CN108803528A - 基于多变量相关性及时滞性的流程工业系统预测模型 - Google Patents

基于多变量相关性及时滞性的流程工业系统预测模型 Download PDF

Info

Publication number
CN108803528A
CN108803528A CN201810774602.0A CN201810774602A CN108803528A CN 108803528 A CN108803528 A CN 108803528A CN 201810774602 A CN201810774602 A CN 201810774602A CN 108803528 A CN108803528 A CN 108803528A
Authority
CN
China
Prior art keywords
index
variable
predicted
correlation
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810774602.0A
Other languages
English (en)
Inventor
郑松
罗单
葛铭
郑小青
魏江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Hangzhou Electronic Science and Technology University
Original Assignee
Hangzhou Electronic Science and Technology University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Electronic Science and Technology University filed Critical Hangzhou Electronic Science and Technology University
Priority to CN201810774602.0A priority Critical patent/CN108803528A/zh
Publication of CN108803528A publication Critical patent/CN108803528A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41885Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32339Object oriented modeling, design, analysis, implementation, simulation language
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

基于多变量相关性及时滞性的流程工业系统预测模型,确定待预测指标和相关指标,所述相关指标是指对待预测指标产生影响的指标变量;获取待预测指标变量某一时段的时间序列,作为比较序列;获取所述相关指标变量在同一时段的时间序列,作为参考序列;计算所述参考序列和比较序列的相关联度;设置关联度阈值,根据相关联度对相关指标进行筛选,得到相关指标的特征变量集合S;将所述特征变量集合S作为人工神经网络的输入变量,将待预测指标变量作为判断的基准变量,以最小化预测误差为目标,去除特征变量集合S中的无关和冗余特征变量,并在此过程中调整人工神经网络的参数,最终得到最优输入特征子集A,同时也建立了有效的待预测指标预测模型。

