CN108807609B - Preparation method of metal nanoparticle modified patterned substrate L ED - Google Patents
Preparation method of metal nanoparticle modified patterned substrate L ED Download PDFInfo
- Publication number
- CN108807609B CN108807609B CN201810415268.XA CN201810415268A CN108807609B CN 108807609 B CN108807609 B CN 108807609B CN 201810415268 A CN201810415268 A CN 201810415268A CN 108807609 B CN108807609 B CN 108807609B
- Authority
- CN
- China
- Prior art keywords
- metal
- nanoparticles
- patterned substrate
- film
- patterned
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 70
- 239000002082 metal nanoparticle Substances 0.000 title claims abstract description 51
- 238000002360 preparation method Methods 0.000 title abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims abstract description 19
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract description 18
- 239000010409 thin film Substances 0.000 claims abstract description 18
- 238000000137 annealing Methods 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims abstract 4
- 239000002105 nanoparticle Substances 0.000 claims description 29
- 229910052594 sapphire Inorganic materials 0.000 claims description 23
- 239000010980 sapphire Substances 0.000 claims description 23
- 239000010408 film Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 17
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims description 15
- 230000000903 blocking effect Effects 0.000 claims description 9
- 238000001704 evaporation Methods 0.000 claims description 7
- 230000008020 evaporation Effects 0.000 claims description 7
- 238000005566 electron beam evaporation Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000005416 organic matter Substances 0.000 claims description 4
- CQYBWJYIKCZXCN-UHFFFAOYSA-N diethylaluminum Chemical compound CC[Al]CC CQYBWJYIKCZXCN-UHFFFAOYSA-N 0.000 claims description 3
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical group C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 claims description 3
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 claims description 3
- UXFDJNIGYGTLAX-UHFFFAOYSA-N diethylindium Chemical compound CC[In]CC UXFDJNIGYGTLAX-UHFFFAOYSA-N 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims 2
- 230000004888 barrier function Effects 0.000 abstract 1
- 238000005229 chemical vapour deposition Methods 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 11
- 230000000694 effects Effects 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 208000012868 Overgrowth Diseases 0.000 description 3
- 150000002902 organometallic compounds Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000005424 photoluminescence Methods 0.000 description 2
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000000103 photoluminescence spectrum Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0133—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
- H10H20/01335—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials the light-emitting regions comprising nitride materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/814—Bodies having reflecting means, e.g. semiconductor Bragg reflectors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/815—Bodies having stress relaxation structures, e.g. buffer layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Recrystallisation Techniques (AREA)
- Led Devices (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
技术领域technical field
本发明属于LED技术领域,具体涉及一种金属纳米粒子修饰的图形化衬底LED的制备方法。The invention belongs to the technical field of LEDs, and in particular relates to a preparation method of a patterned substrate LED decorated with metal nanoparticles.
背景技术Background technique
为了提高图形化蓝宝石衬底外延生长GaN薄膜的磊晶效果,通常是:(1)通过使用较厚的AlN或者AlGaN缓冲层;(2)先生长一层AlN缓冲层,然而对AlN缓冲层进行套刻图案;(3)在缓冲层当中引入一层AlN或者SiN插入层。但这些方法都存在一定的缺点,例如方法(1)和(3)的不足是缓冲层的厚度较大,所需的原材料增加,会增加成本;方法(2)的不足是工艺复杂,对AlN套刻时,需要将样品取出来,完成刻蚀之后再放进去生长;且刻蚀的工艺也是比较复杂的,需要经过涂胶、光刻、清洗、ICP刻蚀、清洗等步骤,这大大地增加了加工成本。In order to improve the epitaxial effect of epitaxial growth of GaN thin films on patterned sapphire substrates, usually: (1) by using a thicker AlN or AlGaN buffer layer; (2) growing an AlN buffer layer first, but the AlN buffer layer is Overetching patterns; (3) Introducing an AlN or SiN insertion layer in the buffer layer. However, these methods all have certain disadvantages. For example, the disadvantage of methods (1) and (3) is that the thickness of the buffer layer is large, and the required raw materials increase, which will increase the cost; During overlay etching, the sample needs to be taken out, and then put in for growth after the etching is completed; and the etching process is also relatively complicated, requiring steps such as gluing, photolithography, cleaning, ICP etching, cleaning, etc. Increased processing costs.
