08 A kind of aero-optical effect simulator
CN201810421662.4A Expired - Fee Related CN108387362B (en) 2016-10-08 2016-10-08 A kind of aero-optical effect simulator

Country Status (1)

Country Link
CN (4) CN108507755A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0076571A1 (en) * 1981-10-05 1983-04-13 Beckman Instruments, Inc. Improved infrared gas analyzer having detector elements of differing types
CN201503343U (en) * 2009-09-23 2010-06-09 中国人民解放军63655部队 Forced convection-type atmospheric turbulence simulator
CN102135467A (en) * 2010-12-27 2011-07-27 中国科学院光电技术研究所 Hot air type turbulence simulation device
CN104180909A (en) * 2014-09-10 2014-12-03 哈尔滨工业大学 Pneumatic optical effect simulation system
CN104238000A (en) * 2014-09-24 2014-12-24 上海大学 Tapered fiber long-period grating production device and tapered fiber long-period grating production and encapsulation method
CN204313962U (en) * 2014-10-13 2015-05-06 凯迈(洛阳)测控有限公司 Blackbody radiation source
CN104913897A (en) * 2015-07-02 2015-09-16 中国科学院光电研究院 Semi-physical simulation method and simulation device for aerodynamic effect in high-altitude and high-speed environment
CN206074225U (en) * 2016-10-08 2017-04-05 哈尔滨理工大学 A kind of aero-optical effect analog

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09301291A (en) * 1996-05-20 1997-11-25 Nissan Motor Co Ltd Wind channel experimental device for parachute
CN101261176B (en) * 2008-04-03 2010-11-24 华中科技大学 Sequence image correction based pneumatic optical transmission effect evaluation method
CN101718616B (en) * 2008-04-03 2011-09-14 华中科技大学 Assessment device of pneumatic optic transmission effect based on sequence image correction
CN101887170B (en) * 2009-05-13 2015-04-22 北京泰邦天地科技有限公司 Imaging method and system for inhibiting aero-optical effect
US8731884B2 (en) * 2011-06-21 2014-05-20 Lockheed Martin Corporation Scintillation generator for simulation of aero-optical and atmospheric turbulence
CN102853918B (en) * 2012-08-24 2014-06-11 中国人民解放军国防科学技术大学 Pneumatic optical wavefront ultra-high frequency measurement system and method
CN103247210B (en) * 2013-05-23 2014-12-17 北京理工大学 Method and system for simulating aero-optical effect
CN108811528B (en) * 2014-06-10 2016-06-01 湖北航天技术研究院总体设计所 A kind of Infrared Imaging Seeker hot-fluid imaging test device
CN204346670U (en) * 2014-07-17 2015-05-20 长春理工大学 A kind of atmospheric turbulence simulation device
US10057468B2 (en) * 2014-09-30 2018-08-21 The Boeing Company Aero-wave instrument for the measurement of the optical wave-front disturbances in the airflow around airborne systems

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0076571A1 (en) * 1981-10-05 1983-04-13 Beckman Instruments, Inc. Improved infrared gas analyzer having detector elements of differing types
CN201503343U (en) * 2009-09-23 2010-06-09 中国人民解放军63655部队 Forced convection-type atmospheric turbulence simulator
CN102135467A (en) * 2010-12-27 2011-07-27 中国科学院光电技术研究所 Hot air type turbulence simulation device
CN104180909A (en) * 2014-09-10 2014-12-03 哈尔滨工业大学 Pneumatic optical effect simulation system
CN104238000A (en) * 2014-09-24 2014-12-24 上海大学 Tapered fiber long-period grating production device and tapered fiber long-period grating production and encapsulation method
CN204313962U (en) * 2014-10-13 2015-05-06 凯迈(洛阳)测控有限公司 Blackbody radiation source
CN104913897A (en) * 2015-07-02 2015-09-16 中国科学院光电研究院 Semi-physical simulation method and simulation device for aerodynamic effect in high-altitude and high-speed environment
CN206074225U (en) * 2016-10-08 2017-04-05 哈尔滨理工大学 A kind of aero-optical effect analog

Also Published As

Publication number Publication date
CN108387362B (en) 2019-10-11
CN108507755A (en) 2018-09-07
CN106441796A (en) 2017-02-22
CN106441796B (en) 2018-09-11
CN108387362A (en) 2018-08-10

Similar Documents

Publication Publication Date Title
CN104913897B (en) A kind of analogue means of high-altitude high velocity environment aerodynamic effect
CN107832532A (en) A kind of Pneumatic light transmission effects are to high-speed aircraft image quality numerical computation method
CN107271047A (en) The infrared energy test platform and method of testing of a kind of uneven temperature
CN106873004A (en) The in-orbit geometry calibration method of rail level array camera high based on sun altitude self adaptation
CN108593242B (en) Vertical pneumatic optical effect simulator
CN109992889A (en) The method for building up and system of farm model, wake flow value calculating method and system
CN206074225U (en) A kind of aero-optical effect analog
CN206095572U (en) Vertical pneumatic optic effect analogue means
CN111829666A (en) Four-stage verification method of target infrared imaging simulation model
CN108387362B (en) A kind of aero-optical effect simulator
CN206331707U (en) A kind of horizontal pneumatic optical effect analogue means
CN103528440B (en) Based on infrared double color scene analogue means and the method for gradual filter
CN210071144U (en) Electric arc wind tunnel heat-infrared transmission combined test device
CN103175671B (en) A kind of analogue means and method of speed governing lamina air flow flowing test model windage
CN105138759A (en) Method for transmitting light in variable-refractive index flat side window
CN108387361B (en) Array air blowing type aero-optical effect simulator
CN206038272U (en) Pneumatic optic effect analogue means of array air blowing type
CN107067919A (en) A kind of horizontal pneumatic optical effect analogue means
Palaviccini et al. Passive flow control over a three-dimensional turret with a flat aperture
CN107764578A (en) Rotor plant protection unmanned plane pulverability testing stand negative pressure air draft apparatus and its control method
Conan et al. Modeling the Giant Magellan Telescope dome seeing using fluid dynamics simulations
CN106596065B (en) A kind of measurement method of most bad mirror surface seeing
Jiang et al. Analysis of imaging quality of new laser communication system on missile in the aerodynamic environment
CN105426604B (en) Stratospheric airship with solar cell is flat to fly over journey districution temperature computational methods
CN109060456A (en) A kind of caliberating device and method of fixed source diluting channel sample device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181116