CN108805105B - 构建俯视二维世界坐标系车前风险矩阵的方法 - Google Patents

构建俯视二维世界坐标系车前风险矩阵的方法 Download PDF

Info

Publication number
CN108805105B
CN108805105B CN201810697744.1A CN201810697744A CN108805105B CN 108805105 B CN108805105 B CN 108805105B CN 201810697744 A CN201810697744 A CN 201810697744A CN 108805105 B CN108805105 B CN 108805105B
Authority
CN
China
Prior art keywords
risk
matrix
coordinate system
world coordinate
pedestrian
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810697744.1A
Other languages
English (en)
Other versions
CN108805105A (zh
Inventor
杨大伟
毛琳
黄俊达
陈思宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Minzu University
Original Assignee
Dalian Minzu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Minzu University filed Critical Dalian Minzu University
Priority to CN201810697744.1A priority Critical patent/CN108805105B/zh
Publication of CN108805105A publication Critical patent/CN108805105A/zh
Application granted granted Critical
Publication of CN108805105B publication Critical patent/CN108805105B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands

Abstract

构建俯视二维世界坐标系车前风险矩阵的方法,属于行车风险分析领域,为了解决图像视角确定车前风险的问题,要点是将所述二维世界坐标系中各坐标点等势至YW轴,并求取对应坐标点的风险权重,使用与行人轨迹矩阵相同的矩阵映射函数映射为车前风险矩阵,效果是根据驾驶员或自主驾驶系统的关注需求,对特定行人目标给予相应关注。