因此,有必要研发一种能够加工工序简单,成本低,减小缓冲层厚的和降低位错密度,提高磊晶效果的金属纳米粒子修饰的图形化衬底LED。Therefore, it is necessary to develop a patterned substrate LED decorated with metal nanoparticles, which can be simple in processing procedure, low in cost, reduce the thickness of the buffer layer, reduce the dislocation density, and improve the epitaxial effect.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种加工工序简单,成本低,能减小缓冲层厚的和降低位错密度,提高磊晶效果的金属纳米粒子修饰的图形化衬底LED。The purpose of the present invention is to provide a metal nanoparticle-modified patterned substrate LED with simple processing procedure and low cost, which can reduce the thickness of the buffer layer, reduce the dislocation density, and improve the epitaxial effect.
本发明采用的技术方案是:一种金属纳米粒子修饰的图形化衬底LED的制备方法,包括以下步骤:The technical scheme adopted in the present invention is: a preparation method of a patterned substrate LED decorated with metal nanoparticles, comprising the following steps:
1)在图形化衬底上形成一层金属薄膜,快速升温至750-1200℃,退火1-10min,即可在图形化衬底上形成金属纳米粒子;1) A layer of metal film is formed on the patterned substrate, rapidly heated to 750-1200°C, and annealed for 1-10 minutes, then metal nanoparticles can be formed on the patterned substrate;
2)转移至MOCVD生长室中,生长AlN或AlGaN缓冲层;2) Transfer to MOCVD growth chamber to grow AlN or AlGaN buffer layer;
3)生长u型GaN、n型GaN、InGaN/GaN量子阱、AlGaN电子阻挡层和p型GaN,即可获得金属纳米粒子修饰的图形化衬底LED。3) Grow u-type GaN, n-type GaN, InGaN/GaN quantum well, AlGaN electron blocking layer and p-type GaN, and then a patterned substrate LED decorated with metal nanoparticles can be obtained.
优选的,所述金属薄膜是Ag薄膜、Au薄膜、In薄膜或Al薄膜;所述金属纳米粒子是Ag纳米粒子、Au纳米粒子、In纳米粒子或Al纳米粒子。Preferably, the metal thin film is Ag thin film, Au thin film, In thin film or Al thin film; and the metal nanoparticle is Ag nanoparticle, Au nanoparticle, In nanoparticle or Al nanoparticle.
优选的,步骤1)中,金属纳米粒子形式的具体方法是:利用电子束蒸发设备,在图形化衬底上蒸镀一层Au薄膜或Ag薄膜,蒸发电流为100-150A,真空为1×10-6-1×10-3Pa,在N2保护气氛下,快速升温至750-1200℃,退火0.5-5min,即可在图形化衬底上形成Au纳米粒子或Ag纳米粒子。更优选的,蒸发电流为120A,真空为1×10-4Pa,在N2保护气氛下,快速升温至800℃,退火时间为1min。Preferably, in step 1), the specific method in the form of metal nanoparticles is: using electron beam evaporation equipment to evaporate a layer of Au film or Ag film on the patterned substrate, the evaporation current is 100-150A, and the vacuum is 1× 10 -6 -1×10 -3 Pa, under N 2 protective atmosphere, rapidly heated to 750-1200 ℃, annealed for 0.5-5min, Au nanoparticles or Ag nanoparticles can be formed on the patterned substrate. More preferably, the evaporation current is 120A, the vacuum is 1×10 -4 Pa, the temperature is rapidly raised to 800° C. under a N 2 protective atmosphere, and the annealing time is 1 min.
优选的,步骤1)中,金属纳米粒子形式的具体方法是:将图形化衬底放在MOCVD生长室中,在400-600℃下,以350-600sccm的流量通入In金属有机物或Al金属有机物,铺一层In薄膜或Al薄膜,然后,在真空度大于10-3Pa的条件下,快速升温至750-1200℃,退火1-10min,即可在图形化衬底上形成In纳米粒子或Al纳米粒子。Preferably, in step 1), the specific method in the form of metal nanoparticles is: placing the patterned substrate in a MOCVD growth chamber, and at 400-600 ° C, passing In metal organic compounds or Al metal at a flow rate of 350-600 sccm For organic matter, lay a layer of In film or Al film, then, under the condition of vacuum degree greater than 10 -3 Pa, rapidly heat up to 750-1200℃, anneal for 1-10min, then In nanoparticles can be formed on the patterned substrate or Al nanoparticles.