Description

基于多变量相关性及时滞性的流程工业系统预测模型
技术领域
本发明涉及流程工业生产领域,特别涉及一种基于多变量相关性及时滞性的流程工业系统预测模型。
背景技术
流程工业普遍包含诸多重要的生产过程指标或变量,现场操作人员仅根据经验对某些特别关注的关键指标进行监测,从而调控整个生产过程,最终达到稳定生产的目标,如高炉炼铁过程中铁水温度,硅含量以及多种质量指标等。工业生产过程通常具有非线性和大滞后等特征,对这些指标的测量往往耗时长,难以检测,或根本无法检测,因此针对其建立有效的数学模型进行实时预测就显得尤为重要。另外,从实时生产调度出发,操作人员希望预先了解某些关键指标的未来变化趋势,这也使得指标趋势预测成为目前流程工业生产过程监控的重要任务。
被预测的指标值往往与生产过程中的多个过程变量相关,进行生产过程指标预测首先需要将与被预测指标最相关的特征变量从众多候选变量中挑选出来。通常数据变量(特征)的选择包括通过经验知识手动选择和基于数据分析的选择方法。通过经验知识的方法虽然方便快捷,但时常会因为经验不足出现错选漏选或特征冗余的情况。流程工业生产过程通常具有时滞性,输入变量的变化往往需要经过一段时间才能反映到被预测的指标上,所以需将输入变量的时滞性考虑到预测建模中。但是目前通常基于人工经验来手动选取延迟时间,预测模型建模的效果往往是难以保证的。传统的生产过程指标预测采用基于机理的建模方法,该方法在工艺机理分析的基础上,依据物料平衡、热量平衡和动力学建立数学模型。由于工业生产常常具有非平衡、非稳定和强非线性等特点,此类机理模型成本高、难度大,其准确性和可靠性难以保证,往往存在模型精度低和容易失配等问题。基于数据的预测建模与机理建模不同的是此类方法只关注模型的输入和输出,而无需对生产过程的反应或动力学等机理信息进行研究。
发明内容
本发明的一个目的是克服现有技术通过经验知识和基于数据分析的方法预测某些关键指标未来变化趋势,容易出现错选漏选或特征冗余的问题,提供了一种基于多变量相关性及时滞性的流程工业系统预测模型。
本发明解决其技术问题所采用的技术方案是:基于多变量相关性及时滞性的流程工业系统预测模型,确定待预测指标和相关指标,所述相关指标是指对待预测指标产生影响的指标变量;获取待预测指标变量某一时段的时间序列,作为比较序列;获取所述相关指标变量在同一时段的时间序列,作为参考序列;计算所述参考序列和比较序列的相关联度;设置关联度阈值,根据相关联度对相关指标进行筛选,得到相关指标的特征变量集合S;将所述特征变量集合S作为人工神经网络的输入变量,将待预测指标变量作为判断的基准变量,以最小化预测误差为目标,去除特征变量集合S中的无关和冗余特征变量,并在此过程中调整人工神经网络的参数,最终得到最优输入特征子集A,同时也建立了有效的待预测指标预测模型。
进一步地,所述根据相关联度对相关指标进行筛选,得到相关指标的特征变量集合S,具体是指,将比较序列与参考序列的最大关联度,和所述关联度阈值比较,将大于所述关联度阈值的最大关联度对应的特征变量组成特征变量集合S。
进一步地,所述计算所述参考序列和比较序列的相关联度,包括:
设参考序列为X0=[x0(1),...,x0(n)],比较序列为X1=[x1(1),...,x1(i)];
对所述参考序列和比较序列进行无量纲化处理:
根据公式
其中,在区间[k,k+1]上的面积变化量;在区间[k,k+1]上的面积变化量;
计算的相关联度为:
进一步地,所述最大关联度是指:
S1:从参考序列X0截取某一段序列并表示为第一参考序列X00=[x0(1),...,x0(n-i)],从同一时段的比较序列X1中截取相应序列并表示为第一比较序列X11=[x1(1+i),...,x1(n)],其中0≤i<n;
当i=1时,X00=[x0(1),...,x0(n-1)],X11=[x1(2),...,x1(n)];
对第一参考序列X00和第一比较序列进行X11无量纲处理得到
S2:计算的当前关联度:此时,参考序列X0和比较序列X1的最大关联度κmax=κcurr,时滞步数lags=i;
S3:令i=i+1更新第一参考序列X00和第一比较序列进行X11,重复步骤S2,得到二者的当前关联度:κ′curr
若κ′curr>κmax,则令最大关联度κmax=κ′curr;否则,不处理;
S4:C为设定的循环次数,判断i≤C,是否成立,若成立,则重复步骤S3;
若不成立,则返回候选变量序列X0和参考序列X1最大关联度κmax和相应的时滞步数lags,X1相对于X0的延迟时间T=τ·lags,τ为采样周期。
进一步地,所述去除特征集合S中的无关和冗余特征变量,得到最优输入特征子集A,同时建立有效的待预测指标预测模型,具体包括:
2.1初始化输入特征子集A′,即A′={s(i)},i=1,初始化人工神经网络隐含层神经元个数和学习率;
2.2将输入特征子集A′结合当前时刻t和延迟时间T的值以及历史时刻d的待预测指标的值作为人工神经网络的一个输入样本,送入人工神经网络,计算人工神经网络的实际输出;
t时刻待预测指标的预测值表示为:
计算预测值与真实值的差值y(t)为t时刻待预测指标的真实值;
根据差值D调整人工神经网络的参数;
对每个时刻重复上述过程,直到差值D不超过设定的范围;
其中:n为第i个变量的样本数量,y(j)为待预测指标的真实值,为待预测指标的预测值;
计算待预测指标预测误差ε(i):