Description

构建俯视二维世界坐标系车前风险矩阵的方法
技术领域
本发明属于行车风险分析领域,涉及一种构建俯视二维世界坐标系车前风险矩阵的方法。
背景技术
中国许多地区道路交通长期存在人车混行的危险情况,行人作为道路交通中的弱势群体,并且在事故人员致死率中常年占据较大比重,理应受到车辆方的避障保护,因此改善汽车对行人安全规避能力重要性不言而喻。
基于汽车板载系统的行人风险分析方法主要使用传感器感知车辆环境信息,并结合行人目标运动状态,评判行人目标危险并据此调整行车决策,实现对危险行人目标的早期保护。基于车载图像的行人风险分析方法是目前主流研究方向,许多研究者通过识别行人目标姿态,分析行人运动趋势以分类危险行人。其中,Joko Hariyono等人使用光流法分割行人轮廓,并以行人姿态比方法识别行人水平运动趋势,判定存在向车行区域运动行人为危险行人。此外,Keller和Gavrila等人使用高斯动态过程模型和轨迹概率分层匹配,鉴别图像中行人目标的站立或水平运动状态。
基于车载图像的行人风险分析方法大多直接从图像视角直接分析行人风险,但由于车载图像“近大远小”的成像扭曲,研究者往往只能识别行人运动姿态,而并非把握行人确切运动状态。据此,现有行人风险分析方法通常只能给出行人危险与否的定性二分类判决,因此其主要用途在于为驾驶员提供实时预警,不能为车行决策提供精细数据支持。
为了实现精确驾驶员辅助以及改善智能车载自主巡航性能,公开号:CN107240167A的中国专利申请公开了一种行车记录仪行人监控系统,给出了一种定量式行人风险分析方法。该系统使用感知设备包括体感控制器、红外传感器和测探计,获得车行环境中行人信息,并通过行人深度图像流与行人目标模型匹配方式,计算行人碰撞系数并以此实现行人危险预警。该发明虽然给出了定量的风险分析结果,但风险量化因素来源于行人姿态,实际上判断的是行人对车辆蓄意碰撞的意图,因此量化系数不具备运动学客观性质,不足以反映行人真实运动风险程度。
公开号:CN104239741A的中国专利申请基于汽车风险场的汽车驾驶安全辅助方法,从人、车和路三个综合角度出发,通过分析车行环境的动能场、势能场和行为场,融合构建车辆行驶对障碍物风险的车行风险场模型,量化车辆对道路障碍物的行车风险,以此评估不同程度。该发明通过引入了势场论,赋予行车风险场合理的运动学原理,使其风险量化结果能够客观有效地用于行车决策。
发明内容
为了解决图像视角确定车前风险的问题,本发明提出构建俯视二维世界坐标系车前风险矩阵,其技术方案如下:
一种构建俯视二维世界坐标系车前风险矩阵的方法,将所述二维世界坐标系中各坐标点等势至YW轴,并求取对应坐标点的风险权重,使用与行人轨迹矩阵相同的矩阵映射函数映射为车前风险矩阵。
进一步的,二维世界坐标系的风险等势线由6条关于YW轴的二阶曲线构成,且满足:
y=γ(x)=α1x22x+α3 (6)
其中:α1、α2和α3为二阶多项式系数向量,且满足:
Figure GDA0003457098390000021
进一步的,车前风险权重计算函数如下:
Figure GDA0003457098390000022
wr为归一化风险强度,某个区域wr值越接近1则该区域越危险,反之越趋向于0则表示越安全;
使用矩阵映射函数,生成车前风险矩阵MV
(n,m)=fwm(x,y,wr)
(x,y,wr)表示二维世界坐标系坐标点及对应风险强度,(n,m)表示运算矩阵中元素行列位置。
有益效果:单独考虑俯视二维世界坐标系中不同行人目标和车辆之间运动情况,行人之间运动相互不干扰,可根据驾驶员或自主驾驶系统的关注需求,对特定行人目标给予相应关注。
附图说明
图1发明原理图;
图2图像坐标系;
图3世界坐标系;
图4俯视二维世界坐标系;
图5参数图1;
图6参数图2;
图7平视轨迹点图;
图8俯视二维世界坐标系行人轨迹矩阵图;
图9俯视二维世界坐标系车前风险矩阵图;
图10邻近行人风险系数计算方法图;
图11实施例1的邻近行人风险系数计算结果图;
图12实施例2的邻近行人风险系数计算结果图;
图13实施例3的邻近行人风险系数计算结果图;
具体实施方式
下面结合图与具体实时方式对本发明做进一步详细描述:
如图1所示,本发明公开了一种基于二维世界坐标系的俯视行人风险量化方法,可以使用软件实现,可以通过对车载摄像机的视频进行变换,求解俯视条件下行人目标在车前的量化风险程度。
该方法主要实施步骤如下:
第1步:对于尺寸为1920×1080图像(单位:像素),逐帧计算所有N个行人目标的行人轨迹点,获取并更新实时时刻的所有行人目标平视行人轨迹点向量
Figure GDA0003457098390000023