步骤2)中,利用金属纳米粒子作为掩膜,按常规的工艺生长AlN或AlGaN缓冲层。提高缓冲层的横向外延过生长,降低位错密度,从而达到提高磊晶效果的目的。In step 2), an AlN or AlGaN buffer layer is grown according to a conventional process using metal nanoparticles as a mask. The lateral epitaxial overgrowth of the buffer layer is improved, the dislocation density is reduced, and the purpose of improving the epitaxial effect is achieved.
优选的,所述In金属有机物为三甲基铟或者二乙基铟;所述Al金属有机物为三甲基铝或者二乙基铝。Preferably, the In metal organic compound is trimethyl indium or diethyl indium; the Al metal organic compound is trimethyl aluminum or diethyl aluminum.
优选的,所述金属薄膜的厚度是6-30nm。更优选的,金属薄膜的厚度是10nm。缓冲层的厚度为2-20nm。Preferably, the thickness of the metal thin film is 6-30 nm. More preferably, the thickness of the metal thin film is 10 nm. The thickness of the buffer layer is 2-20 nm.
优选的,金属纳米粒子的直径为2-6nm。Preferably, the diameter of the metal nanoparticles is 2-6 nm.
优选的,所述图形化衬底是图形化蓝宝石衬底。Preferably, the patterned substrate is a patterned sapphire substrate.
本发明的有益效果是:本发明利用金属纳米粒子作为掩膜,提高缓冲层的横向外延过生长,降低位错密度,从而达到提高磊晶效果的目的;使用金属纳米粒子,有利于减小缓冲层的厚度,降低生产成本;Au或Ag纳米粒子对光具有较好的反射特性,可以将有源层发出来的光和LED表面反射回来的光发射出去,从而提高了LED器件的出光效率;本发明的金属纳米粒子修饰的图形化衬底地制备方法简单,使用范围广。The beneficial effects of the present invention are as follows: the present invention uses metal nanoparticles as a mask to improve the lateral epitaxial overgrowth of the buffer layer and reduce the dislocation density, thereby achieving the purpose of improving the epitaxial effect; the use of metal nanoparticles is conducive to reducing buffering The thickness of the layer can reduce the production cost; Au or Ag nanoparticles have better light reflection characteristics, which can emit the light emitted by the active layer and the light reflected from the surface of the LED, thereby improving the light extraction efficiency of the LED device; The metal nanoparticle-modified patterned substrate of the present invention has a simple preparation method and a wide range of applications.
附图说明Description of drawings
图1是金属纳米粒子的形成过程示意图,其中,11是图形化蓝宝石衬底,12是金属纳米粒子。FIG. 1 is a schematic diagram of the formation process of metal nanoparticles, wherein 11 is a patterned sapphire substrate, and 12 is metal nanoparticles.
图2是AlGaN缓冲层在金属纳米粒子修饰的图形化蓝宝石衬底LED上生长示意图,其中11是图形化蓝宝石衬底,12是金属纳米粒子,13是缓冲层。FIG. 2 is a schematic diagram of the growth of an AlGaN buffer layer on a patterned sapphire substrate LED decorated with metal nanoparticles, wherein 11 is a patterned sapphire substrate, 12 is a metal nanoparticle, and 13 is a buffer layer.
图3是LED外延片的X射线摇摆曲线(XRC);其中(a)中为现有技术中没有金属纳米粒子的LED外延片的X射线摇摆曲线(XRC);(b)为实施例1制备的LED外延片的X射线摇摆曲线。3 is the X-ray rocking curve (XRC) of the LED epitaxial wafer; wherein (a) is the X-ray rocking curve (XRC) of the LED epitaxial wafer without metal nanoparticles in the prior art; (b) is the preparation of Example 1 X-ray rocking curves of LED epitaxial wafers.
图4是实施例1制备的LED外延片的光致发光(PL)图谱。FIG. 4 is a photoluminescence (PL) spectrum of the LED epitaxial wafer prepared in Example 1. FIG.