2.3更新输入特征子集A′={A′+s(i+1)},得到待预测指标预测误差ε(i+1);
比较ε(i)与ε(i+1)的大小,若ε(i)>ε(i+1),则认为第i+1个变量为有效变量,保留第i+1个变量,跳至步骤2.2;
否则,令A′={A′-s(i+1)},跳至步骤2.2;
当i=n-1时,循环结束,从而得到与待预测指标最相关的且去除无关和冗余特征变量的最优输入特征子集A,A=A′,此时的人工神经网络就是有效的待预测指标预测模型。
本发明的实质性效果:本发明方法通过选择合适的相关特征变量,选定特征变量的延迟时间,并将延迟时间融合预测模型,以递进选择策略去除冗余变量,优化模型参数,建立了有效的待预测指标预测模型,最终实现对流程工业关键指标的有效预测。
具体实施方式
下面通过具体实施例,对本发明的技术方案作进一步的具体说明。
基于多变量相关性及时滞性的流程工业系统预测模型,
(1)确定待预测指标和相关指标,所述相关指标是指对待预测指标产生影响的指标变量;
(2)获取待预测指标变量某一时段的时间序列,作为比较序列;获取所述相关指标变量在同一时段的时间序列,作为参考序列;
(3)计算所述参考序列和比较序列的相关联度;
将比较序列与参考序列的最大关联度,和所述关联度阈值比较,将大于所述关联度阈值的最大关联度对应的特征变量组成特征变量集合S。
计算所述参考序列和比较序列的相关联度,包括:
设参考序列为X0=[x0(1),...,x0(n)],比较序列为X1=[x1(1),...,x1(i)];
对所述参考序列和比较序列进行无量纲化处理:
根据公式
其中,在区间[k,k+1]上的面积变化量;在区间[k,k+1]上的面积变化量;
计算的相关联度为:
(4)设置关联度阈值,根据相关联度对相关指标进行筛选,得到相关指标的特征变量集合S,具体是指:
将比较序列与参考序列的最大关联度,和所述关联度阈值比较,将大于所述关联度阈值的最大关联度对应的特征变量组成特征变量集合S;
最大关联度是指:
S1:从参考序列X0截取某一段序列并表示为第一参考序列X00=[x0(1),...,x0(n-i)],从同一时段的比较序列X1中截取相应序列并表示为第一比较序列X11=[x1(1+i),...,x1(n)],其中0≤i<n;
当i=1时,X00=[x0(1),...,x0(n-1)],X11=[x1(2),...,x1(n)];
对第一参考序列X00和第一比较序列进行X11无量纲处理得到
S2:计算的当前关联度:此时,参考序列X0和比较序列X1的最大关联度κmax=κcurr,时滞步数lags=i;
S3:令i=i+1更新第一参考序列X00和第一比较序列进行X11,重复步骤S2,得到二者的当前关联度:κ′curr
若κ′curr>κmax,则令最大关联度κmax=κ′curr;否则,不处理;
S4:C为设定的循环次数,判断i≤C,是否成立,若成立,则重复步骤S3;
若不成立,则返回候选变量序列X0和参考序列X1最大关联度κmax和相应的时滞步数lags,X1相对于X0的延迟时间T=τ·lags,τ为采样周期。
(5)将所述特征变量集合S作为人工神经网络的输入变量,将待预测指标变量作为判断的基准变量,以最小化预测误差为目标,去除特征变量集合S中的无关和冗余特征变量,并在此过程中调整人工神经网络的参数,最终得到最优输入特征子集A,同时也建立了有效的待预测指标预测模型,具体包括:
2.1初始化输入特征子集A′,即A′={s(i)},i=1,初始化人工神经网络隐含层神经元个数和学习率;
2.2将输入特征子集A′结合当前时刻t和延迟时间T的值以及历史时刻d的待预测指标的值作为人工神经网络的一个输入样本,送入人工神经网络,计算人工神经网络的实际输出;
t时刻待预测指标的预测值表示为:
计算预测值与真实值的差值为t时刻待预测指标的真实值;
根据差值D调整人工神经网络的参数;
差值D对应的损失函数和人工神经网络的权重有关,通过损失函数对权重求偏导数,偏导数乘以人工神经网络的学习率,用权重减去这个乘值,就能得到修正后的新的权重=,原先的人工神经网络也得到了更新;
权重其中,α为学习率,e(who)为误差的损失函数;
以最小化预测值与实际值的差值为原则,当误差对权重的偏导数大于零时,权值调整量为负,实际输出大于期望输出,权值向减少方向调整,使得实际输出与期望输出的差减少。当误差对权值的偏导数小于零时,权值调整量为正,实际输出少于期望输出,权值向增大方向调整,使得实际输出与期望输出的差减少;
对每个时刻重复上述过程,直到差值D不超过设定的范围;
其中:n为第i个变量的样本数量,y(j)为待预测指标的真实值,为待预测指标的预测值;
计算待预测指标预测误差ε(i):
2.3更新输入特征子集A′={A′+s(i+1)},得到待预测指标预测误差ε(i+1);
比较ε(i)与ε(i+1)的大小,若ε(i)>ε(i+1),则认为第i+1个变量为有效变量,保留第i+1个变量,跳至步骤2.2;
否则,令A′={A′-s(i+1)},跳至步骤2.2;
当i=n-1时,循环结束,从而得到与待预测指标最相关的且去除无关和冗余特征变量的最优输入特征子集A,A=A′,此时的人工神经网络就是有效的待预测指标预测模型。
以上所述实施例只是本发明的一种较佳的方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其他的变体及改型。