第2步:将所有平视行人轨迹点映射至二维世界坐标系,并基于二维世界坐标系原点OW,以±10m水平距离和0–20m竖直距离为行人运动分析范围,获得对应N个二维世界坐标系行人轨迹矩阵
Figure GDA0003457098390000024
第3步,复制N份俯视二维世界坐标系车前风险矩阵副本
Figure GDA0003457098390000025
第4步,对于行人目标i∈[1,N],使用公式
Figure GDA0003457098390000026
计算邻近行人风险系数R。
本公开以下对上述方法作出详细的介绍,该方法针对直接采用图像视角难以精确行人目标风险问题,其原理如图1所示,主要是将行人运动轨迹点映射到俯视角的二维世界坐标系中,并在二维世界坐标系中计算车前风险权重。进一步,通过量化映射生成行人轨迹矩阵和车前风险矩阵,每个行人目标具有独立的行人轨迹矩阵,共享同一个车前风险矩阵,实现量化风险计算,获取不同行人目标的归一化邻近行人风险系数。邻近行人风险系数作为基于二维世界坐标系的俯视行人风险量化方法输出结果,可用于支持辅助驾驶和自主汽车的行车决策模块工作。
本发明技术方案涉及相关图像坐标系、世界坐标系和摄像机参数定义,具体可见图2、图3和图4。
图像坐标系定义(见图2):以图像左上角为原点O,水平向右为u轴,竖直向下为v轴,定义为图像坐标系。
世界坐标系定义(见图3):以车载摄像机光心对地投影点为原点OW,车行方向为YW正方向,与车辆驾驶平面共面且与YW垂直向右方向为XW轴正方向,指向摄像机所处方向为ZW轴正方向,定义为世界坐标系。
二维世界坐标系定义(见图4):忽略世界坐标系ZW轴(高度轴)的世界坐标系,被定义为二维世界坐标系。
本发明要求车载摄像机装配方式如图2所示,装配于车顶处并且面向车行方向。车载摄像机需要进行动态拍摄,因此摄像机内在参数和装配参数相对固定,内在参数包括焦距f、感光元件长度dx、感光元件宽度dy、图像长度M和图像宽度N;装配参数包括据地高度H、偏航角γ、俯仰角θ、水平孔径角AlphaU和竖直孔径角AlphaV。
本发明内部参数适配值:焦距f为16mm-23mm;感光元件大小无特殊要求;图像长度M常规选用1920像素且不应小于1080像素尺寸;图像宽度N常规选用1080像素且不小于640像素。本发明装配参数适配值:据地高度H适应范围为1.2m至1.6m之间;偏航角理想装配角度为0°,装配误差可接受范围为±1°;俯仰角理想装配角度为0°,装配误差可接受范围为±3°。水平孔近角AlphaU和竖直孔近角AlphaV计算方法为:
Figure GDA0003457098390000031
首先,输入图像中行人轨迹点经逆透视映射转换到世界坐标系,构建二维世界坐标系行人轨迹矩阵MP
设pt(ut,vt)为输入视频第t帧图像行人轨迹点,其中ut和vt表示图像中列坐标和行坐标;pt'(xt,yt)为视频第t帧图像行人轨迹点在二维世界坐标系中映射坐标,其中xt和yt表示二维世界坐标系中水平坐标和竖直坐标。据此,则有
Figure GDA0003457098390000032
为输入视频平视行人轨迹点向量,
Figure GDA0003457098390000033
为向量
Figure GDA0003457098390000034
在二维世界坐标系中俯视行人轨迹点向量。
平视行人轨迹点向量
Figure GDA0003457098390000035
对俯视行人轨迹点向量
Figure GDA0003457098390000036
的映射变换步骤为:
第一步,计算映射因子rFactor和cFactor(见式(2)),其中u和v为输入值代表图像中逆透视映射点,M和N为定值代表图像宽度和高度;
Figure GDA0003457098390000041
第二步,计算二维世界坐标初始映射点(x',y')(见式(3)),其中Cx、Cy和Cz为定值代表摄像机在世界坐标系中坐标,通常设定Cx=Cy=0且Cz=H;θ为摄像机与地面俯仰角。
Figure GDA0003457098390000042
第三步,修正初始映射点获得二维世界坐标系映射坐标点(x,y)(见式(4)),其中γ为定值代表摄像机偏转角。
Figure GDA0003457098390000043
第四步,利用矩阵映射函数(如式(5)所示),生成行人轨迹矩阵MP
(n,m)=fwm(x,y) (5)
式(5)中(x,y)表示二维世界坐标系坐标点,(n,m)表示运算矩阵中元素行列位置。构建行人轨迹矩阵MP目的在于以矩阵方法表示二维世界坐标系中车前限定距离内行人轨迹点信息,于是针对逆透视映射效果,本文将二维世界坐标系到运算矩阵映射范围设定为距OW水平±10m和竖直0–20m。据此,可构建如图8中所示二维世界坐标系行人轨迹矩阵MP