具体实施方式Detailed ways
本发明提供了一种金属纳米粒子修饰的图形化衬底LED的制备方法,包括以下步骤:The invention provides a preparation method of a patterned substrate LED decorated with metal nanoparticles, comprising the following steps:
1)在图形化衬底上形成一层金属薄膜,快速升温至750-1200℃,退火1-10min,即可在图形化衬底上形成金属纳米粒子;1) A layer of metal film is formed on the patterned substrate, rapidly heated to 750-1200°C, and annealed for 1-10 minutes, then metal nanoparticles can be formed on the patterned substrate;
2)转移至MOCVD生长室中,生长缓冲层;2) Transfer to the MOCVD growth chamber to grow the buffer layer;
3)生长u型GaN、n型GaN、InGaN/GaN量子阱、AlGaN电子阻挡层和p型GaN,即可获得金属纳米粒子修饰的图形化衬底LED。3) Grow u-type GaN, n-type GaN, InGaN/GaN quantum well, AlGaN electron blocking layer and p-type GaN, and then a patterned substrate LED decorated with metal nanoparticles can be obtained.
优选的,金属纳米粒子形式的具体方法是:利用电子束蒸发设备,在图形化衬底上蒸镀一层Au薄膜或Ag薄膜,蒸发电流为100-150A,真空为1×10-6-1×10-3Pa,在N2保护气氛下,快速升温至750-1200℃,退火0.5-5min,即可在图形化衬底上形成Au纳米粒子或Ag纳米粒子。Preferably, the specific method in the form of metal nanoparticles is: using electron beam evaporation equipment to evaporate a layer of Au film or Ag film on the patterned substrate, the evaporation current is 100-150A, and the vacuum is 1×10 -6 -1 ×10 -3 Pa, in a N 2 protective atmosphere, the temperature is rapidly increased to 750-1200°C, and annealed for 0.5-5min, then Au nanoparticles or Ag nanoparticles can be formed on the patterned substrate.
优选的,金属纳米粒子形式的具体方法是:将图形化衬底放在MOCVD生长室中,在400-600℃下,以350-600sccm的流量通入In金属有机物或Al金属有机物,铺一层In薄膜或Al薄膜,然后,在真空度大于10-3Pa的条件下,快速升温至750-1200℃,退火1-10min,即可在图形化衬底上形成In纳米粒子或Al纳米粒子。Preferably, the specific method in the form of metal nanoparticles is as follows: placing the patterned substrate in a MOCVD growth chamber, at 400-600° C., passing In metal organic matter or Al metal organic matter at a flow rate of 350-600 sccm, and laying a layer of In thin film or Al thin film, then, under the condition of vacuum degree greater than 10 -3 Pa, the temperature is rapidly heated to 750-1200 ℃, and annealed for 1-10 minutes, then In nanoparticles or Al nanoparticles can be formed on the patterned substrate.
图1是Ag金属纳米粒子的形成过程示意图,其中,11是图形化蓝宝石衬底,12是金属纳米粒子;先在图形化蓝宝石衬底上沉积一层Ag金属薄膜,然后在N2保护气氛下,高温快速退火,既可获得Ag金属纳米粒子。Fig. 1 is a schematic diagram of the formation process of Ag metal nanoparticles, wherein, 11 is a patterned sapphire substrate, and 12 is a metal nanoparticle; first, a layer of Ag metal thin film is deposited on the patterned sapphire substrate, and then under a N2 protective atmosphere , high temperature rapid annealing, can obtain Ag metal nanoparticles.
图2是AlGaN在金属纳米粒子修饰的图形化蓝宝石衬底LED上生长示意图,11是图形化蓝宝石衬底,12是金属纳米粒子,13是缓冲层。金属纳米粒子可以起到掩膜的作用,提过缓冲层的横向外延过生长,从而达到提高磊晶效果的目的。FIG. 2 is a schematic diagram of the growth of AlGaN on a patterned sapphire substrate LED decorated with metal nanoparticles, 11 is a patterned sapphire substrate, 12 is a metal nanoparticle, and 13 is a buffer layer. The metal nanoparticles can act as a mask to improve the lateral epitaxial overgrowth of the buffer layer, so as to achieve the purpose of improving the epitaxial effect.
实施例1Example 1
一种金属纳米粒子修饰的图形化衬底LED的制备方法,包括以下步骤:A preparation method of a patterned substrate LED decorated with metal nanoparticles, comprising the following steps:
1)利用电子束蒸发设备,在图形化蓝宝石衬底上蒸镀一层厚度是10nm的Ag薄膜,蒸发电流为120A,真空为1×10-4Pa,在N2保护气氛下,快速升温至800℃,退火1min,即可在图形化衬底上形成直径为3nm的Ag纳米粒子;1) Using electron beam evaporation equipment, a layer of Ag film with a thickness of 10 nm was evaporated on the patterned sapphire substrate, the evaporation current was 120 A, and the vacuum was 1 × 10 -4 Pa. Under the N2 protective atmosphere, the temperature was rapidly increased to After annealing at 800°C for 1min, Ag nanoparticles with a diameter of 3nm can be formed on the patterned substrate;
2)转移至MOCVD生长室中,生长厚度为5nm的AlGaN缓冲层;2) Transfer to a MOCVD growth chamber to grow an AlGaN buffer layer with a thickness of 5 nm;
3)生长u型GaN、n型GaN、InGaN/GaN量子阱、AlGaN电子阻挡层和p型GaN,即可获得金属纳米粒子修饰的图形化蓝宝石衬底LED。3) Grow u-type GaN, n-type GaN, InGaN/GaN quantum well, AlGaN electron blocking layer and p-type GaN, and then a patterned sapphire substrate LED decorated with metal nanoparticles can be obtained.
图3示出LED外延片的X射线摇摆曲线,其中(a)中为现有技术中没有金属纳米粒子的LED外延片的X射线摇摆曲线(XRC);(b)为实施例1制备的LED外延片的X射线摇摆曲线。如图3的(b)所示,实施例1制备的LED外延片的XRC半峰宽是201arcsec,要优于没有Ag纳米粒子的LED外延片(244arcse c)。3 shows the X-ray rocking curve of the LED epitaxial wafer, wherein (a) is the X-ray rocking curve (XRC) of the LED epitaxial wafer without metal nanoparticles in the prior art; (b) is the LED prepared in Example 1 X-ray rocking curves of epitaxial wafers. As shown in Fig. 3(b), the XRC half width of the LED epitaxial wafer prepared in Example 1 is 201 arcsec, which is better than that of the LED epitaxial wafer without Ag nanoparticles (244 arcsec c).
图4是实施例1制备的LED外延片的PL图谱,其强度是无Ag纳米粒子的LED外延片的1.5-2倍,出光效率提高了3-5%。4 is the PL spectrum of the LED epitaxial wafer prepared in Example 1, the intensity of which is 1.5-2 times that of the LED epitaxial wafer without Ag nanoparticles, and the light extraction efficiency is increased by 3-5%.
实施例2Example 2
一种金属纳米粒子修饰的图形化衬底LED的制备方法,包括以下步骤:A preparation method of a patterned substrate LED decorated with metal nanoparticles, comprising the following steps:
1)利用电子束蒸发设备,在图形化蓝宝石衬底上蒸镀一层厚度为6nm的Au薄膜,蒸发电流为100A,真空为1×10-3Pa,在N2保护气氛下,快速升温至750℃,退火5min,即可在图形化衬底上形成直径为2nm的Au纳米粒子;1) Using electron beam evaporation equipment, a layer of Au film with a thickness of 6nm was evaporated on the patterned sapphire substrate, the evaporation current was 100A, the vacuum was 1 × 10-3 Pa, and the temperature was rapidly increased to Au nanoparticles with a diameter of 2nm can be formed on the patterned substrate by annealing at 750℃ for 5min;
2)转移至MOCVD生长室中,生长厚度为2nm的AlN缓冲层;2) Transfer to the MOCVD growth chamber to grow an AlN buffer layer with a thickness of 2 nm;
3)生长u型GaN、n型GaN、InGaN/GaN量子阱、AlGaN电子阻挡层和p型GaN,即可获得金属纳米粒子修饰的图形化蓝宝石衬底LED。3) Grow u-type GaN, n-type GaN, InGaN/GaN quantum well, AlGaN electron blocking layer and p-type GaN, and then a patterned sapphire substrate LED decorated with metal nanoparticles can be obtained.
实施例3Example 3
一种金属纳米粒子修饰的图形化衬底LED的制备方法,包括以下步骤:A preparation method of a patterned substrate LED decorated with metal nanoparticles, comprising the following steps:
1)利用电子束蒸发设备,在图形化蓝宝石衬底上蒸镀一层厚度是15nm的Au薄膜,蒸发电流为150A,真空为1×10-5Pa,在N2保护气氛下,快速升温至1000℃,退火2min,即可在图形化蓝宝石衬底上形成直径为5nm的Au纳米粒子;1) Using electron beam evaporation equipment, an Au film with a thickness of 15 nm was evaporated on the patterned sapphire substrate, the evaporation current was 150 A, and the vacuum was 1 × 10 -5 Pa. Under the N2 protective atmosphere, the temperature was rapidly increased to Au nanoparticles with a diameter of 5nm can be formed on the patterned sapphire substrate by annealing at 1000℃ for 2min;
2)转移至MOCVD生长室中,生长厚度为8nm的AlN缓冲层;2) Transfer to the MOCVD growth chamber to grow an AlN buffer layer with a thickness of 8 nm;
3)生长u型GaN、n型GaN、InGaN/GaN量子阱、AlGaN电子阻挡层和p型GaN,即可获得金属纳米粒子修饰的图形化蓝宝石衬底LED。3) Grow u-type GaN, n-type GaN, InGaN/GaN quantum well, AlGaN electron blocking layer and p-type GaN, and then a patterned sapphire substrate LED decorated with metal nanoparticles can be obtained.
实施例4Example 4
一种金属纳米粒子修饰的图形化衬底LED的制备方法,包括以下步骤:A preparation method of a patterned substrate LED decorated with metal nanoparticles, comprising the following steps:
1)将图形化蓝宝石衬底放在MOCVD生长室中,在400℃下,以350sccm的流量通入三甲基铟,铺一层厚度为12nm In薄膜,然后,在真空度大于10-3Pa的条件下,快速升温至900℃,退火1min,即可在图形化衬底上形成直径为3nm的In纳米粒子;1) Put the patterned sapphire substrate in the MOCVD growth chamber, pass trimethyl indium at a flow rate of 350sccm at 400°C, and lay a layer of In thin film with a thickness of 12nm, then, under the vacuum degree greater than 10 -3 Pa Under the condition of high temperature, the temperature is rapidly increased to 900 °C, and annealed for 1 min to form In nanoparticles with a diameter of 3 nm on the patterned substrate;
2)转移至MOCVD生长室中,生长厚度为5nm的AlN缓冲层;2) Transfer to the MOCVD growth chamber to grow an AlN buffer layer with a thickness of 5 nm;
3)生长u型GaN、n型GaN、InGaN/GaN量子阱、AlGaN电子阻挡层和p型GaN,即可获得金属纳米粒子修饰的图形化蓝宝石衬底LED。3) Grow u-type GaN, n-type GaN, InGaN/GaN quantum well, AlGaN electron blocking layer and p-type GaN, and then a patterned sapphire substrate LED decorated with metal nanoparticles can be obtained.
实施例5Example 5
一种金属纳米粒子修饰的图形化衬底LED的制备方法,包括以下步骤:A preparation method of a patterned substrate LED decorated with metal nanoparticles, comprising the following steps:
1)将图形化蓝宝石衬底放在MOCVD生长室中,在500℃下,以500sccm的流量通入三甲基铝,铺一层厚度为15nm的Al薄膜,然后,在真空度大于10-3Pa的条件下,快速升温至1000℃,退火5min,即可在图形化衬底上形成直径为5nm的Al纳米粒子;1) Put the patterned sapphire substrate in the MOCVD growth chamber, at 500°C, pass in trimethylaluminum at a flow rate of 500sccm , and lay down an Al thin film with a thickness of 15nm. Under the condition of Pa, the temperature is rapidly increased to 1000 °C and annealed for 5 min to form Al nanoparticles with a diameter of 5 nm on the patterned substrate;
2)转移至MOCVD生长室中,生长厚度为10nm的AlGaN缓冲层;2) Transfer to a MOCVD growth chamber to grow an AlGaN buffer layer with a thickness of 10 nm;
3)生长u型GaN、n型GaN、InGaN/GaN量子阱、AlGaN电子阻挡层和p型GaN,即可获得金属纳米粒子修饰的图形化蓝宝石衬底LED。3) Grow u-type GaN, n-type GaN, InGaN/GaN quantum well, AlGaN electron blocking layer and p-type GaN, and then a patterned sapphire substrate LED decorated with metal nanoparticles can be obtained.
实施例6Example 6
一种金属纳米粒子修饰的图形化衬底LED的制备方法,包括以下步骤:A preparation method of a patterned substrate LED decorated with metal nanoparticles, comprising the following steps:
1)将图形化蓝宝石衬底放在MOCVD生长室中,在600℃下,以600sccm的流量通入二乙基铝,铺一层厚度为20nm的Al薄膜,然后,在真空度大于10-3Pa的条件下,快速升温至1200℃,退火8min,即可在图形化衬底上形成直径为6nm的Al纳米粒子;1) Put the patterned sapphire substrate in the MOCVD growth chamber, at 600°C, pass in diethylaluminum at a flow rate of 600sccm , and lay down an Al thin film with a thickness of 20nm. Under the condition of Pa, the temperature is rapidly increased to 1200 °C, and annealed for 8 min, Al nanoparticles with a diameter of 6 nm can be formed on the patterned substrate;
2)转移至MOCVD生长室中,生长厚度为12nm的AlN缓冲层;2) Transfer to a MOCVD growth chamber to grow an AlN buffer layer with a thickness of 12 nm;
3)生长u型GaN、n型GaN、InGaN/GaN量子阱、AlGaN电子阻挡层和p型GaN,即可获得金属纳米粒子修饰的图形化蓝宝石衬底LED。3) Grow u-type GaN, n-type GaN, InGaN/GaN quantum well, AlGaN electron blocking layer and p-type GaN, and then a patterned sapphire substrate LED decorated with metal nanoparticles can be obtained.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810415268.XA CN108807609B (en) | 2018-05-03 | 2018-05-03 | Preparation method of metal nanoparticle modified patterned substrate L ED |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810415268.XA CN108807609B (en) | 2018-05-03 | 2018-05-03 | Preparation method of metal nanoparticle modified patterned substrate L ED |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108807609A CN108807609A (en) | 2018-11-13 |
CN108807609B true CN108807609B (en) | 2020-07-14 |
Family
ID=64093168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810415268.XA Active CN108807609B (en) | 2018-05-03 | 2018-05-03 | Preparation method of metal nanoparticle modified patterned substrate L ED |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108807609B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110120448B (en) * | 2019-05-07 | 2021-05-25 | 厦门大学 | Nitride LED manufacturing method based on metal mask substrate |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201029051A (en) * | 2009-01-21 | 2010-08-01 | Siltron Inc | Semiconductor device, light emitting device and method for manufacturing the same |
KR20120122152A (en) * | 2011-04-28 | 2012-11-07 | 전북대학교산학협력단 | Light emitting device having nano silica sphere and fabrication method thereof |
CN103383981A (en) * | 2012-05-04 | 2013-11-06 | 隆达电子股份有限公司 | Light emitting diode element |
CN104241465A (en) * | 2014-09-22 | 2014-12-24 | 山东浪潮华光光电子股份有限公司 | Nano coarsening composite graphical sapphire substrate and manufacturing method |
CN106257694A (en) * | 2016-08-29 | 2016-12-28 | 华南理工大学 | LED being grown on magnesium aluminate scandium substrate and preparation method thereof |
CN107039250A (en) * | 2016-02-03 | 2017-08-11 | 中晟光电设备(上海)股份有限公司 | A kind of method of the material of growing gallium nitride on a sapphire substrate, gallium nitride material and application thereof |
CN107799640A (en) * | 2017-11-02 | 2018-03-13 | 五邑大学 | A kind of specular removal p-type non polarity A lN films and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI321856B (en) * | 2006-06-22 | 2010-03-11 | Epistar Corp | Method for manufacturing nano pattern and application thereof for light-emitting device |
TWI565094B (en) * | 2012-11-15 | 2017-01-01 | 財團法人工業技術研究院 | Nitride semiconductor structure |
-
2018
- 2018-05-03 CN CN201810415268.XA patent/CN108807609B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201029051A (en) * | 2009-01-21 | 2010-08-01 | Siltron Inc | Semiconductor device, light emitting device and method for manufacturing the same |
KR20120122152A (en) * | 2011-04-28 | 2012-11-07 | 전북대학교산학협력단 | Light emitting device having nano silica sphere and fabrication method thereof |
CN103383981A (en) * | 2012-05-04 | 2013-11-06 | 隆达电子股份有限公司 | Light emitting diode element |
CN104241465A (en) * | 2014-09-22 | 2014-12-24 | 山东浪潮华光光电子股份有限公司 | Nano coarsening composite graphical sapphire substrate and manufacturing method |
CN107039250A (en) * | 2016-02-03 | 2017-08-11 | 中晟光电设备(上海)股份有限公司 | A kind of method of the material of growing gallium nitride on a sapphire substrate, gallium nitride material and application thereof |
CN106257694A (en) * | 2016-08-29 | 2016-12-28 | 华南理工大学 | LED being grown on magnesium aluminate scandium substrate and preparation method thereof |
CN107799640A (en) * | 2017-11-02 | 2018-03-13 | 五邑大学 | A kind of specular removal p-type non polarity A lN films and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN108807609A (en) | 2018-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104810451B (en) | A kind of GaN base light emitting epitaxial wafer and preparation method thereof | |
CN108336203B (en) | A kind of gallium nitride-based light-emitting diode epitaxial wafer and its manufacturing method | |
CN108899403A (en) | Efficient LED and preparation method based on ScAlN/AlGaN superlattices p-type layer | |
CN117253950B (en) | Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode | |
CN108649109A (en) | A kind of LED epitaxial slice and its manufacturing method | |
CN116130569A (en) | High-efficiency light-emitting diode and preparation method thereof | |
CN104659164A (en) | Method for growing photoelectric material and device through two-step method | |
CN116504895B (en) | LED epitaxial wafer, preparation method thereof and LED | |
CN116565098B (en) | Gallium nitride light-emitting diode epitaxial wafer and growth process thereof | |
CN109560171B (en) | Light emitting diode epitaxial wafer and preparation method thereof | |
CN112599648B (en) | V-shaped tunneling junction LED epitaxial structure based on h-BN and preparation method thereof | |
CN109346568B (en) | A kind of light-emitting diode epitaxial wafer and preparation method thereof | |
CN117410405A (en) | Deep ultraviolet light emitting diode epitaxial wafer and preparation method thereof, deep ultraviolet LED | |
CN106992231A (en) | Nitride semiconductor device and preparation method thereof | |
CN108281514A (en) | A kind of preparation method of LED epitaxial slice | |
CN108807609B (en) | Preparation method of metal nanoparticle modified patterned substrate L ED | |
CN109192824B (en) | Epitaxial wafer and growth method for improving brightness of gallium nitride-based light-emitting diode | |
CN116364819B (en) | LED epitaxial wafer, preparation method thereof and LED | |
CN109346577B (en) | Gallium nitride-based light emitting diode epitaxial wafer and preparation method thereof | |
CN116864587A (en) | Gallium nitride light-emitting diode epitaxial structure, LED and preparation method thereof | |
CN107331738B (en) | A method of manufacturing a light-emitting diode epitaxial wafer | |
CN108336192A (en) | A kind of preparation method of LED epitaxial slice | |
CN109545919B (en) | N-type AlGaN layer modulated and doped high-efficiency ultraviolet light emitting diode and preparation method | |
CN103258930B (en) | A kind of GaN LED structure and preparation method | |
TWI596710B (en) | Method for preparing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240612 Address after: 1003, Building A, Zhiyun Industrial Park, No. 13 Huaxing Road, Tongsheng Community, Dalang Street, Longhua District, Shenzhen City, Guangdong Province, 518000 Patentee after: Shenzhen Wanzhida Enterprise Management Co.,Ltd. Country or region after: China Address before: No.22, Dongcheng village, Pengjiang district, Jiangmen City, Guangdong Province Patentee before: WUYI University Country or region before: China |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241017 Address after: 425900 Building 1, 2, and 3, Electronic Information Industry Park, Baiya Industrial Park, Dong'an Economic Development Zone, Baiya Town, Dong'an County, Yongzhou City, Hunan Province Patentee after: Hunan Dongyi Electronics Co.,Ltd. Country or region after: China Address before: 1003, Building A, Zhiyun Industrial Park, No. 13 Huaxing Road, Tongsheng Community, Dalang Street, Longhua District, Shenzhen City, Guangdong Province, 518000 Patentee before: Shenzhen Wanzhida Enterprise Management Co.,Ltd. Country or region before: China |