Claims (5)

1.基于多变量相关性及时滞性的流程工业系统预测模型,其特征在于,
确定待预测指标和相关指标,所述相关指标是指对待预测指标产生影响的指标变量;
获取待预测指标变量某一时段的时间序列,作为比较序列;
获取所述相关指标变量在同一时段的时间序列,作为参考序列;
计算所述参考序列和比较序列的相关联度;
设置关联度阈值,根据相关联度对相关指标进行筛选,得到相关指标的特征变量集合S;
将所述特征变量集合S作为人工神经网络的输入变量,将待预测指标变量作为判断的基准变量,以最小化预测误差为目标,去除特征变量集合S中的无关和冗余特征变量,并在此过程中调整人工神经网络的参数,最终得到最优输入特征子集A,同时也建立了有效的待预测指标预测模型。
2.如权利要求1所述的基于多变量相关性及时滞性的流程工业系统预测模型,其特征在于,所述根据相关联度对相关指标进行筛选,得到相关指标的特征变量集合S,具体是指,将比较序列与参考序列的最大关联度,和所述关联度阈值比较,将大于所述关联度阈值的最大关联度对应的特征变量组成特征变量集合S。
3.如权利要求1或2所述的基于多变量相关性及时滞性的流程工业系统预测模型,其特征在于,所述计算所述参考序列和比较序列的相关联度,包括:
设参考序列为X0=[x0(1),...,x0(n)],比较序列为X1=[x1(1),...,x1(i)];
对所述参考序列和比较序列进行无量纲化处理:
根据公式
其中,在区间[k,k+1]上的面积
变化量;在区间[k,k+1]上的面积变化量;
计算X0 0和X0 1的相关联度为:
4.如权利要求2或3所述的基于多变量相关性及时滞性的流程工业系统预测模型,其特征在于,所述最大关联度是指:
S1:从参考序列X0截取某一段序列并表示为第一参考序列X00=[x0(1),...,x0(n-i)],从同一时段的比较序列X1中截取相应序列并表示为第一比较序列X11=[x1(1+i),...,x1(n)],其中0≤i<n;
当i=1时,X00=[x0(1),...,x0(n-1)],X11=[x1(2),...,x1(n)];
对第一参考序列X00和第一比较序列进行X11无量纲处理得到
S2:计算的当前关联度:此时,参考序列X0和比较序列X1的最大关联度κmax=κcurr,时滞步数lags=i;
S3:令i=i+1更新第一参考序列X00和第一比较序列进行X11,重复步骤S2,得到二者的当前关联度:κ′curr
若κ′curr>κmax,则令最大关联度κmax=κcurr;否则,不处理;
S4:C为设定的循环次数,判断i≤C,是否成立,若成立,则重复步骤S3;
若不成立,则返回候选变量序列X0和参考序列X1最大关联度κmax和相应的时滞步数lags,X1相对于X0的延迟时间T=τ·lags,τ为采样周期。
5.如权利要求3或4所述的基于多变量相关性及时滞性的流程工业系统预测模型,其特征在于,所述去除特征集合S中的无关和冗余特征变量,得到最优输入特征子集A,同时建立有效的待预测指标预测模型,具体包括:
2.1初始化输入特征子集A′,即A′={s(i)},i=1,初始化人工神经网络隐含层神经元个数和学习率;
2.2将输入特征子集A′结合当前时刻t和延迟时间T的值以及历史时刻d的待预测指标的值作为人工神经网络的一个输入样本,送入人工神经网络,计算人工神经网络的实际输出;
t时刻待预测指标的预测值表示为:
计算预测值与真实值的差值y(t)为t时刻待预测指标的真实值;
根据差值D调整人工神经网络的参数;
对每个时刻重复上述过程,直到差值D不超过设定的范围;
其中:n为第i个变量的样本数量,y(j)为待预测指标的真实值,为待预测指标的预测值;
计算待预测指标预测误差ε(i):
2.3更新输入特征子集A′={A′+s(i+1)},得到待预测指标预测误差ε(i+1);
比较ε(i)与ε(i+1)的大小,若ε(i)>ε(i+1),则认为第i+1个变量为有效变量,保留第i+1个变量,跳至步骤2.2;
否则,令A′={A′-s(i+1)},跳至步骤2.2;
当i=n-1时,循环结束,从而得到与待预测指标最相关的且去除无关和冗余特征变量的最优输入特征子集A,A=A′,此时的人工神经网络就是有效的待预测指标预测模型。
CN201810774602.0A 2018-07-13 2018-07-13 基于多变量相关性及时滞性的流程工业系统预测模型 Pending CN108803528A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810774602.0A CN108803528A (zh) 2018-07-13 2018-07-13 基于多变量相关性及时滞性的流程工业系统预测模型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810774602.0A CN108803528A (zh) 2018-07-13 2018-07-13 基于多变量相关性及时滞性的流程工业系统预测模型