然后,构建与二维世界坐标系行人轨迹矩阵对应的二维世界坐标系车前风险矩阵MV。二维世界坐标系的风险等势线由6条关于YW二阶曲线构成,且满足:
y=γ(x)=α1x22x+α3 (6)
式(6)中,α1、α2和α3为二阶多项式系数向量,且满足:
Figure GDA0003457098390000044
Figure GDA0003457098390000045
给定受车前距离影响的车前风险权重计算函数如式(8)所示,车前风险权重计算函数本身原型为高斯分布函数。其中,C1和C2为归一化参数,其值设为C1=0.05和C2=47.7;μ和σ为函数期望和方差,其物理意义是受车辆制动能力影响的风险分布参数,其值设为μ=0和σ=8。式(8)中wr为归一化风险强度,某个区域wr值越接近1则该区域越危险,反之越趋向于0表示越安全。
二维世界坐标系中个坐标通过式(6)等势至YW轴,并根据式(8)求取对应风险权重。车前风险矩阵主要用以匹配行人轨迹矩阵,实现行人风险系数量化,因此构建车前风险矩阵选用相同矩阵映射函数。据此,针对二维世界坐标系中各坐标车行风险权重,进一步利用式(5)可映射生成车前风险矩阵MV如图9所示。使用矩阵映射函数,生成车前风险矩阵MV
(n,m)=fwm(x,y,wr)
(x,y,wr)表示二维世界坐标系坐标点及对应风险强度,(n,m)表示运算矩阵中元素行列位置。
最后,结合二维世界坐标系行人轨迹矩阵MP和二维世界坐标系车前风险矩阵MV计算邻近行人风险系数R。
设连续图像存在N个不同行人目标,且对任意行人目标i∈[1,N]均有唯一平视行人轨迹点向量为
Figure GDA0003457098390000051
与其对应。进一步,向量
Figure GDA0003457098390000052
则经步骤二可得俯视行人轨迹点向量
Figure GDA0003457098390000053
并可从世界坐标系中独立对应俯视二维世界坐标系行人轨迹矩阵
Figure GDA0003457098390000054
如图10所示,俯视二维世界坐标系车前风险矩阵通过复制出与自身相同副本并结合俯视二维世界坐标系行人轨迹矩阵
Figure GDA0003457098390000055
量化邻近行人风险系数Ri,其公式为:
Figure GDA0003457098390000056
式(9)为本发明邻近行人风险系数量化公式,其中ki为行人轨迹点数量,该输出结果Ri即为行人目标i的邻近行人风险系数,Ri越接近1表示行人目标越危险,反之越接近0则越安全。式(9)计算方法的物理意义是利用行人轨迹矩阵筛选车前风险矩阵,以此获得行人轨迹点位置对应车前风险程度。
本发明是针对车载视频图像行人目标风险程度的量化方法,其作用在于将车辆行驶对行人目标风险量化成归一化风险指标,以此为智能汽车的先进辅助驾驶和自主巡航的行人目标避障功能,提供重要车行决策数据基础。该算法有益效果包括:(1)行人风险分析使用了具有直观视角优势的俯视二维世界坐标系,此举便于驾驶者以更精确视角观测各行人目标运动趋势;(2)俯视二维世界坐标系车前风险矩阵描述的是一种车前区域的静态风险分布,其风险分布情况与城市限速相关,且不受路面环境和车行速度影响,降低了实际应用的复杂程度;(3)单独考虑俯视二维世界坐标系中不同行人目标和车辆之间运动情况,行人之间运动相互不干扰,可根据驾驶员或自主驾驶系统的关注需求,对特定行人目标给予相应关注。(4)量化得到行人目标的归一化邻近行人风险系数,从0到1反映了行人目标不同的风险程度,可用于危险行人分类和车辆行驶避让优先级的确定。
实施例1:
本实施例子针对像素尺寸为1920×1080的实测道路场景车载视频,采用本专利量化图像中2个行人目标的邻近行人风险系数。邻近行人风险系数计算结果可见图11中(a)、(b)、(c)和(d),可见针对图像中两个横穿车前区域行人目标,给出了合理的行人风险量化结果。
实施例2:
本实施例子针对尺寸为1920×1080的实测道路场景车载视频中2个行人目标,给出其邻近行人风险系数计算结果如图12中(a)、(b)、(c)和(d)所示。可见,本发明针对与车辆无关相向而行的行人目标,给出了准确行人风险量化结果。
实施例3:
本实施例子针对车载视频为像素尺寸为1920×1080的实测道路场景图像,量化了连续图像中2个行人目标,其邻近行人风险系数计算结果如图13的(a)、(b)、(c)和(d)所示。可见,对于视频图像中横穿车前区域行人,本发明给出了准确行人风险量化结果。
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。

Claims (1)

1.一种构建俯视二维世界坐标系车前风险矩阵的方法,其特征在于:将所述二维世界坐标系中各坐标点等势至YW轴,并求取对应坐标点的风险权重:二维世界坐标系的风险等势线由6条关于YW轴的二阶曲线构成,且满足:
y=γ(x)=α1x22x+α3 (6)
其中:α1、α2和α3为二阶多项式系数向量,且满足:
Figure FDA0003457098380000011
Figure FDA0003457098380000012
给定受车前距离影响的车前风险权重计算函数如式(8)所示,车前风险权重计算函数本身原型为高斯分布函数,其中,C1和C2为归一化参数,其值设为C1=0.05和C2=47.7;μ和σ为函数期望和方差,其物理意义是受车辆制动能力影响的风险分布参数,其值设为μ=0和σ=8,式(8)中wr为归一化风险强度,某个区域wr值越接近1则该区域越危险,反之越趋向于0则表示越安全;
使用与行人轨迹矩阵相同的矩阵映射函数映射为车前风险矩阵:利用矩阵映射函数,生成行人轨迹矩阵MP
(n,m)=fwm(x,y)
其中(x,y)表示二维世界坐标系坐标点,(n,m)表示运算矩阵中元素行列位置;
使用矩阵映射函数,生成车前风险矩阵MV
(n,m)=fwm(x,y,wr)
(x,y,wr)表示二维世界坐标系坐标点及对应风险强度,(n,m)表示运算矩阵中元素行列位置。
CN201810697744.1A 2018-06-29 2018-06-29 构建俯视二维世界坐标系车前风险矩阵的方法 Active CN108805105B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810697744.1A CN108805105B (zh) 2018-06-29 2018-06-29 构建俯视二维世界坐标系车前风险矩阵的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810697744.1A CN108805105B (zh) 2018-06-29 2018-06-29 构建俯视二维世界坐标系车前风险矩阵的方法

Publications (2)

Publication Number Publication Date
CN108805105A CN108805105A (zh) 2018-11-13
CN108805105B true CN108805105B (zh) 2022-04-01

Family

ID=64073208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810697744.1A Active CN108805105B (zh) 2018-06-29 2018-06-29 构建俯视二维世界坐标系车前风险矩阵的方法

Country Status (1)