Publications (1)

Publication Number Publication Date
CN108803528A true CN108803528A (zh) 2018-11-13

Family

ID=64076847

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810774602.0A Pending CN108803528A (zh) 2018-07-13 2018-07-13 基于多变量相关性及时滞性的流程工业系统预测模型

Country Status (1)

Country Link
CN (1) CN108803528A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109740813A (zh) * 2018-12-29 2019-05-10 上海华力微电子有限公司 晶圆制造中在线产品批次跑货状态的分析预测方法
CN109884892A (zh) * 2019-02-28 2019-06-14 杭州电子科技大学 基于交叉相关时滞灰色关联分析的流程工业系统预测模型
CN111459921A (zh) * 2020-01-13 2020-07-28 杭州电子科技大学 一种基于时滞互信息的空分工厂氮气浓度相关性分析方法
CN111814316A (zh) * 2020-06-18 2020-10-23 中国科学院空天信息创新研究院 一种用于地表变量的非均匀性时空分析方法及系统
CN114999581A (zh) * 2022-06-13 2022-09-02 华东交通大学 一种稀土萃取分离过程的时滞辨识方法和系统
CN116682566A (zh) * 2023-08-03 2023-09-01 青岛市中医医院(青岛市海慈医院、青岛市康复医学研究所) 一种血液透析的数据处理方法及系统

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109740813A (zh) * 2018-12-29 2019-05-10 上海华力微电子有限公司 晶圆制造中在线产品批次跑货状态的分析预测方法
CN109740813B (zh) * 2018-12-29 2020-11-24 上海华力微电子有限公司 晶圆制造中在线产品批次跑货状态的分析预测方法
CN109884892A (zh) * 2019-02-28 2019-06-14 杭州电子科技大学 基于交叉相关时滞灰色关联分析的流程工业系统预测模型
CN111459921A (zh) * 2020-01-13 2020-07-28 杭州电子科技大学 一种基于时滞互信息的空分工厂氮气浓度相关性分析方法
CN111814316A (zh) * 2020-06-18 2020-10-23 中国科学院空天信息创新研究院 一种用于地表变量的非均匀性时空分析方法及系统
CN111814316B (zh) * 2020-06-18 2024-04-02 中国科学院空天信息创新研究院 一种用于地表变量的非均匀性时空分析方法及系统
CN114999581A (zh) * 2022-06-13 2022-09-02 华东交通大学 一种稀土萃取分离过程的时滞辨识方法和系统
CN114999581B (zh) * 2022-06-13 2023-11-10 华东交通大学 一种稀土萃取分离过程的时滞辨识方法和系统
CN116682566A (zh) * 2023-08-03 2023-09-01 青岛市中医医院(青岛市海慈医院、青岛市康复医学研究所) 一种血液透析的数据处理方法及系统
CN116682566B (zh) * 2023-08-03 2023-10-31 青岛市中医医院(青岛市海慈医院、青岛市康复医学研究所) 一种血液透析的数据处理方法及系统

Similar Documents

Publication Publication Date Title
CN108803528A (zh) 基于多变量相关性及时滞性的流程工业系统预测模型
Mujtaba et al. Neural network based modelling and control in batch reactor
CN111045326B (zh) 一种基于递归神经网络的烘丝过程水分预测控制方法及系统
US20070250214A1 (en) Method and apparatus for fuzzy logic control enhancing advanced process control performance
Rashid et al. Multi-rate modeling and economic model predictive control of the electric arc furnace
CN109884892A (zh) 基于交叉相关时滞灰色关联分析的流程工业系统预测模型
JP5732066B2 (ja) 先進的プロセス制御とプロセスの実時間最適化とを協調させるための方法、システム及び製造品
CN107464023A (zh) 生命周期预测模型的在线学习方法和设备
CN102540879A (zh) 基于群决策检索策略的多目标评价优化方法
Martín et al. Hot metal temperature prediction in blast furnace using advanced model based on fuzzy logic tools
Jiang et al. Real-time moisture control in sintering process using offline–online NARX neural networks
JP2009116515A (ja) Pidパラメータ調節支援装置
Tian et al. Hybrid modeling of molten steel temperature prediction in LF
Wang et al. A hybrid approach for supervisory control of furnace temperature
CN112631215A (zh) 工业过程运行指标智能预报方法、装置、设备及存储介质
KR20200035550A (ko) 인공신경망 기법을 활용한 전로 출강 온도 예측 방법
Zhang et al. Multiobjective operation optimization of continuous annealing based on data analytics
Tian et al. A new incremental learning modeling method based on multiple models for temperature prediction of molten steel in LF
Zanoli et al. Model Predictive Control with horizons online adaptation: A steel industry case study
Vlădăreanu et al. Robot digital twin towards industry 4.0
CN113655816A (zh) 钢包底吹氩系统流量控制方法及计算机可读存储介质
JPH0415706A (ja) モデル予測制御装置
CN112255912A (zh) 一种无模型自适应pid控制策略的聚合釜产物浓度控制方法
Zagoskina et al. Control of the blast furnace thermal state based on the neural network simulation
JP2019184575A (ja) 測定動作パラメータ調整装置、機械学習装置及びシステム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181113

RJ01 Rejection of invention patent application after publication