Country Link
CN (1) CN108805105B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112464546B (zh) * 2020-12-14 2024-03-19 上海交通大学设计研究总院有限公司 基于动态数据分析的公共空间行人流运动风险判别方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102236909A (zh) * 2011-07-18 2011-11-09 长安大学 车辆失控后再两车碰撞组合型事故模拟计算与再现系统
CN102556155A (zh) * 2010-12-01 2012-07-11 奥迪股份公司 用于运行机动车的方法以及具有环境检测设备的机动车
CN102685516A (zh) * 2011-03-07 2012-09-19 李慧盈 立体视觉主动安全辅助驾驶方法
CN103196418A (zh) * 2013-03-06 2013-07-10 山东理工大学 一种弯道车距测量方法
CN104036279A (zh) * 2014-06-12 2014-09-10 北京联合大学 一种智能车行进控制方法及系统
CN104239741A (zh) * 2014-09-28 2014-12-24 清华大学 基于行车风险场的汽车驾驶安全辅助方法
CN104504680A (zh) * 2014-11-23 2015-04-08 北京联合大学 一种用于智能车的逆透视标定方法
CN107074254A (zh) * 2014-12-17 2017-08-18 川崎重工业株式会社 铁道车辆用转向架
CN107284276A (zh) * 2017-07-14 2017-10-24 尚圣杰 一种无限远程续航电动汽车的侧刷充电装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6623033B2 (en) * 1994-05-23 2003-09-23 Automotive Technologies International, Inc. Airbag inflation control system and method
EP2610778A1 (en) * 2011-12-27 2013-07-03 Harman International (China) Holdings Co., Ltd. Method of detecting an obstacle and driver assist system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102556155A (zh) * 2010-12-01 2012-07-11 奥迪股份公司 用于运行机动车的方法以及具有环境检测设备的机动车
CN102685516A (zh) * 2011-03-07 2012-09-19 李慧盈 立体视觉主动安全辅助驾驶方法
CN102236909A (zh) * 2011-07-18 2011-11-09 长安大学 车辆失控后再两车碰撞组合型事故模拟计算与再现系统
CN103196418A (zh) * 2013-03-06 2013-07-10 山东理工大学 一种弯道车距测量方法
CN104036279A (zh) * 2014-06-12 2014-09-10 北京联合大学 一种智能车行进控制方法及系统
CN104239741A (zh) * 2014-09-28 2014-12-24 清华大学 基于行车风险场的汽车驾驶安全辅助方法
CN104504680A (zh) * 2014-11-23 2015-04-08 北京联合大学 一种用于智能车的逆透视标定方法
CN107074254A (zh) * 2014-12-17 2017-08-18 川崎重工业株式会社 铁道车辆用转向架
CN107284276A (zh) * 2017-07-14 2017-10-24 尚圣杰 一种无限远程续航电动汽车的侧刷充电装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Estimation of collision risk for improving driver"s safety";Joko Hariyono 等;《IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society》;20161022 *
"Inverse perspective mapping based Urban road markings detection";Li, Hua 等;《IEEE 2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems (CCIS)》;20111001;1178–1182 *
"基于人-车-路协同的行车风险场概念、原理及建模";王建强 等;《中国公路学报》;20160115;第29卷(第1期) *
"基于机器视觉的先进辅助驾驶系统关键技术研究";范延军;《中国博士学位论文全文数据库 工程科技Ⅱ辑》;20170215;C035-25 *
"速度异常的横穿马路行人检测算法";许烨豪;《大连民族大学学报》;20180515;第20卷(第03期);218-221+272 *

Also Published As

Publication number Publication date
CN108805105A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
CN108961313B (zh) 二维世界坐标系的俯视行人风险量化方法
CN107031623B (zh) 一种基于车载盲区相机的道路预警方法
CN108596058A (zh) 基于计算机视觉的行车障碍物测距方法
CN108960183A (zh) 一种基于多传感器融合的弯道目标识别系统及方法
JP4676373B2 (ja) 周辺認識装置、周辺認識方法、プログラム
Gandhi et al. Vehicle surround capture: Survey of techniques and a novel omni-video-based approach for dynamic panoramic surround maps
CN109373974A (zh) 一种具备主动探测功能的自动驾驶汽车环境感知系统
CN111829549B (zh) 一种基于高精度地图的积雪路面虚拟车道线投影方法
CN110065494A (zh) 一种基于车轮检测的车辆防碰撞方法
JP2022517940A (ja) ポットホール検出システム
CN105835880A (zh) 车道追踪系统
CN110444014A (zh) 基于反向st-mrf车辆跟踪算法的防追尾预警方法
EP2293588A1 (en) Method for using a stereovision camera arrangement
JP2023510734A (ja) 撮像システムのための車線の検出および追跡方法
CN107796373B (zh) 一种基于车道平面几何模型驱动的前方车辆单目视觉的测距方法
CN110378202A (zh) 一种基于鱼眼镜头的全方位行人碰撞预警方法
US10984264B2 (en) Detection and validation of objects from sequential images of a camera
CN107985189A (zh) 面向高速驾驶环境下的驾驶员变道深度预警方法
CN109059863B (zh) 将平视行人轨迹点向量映射至二维世界坐标系的方法
CN110816527A (zh) 一种车载夜视安全方法和系统
CN107290738A (zh) 一种测量前方车辆距离的方法和装置
Adamshuk et al. On the applicability of inverse perspective mapping for the forward distance estimation based on the HSV colormap
CN117111055A (zh) 一种基于雷视融合的车辆状态感知方法
CN116142186A (zh) 不良环境下车辆安全行驶预警方法、装置、介质和设备
TWI680898B (zh) 近距離障礙物之光達偵測裝置及其方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant