CN108795989A - SpyCas9的基因编辑活性抑制位点及其抑制剂 - Google Patents

SpyCas9的基因编辑活性抑制位点及其抑制剂 Download PDF

Info

Publication number
CN108795989A
CN108795989A CN201810384117.2A CN201810384117A CN108795989A CN 108795989 A CN108795989 A CN 108795989A CN 201810384117 A CN201810384117 A CN 201810384117A CN 108795989 A CN108795989 A CN 108795989A
Authority
CN
China
Prior art keywords
spycas9
lys
leu
gene editing
glu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810384117.2A
Other languages
English (en)
Inventor
黄志伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Publication of CN108795989A publication Critical patent/CN108795989A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明公开了SpyCas9的基因编辑活性抑制位点,所述基因编辑活性抑制位点在制备基因编辑相关制剂中的用途,以及能够抑制SpyCas9的基因编辑/核酸酶活性的抑制剂。本发明为开发SpyCas9活性抑制剂与相关技术以及产品提供了基础。

Description

SpyCas9的基因编辑活性抑制位点及其抑制剂
相关申请的交叉引用
本申请要求于2017年4月26日提交的申请号为201710284103.9的中 国专利申请的权益,在此将其全部内容引入作为参考。
技术领域
本发明属于生物技术领域,具体地,本发明涉及SpyCas9的基因编辑 活性抑制位点及其应用。
背景技术
CRISPR/Cas9技术是近年来发展起来的一种新的基因编辑技术。在打靶 过程中,CRISPR/Cas9系统通过sgRNA-Cas9体系使间区序列邻近基序 (Protospacer AdjacentMotif,PAM)3’端与sgRNA互补的目标DNA产生双 链断裂(Double-Strand Breaks,DSB),之后细胞通过非同源末端连接(Non- Homologous End Joining,NHEJ)或者同源介导的双链DNA修复 (Homology-Directed Repair,HDR)对DNA进行修复,以实现对基因组的 改造。
基于对Cas蛋白的识别,CRISPR/Cas9系统可分成I至VI 6种类型与 19种亚型。目前已得到充分表征的SpyCas9系统属于II型CRISPR系统, 其通过PI结构域识别PAM区段而招募靶标双链DNA(dsDNA)。SpyCas9 与sgRNA相组合,已用作基因组编辑和基因调节中的最常见和有力的工具。
然而,目前仍然缺乏控制SpyCas9活性、由此降低由过度SpyCas9活性 导致的编辑脱靶的工具。并且,虽然目前已发现一些抗CRISPR蛋白,例如 由Listeria monocytogenes噬菌体原编码的4种抗CRISPR蛋白,特别是 AcrIIA2和AcrIIA4,可以使Listeriamonocytogenes Cas9(LmoCas9)的II-A CRISPR-Cas9和体内SpyCas9失活,但对于SpyCas9的活性位点以及与其相 关联的抑制剂,仍有待阐释与开发。
发明内容
为了解决上述技术问题,本发明的发明人通过解析AcrIIA4与SpyCas9 的复合物结构,并进行深入表征,发现AcrIIA4直接和SpyCas9PI结构域上 的PAM DNA识别氨基酸结合从而抑制SpyCas9活性,所述PAM DNA识别 氨基酸包括Glu1108、Ser1109、Ser1216、Lys1200、Arg1335、Arg976和Arg1333 等,这是SpyCas9基因编辑活性抑制位点的首次发现。
因此,本发明的一个目的是提供SpyCas9的所述基因编辑活性抑制位 点。
本发明的另一个目的是提供该抑制位点的用途,例如针对该位点制备基 因编辑相关制剂。
本发明的又一个目的是提供能够抑制SpyCas9的基因编辑/核酸酶活性 的抑制剂。
本发明的还一个目的是提供抑制SpyCas9的基因编辑的方法。
本发明的技术方案如下。
一方面,本发明提供SpyCas9的基因编辑活性抑制位点,所述活性抑制 位点选自SpyCas9中的Glu1108、Ser1109、Ser1216、Lys1200、Arg1335、 Arg976和Arg1333中的一个或多个。其中SpyCas9参见Jinek,M.et al.A programmable dual-RNA-guided DNAendonuclease in adaptive bacterial immunity.Science 337,816-821(2012);Gasiunas,G.,Barrangou,R.,Horvath,P. &Siksnys,V.Cas9-crRNA ribonucleoproteincomplex mediates specific DNA cleavage for adaptive immunity inbacteria.Proc.Natl Acad.Sci.USA 109, 2579-2586(2012);Anders,C.,Niewoehner,O.,Duerst,A.&Jinek,M.Structural basis of PAM-dependent target DNA recognition bythe Cas9endonuclease. Nature 513,569-573(2014);Nishimasu,H.et al.Crystalstructure of Cas9in complex with guide RNA and target DNA.Cell 156,935-949(2014);Jinek,M.et al.Structures of Cas9endonucleases reveal RNA-mediatedconformational activation.Science 343,1247997(2014);Jiang,F.et al.A Cas9-guide RNA complex preorganized for target DNA recognition.Science 348,1477-1481 (2015)。根据本发明的具体实施方式,本发明的SpyCas9的氨基酸序列如SEQ ID NO.1所示。
另一方面,本发明提供所述基因编辑活性抑制位点在制备基因编辑相关 制剂中的用途。
优选地,所述基因编辑相关制剂为SpyCas9的基因编辑/核酸酶活性的 活性抑制剂。
更优选地,所述基因编辑相关制剂为SpyCas9剪切含PAM基序的 dsDNA的活性抑制剂。
优选地,所述基因编辑相关制剂结合所述SpyCas9的PI结构域。
优选地,所述基因编辑相关制剂通过占据SpyCas9的PI结构域中的 PAM-DNA相互作用位点而抑制SpyCas9的基因编辑/核酸酶活性。
更优选地,所述基因编辑相关制剂结合SpyCas9的Glu1108、Ser1109、 Ser1216、Lys1200、Arg1335、Arg976和Arg1333中的一个或多个。
进一步优选地,所述基因编辑相关制剂通过模拟PAM而阻断SpyCas9 对dsDNA底物的识别和/或结合。
又一方面,本发明一种能够抑制SpyCas9的基因编辑/核酸酶活性的抑 制剂,所述抑制剂结合所述SpyCas9的PI结构域。
优选地,所述抑制剂通过占据PI结构域中的PAM-DNA相互作用位点 而抑制SpyCas9的基因编辑/核酸酶活性。
具体而言,所述抑制剂结合所述SpyCas9的Glu1108、Ser1109、Ser1216、 Lys1200、Arg1335、Arg976和Arg1333中的一个或多个。
进一步优选地,所述抑制剂通过模拟PAM而阻断SpyCas9对dsDNA底 物的识别和/或结合。
还一方面,一种抑制SpyCas9的基因编辑活性的方法,所述方法包括提 供本发明所述的抑制剂。
并且,实验证明,SpyCas9关键氨基酸残基突变后,其与含PAM基序 的dsDNA结合能力降低,甚至不再具有该结合能力。因此,再一方面,本 发明提供一种SpyCas9突变体(突变蛋白),所述SpyCas9突变体相对于野 生型SpyCas9在选自第1108、1109、1216、1200、1335、976和1333中的 一个或多个氨基酸位点具有突变。其中,野生型SpyCas9的氨基酸序列如SEQ ID NO.1所示。
根据本发明的具体实施方式,所述SpyCas9突变体相对于野生型 SpyCas9具有选自以下突变中的一个或多个:S1216T、S1216R、R1333Y、 R1333H、R1335Y、S1109R、K1200Y。
本发明的发明人以AcrIIA4与SpyCas9的复合物结构为基础,首次发现 了SpyCas9中的基因编辑活性抑制位点,为开发其活性抑制剂与相关技术以 及产品提供了基础,并且还可有助于减少基因编辑技术的脱靶效应,提高该 技术与相关产品的安全性和有效性。
附图说明
以下,结合附图来详细说明本发明的实施方案,其中:
图1显示了测定AcrIIA4与SpyCas9相互作用的凝胶过滤实验结果;
图2显示了测定AcrIIA4与SpyCas9相互作用的GST拉下实验结果;
图3显示了SpyCas9和SpyCas9-sgRNA-AcrIIA4复合物示意图;
图4显示了在SpyCas9-sgRNA-AcrIIA4复合物中AcrIIA4与SpyCas9的 界面接触情况;
图5显示了AcrIIA4与SpyCas9的结合位点的进一步分析结果;
图6显示了SpyCas9关键氨基酸突变后与dsDNA的结合能力的检测结 果。
具体实施方式
以下参照具体的实施例来说明本发明。本领域技术人员能够理解,这些 实施例仅用于说明本发明,其不以任何方式限制本发明的范围。
下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施 例中所用的试剂材料等,如无特殊说明,均为市售购买产品。
实施例1 AcrIIA4与SpyCas9的结合
合成全长SpyCas9、NmeCas9、AcrIIA2和AcrIIA4的cDNA(SEQ ID NO. 2、SEQ IDNO.3、SEQ ID NO.4和SEQ ID NO.5),分别亚克隆到细菌表达 载体pGEX-6P-1(GEHealthcare,具有N-端GST标签)中。在大肠杆菌C43 (DE3)细胞中表达蛋白。重组蛋白的表达由0.3mM IPTG在16℃下诱导,过 夜后,离心收集细胞,将表达有Spycas9或NmeCas9蛋白的细胞重悬于补充 了1mM蛋白酶抑制剂PMSF(Sigma)的缓冲液A(25mM Tris-HCl,pH8.0,1MNaCl,3mM DTT)中。超声裂解细胞,4℃下23708×g离心去除细胞碎片。 裂解物首先使用GS4B珠子(GE Healthcare)纯化,洗涤珠子,在缓冲液B (25mM Tris-HCl,pH8.0,300MNaCl,3mM DTT)中在4℃下使用ppase过夜 剪切结合的蛋白,以去除N-端GST标签。将经剪切的SpyCas9蛋白从GS4B 树脂上洗脱下来,通过肝素琼脂糖凝胶和FPLC离子交换色谱(AKTAPure, GE Healthcare)进一步分离纯化。
将分别表达AcrIIA2和AcrIIA4蛋白的细胞重悬于缓冲液B中,如上纯 化,通过阴离子交换色谱进一步分离纯化。
使用T7聚合酶体外转录分别用于SpyCas9的sgRNA(SpyCas9_sgRNA;SEQ ID NO.6)和用于NmeCas9的sgRNA(NmeCas9_sgRNA;SEQ ID NO. 8),使用相应浓度的变性聚丙烯凝胶电泳纯化。两种sgRNA的转录模板 (dsDNA)(SEQ ID NO.7和SEQ ID NO.9)通过PCR生成。进行转录反应 的缓冲液含有0.1M HEPES-K pH 7.9,12mM MgCl2,30mM DTT,2mM亚精胺, 2mMNTP(每种),80μg/mL T7聚合酶和500nM转录模板。反应在37℃下 进行2-6小时,在-80℃下冷冻1小时终止。低温冷冻分别使焦磷酸和DNA 模板沉淀,去除沉淀物之后,通过乙醇沉淀法沉淀sgRNA,-80℃下冷冻1 小时,离心处理后,保留sgRNA沉淀,使用2×TBE-尿素凝胶上样缓冲液重 悬,在变性(8M尿素)聚丙烯酰胺凝胶上电泳纯化。从该凝胶上切下sgRNA 条带,用Elutrap System回收,乙醇沉淀。将sgRNA重悬于DEPC处理水中, -80℃下储存。
(一)凝胶过滤实验
本实验测定在存在或不存在sgRNA时,AcrIIA4是否与SpyCas9相互作 用。制备如下实验组:
SpyCas9+AcrIIA4组:摩尔比1:8
SpyCas9+sgRNA+AcrIIA4组:摩尔比1:2:8
NmeCas9+AcrIIA4组:摩尔比1:8
NmeCas9+sgRNA+AcrIIA4组:摩尔比1:2:8
将各组样品分别在补充有2mM MgCl2的缓冲液C(10mM Tris-HCl,pH 8.0,150mMNaCl,3mM DTT)中在4℃下孵育1小时,使用尺寸排阻色谱 (Superdex 200increase 10/300GL,GE Healthcare)纯化分离样品,用缓冲液 C平衡。实验参数:流速0.5ml/min,上样体积2ml,每0.5ml样品收集一次。 来自不同收集位置的样品进行SDS-PAGE电泳,考马斯亮蓝染色,检测纯化 的蛋白质质量。
结果分别见图1中的图1A和图1B。其中,图1A示出了来自尺寸排阻 色品的UV吸收峰,图1B示出了来自凝胶过滤的各峰级分的SDS-PAGE和 考马斯亮蓝染色结果。由图1可知,AcrIIA4不单独与SpyCas9相互作用, 但是在sgRNA存在下,AcrIIA4与SpyCas9共同迁移,表明三者形成了sgRNA 诱导的复合物。
(二)GST拉下实验
本实验测定在存在或不存在sgRNA时,AcrIIA2或AcrIIA4蛋白是否与 SpyCas9或NmeCas9相互作用。在存在或不存在sgRNA时,使纯化的 GST-SpyCas9或GST-NmeCas9先与GS4B珠子结合,然后将珠子与AcrIIA2 或AcrIIA4蛋白孵育。三者反应摩尔比为GST-SpyCas9或 GST-NmeCas9:sgRNA:AcrIIA2或AcrIIA4蛋白=1:2.5:4,将GST-SpyCas9蛋 白或GST-NmeCas9与sgRNA以摩尔比1:2.5的比例在室温下在缓冲液C中 混合5分钟,再与AcrIIA2或AcrIIA4在4℃下混合并孵育15分钟。用缓冲 液B洗涤3次。使用SDS-PAGE监测反应混合物,考马斯亮蓝染色。实验 重复三次。
其中GST-SpyCas9或GST-NmeCas9在纯化过程中(同实施例1)不加 ppase过夜酶切,在裂解物结合GS4B珠子后,使用洗脱缓冲液(10mM Tris-HCl,pH 8.0,150mM NaCl,3mMDTT,15mM GSH)洗脱蛋白,通过 肝素琼脂糖凝胶和FPLC离子交换色谱(AKTA Pure,GEHealthcare)进一步 分离纯化。
结果见图2。由图2可知,与图1所示相同,AcrIIA2或AcrIIA4蛋白特 异性地与sgRNA结合的SpyCas9相互作用,即与处于结合sgRNA状态的 SpyCas9结合。
由图1和图2还可看到,AcrIIA2或AcrIIA4蛋白均不与sgRNA结合的 NmeCas9相互作用。
实施例2 AcrIIA4对SpyCas9的DNA酶活性的抑制
在20μl缓冲体系中进行dsDNA体外剪切反应,该缓冲体系含有0.6μg SpyCas9、0.1μg sgRNA和0.3μg dsDNA(SEQ ID NO.10)。为了测试SpyCas9 剪切dsDNA的AcrIIA2或AcrIIA4蛋白介导的抑制作用,使用范围为1:0至 1:8的SpyCas9:AcrIIA摩尔比。剪切反应在37℃下在剪切缓冲液(20mM Hepes-Na,pH 7.5,2mM MgCl2,100mM KCl,1mM DTT,5%甘油)中进行15 分钟。添加2×TBE-尿素凝胶上样缓冲液并且在95℃下淬灭5分钟来终止反应。剪切产物在6%TBE-尿素变性凝胶上运行,EB染色。实验重复三次。
可知,与sgRNA预孵育的SpyCas9有效剪切含有5′-TGG-3′PAM基序 的靶DNA序列;而AcrIIA2或AcrIIA4则以剂量依赖性的方式抑制SpyCas9 催化的该靶DNA的剪切。因此,综合实施例1的结果,可以得出以下结论: AcrIIA2或AcrIIA4直接且特异性地结合SpyCas9,从而抑制其dsDNA剪切 活性。
实施例3 SpyCas9-sgRNA-AcrIIA4复合物的制备、结晶、表征
SpyCas9蛋白的结构域组成见图3中的图3A。如图所示,SpyCas9蛋白 包含RNA识别叶(REC)、核酸酶(NUC)叶(其含有两个核酸酶结构域 HNH和RuvC)以及PAM相互作用(PI)结构域(进一步分成拓扑异构酶 同源性(TOPO)结构域和C末端结构域(CTD))。BH为螺旋桥。
在室温下将SpyCas9蛋白与sgRNA和AcrIIA4以1:2.5:8的摩尔比在缓 冲液C中孵育5分钟,然后补充2mM MgCl2在4℃下孵育1小时。将复合 物采用缓冲液C进行尺寸排阻色谱(HiLoad 16/600Superdex200,GE Healthcare),以去除过量的sgRNA和AcrIIA4。使用SDS–PAGE在纯化各 阶段监测蛋白纯度,考马斯亮蓝染色。使用6%TBE-尿素变性凝胶监测sgRNA,溴化乙锭染色。
将蛋白质复合物与等量的结晶缓冲液(2μl)混合,通过悬滴汽相扩散法产 生SpyCas9-sgRNA-AcrIIA4复合物的晶体。在20℃下在结晶缓冲液(0.1M Tris-HCl,pH 6.5,0.2M MgCl2和14%(w/v)PEG4000)中,晶体在10天内生 长到最大。将晶体转移到冷冻保护缓冲液(含20%(w/v)甘油的该结晶缓冲 液)中,在液氮中闪蒸冷却,然后收集数据。
使用DECTRIS PILATUS3 6M检测器以BL19U光束线收集衍射数据。 晶体空间群:P21,每个不对称单元具有一个配合物。使用HKL2000处理数 据。使用具有program PHASER的分子置换(MR)解析 SpyCas9-sgRNA-AcrIIA4复合物的晶体结构。
以3.0A分辨率测定了SpyCas9-sgRNA-AcrIIA4复合物的晶体结构。图 3中的图3B示出了SpyCas9-sgRNA-AcrIIA4复合物的整体结构,左图和右 图中SpyCas9各结构域的颜色根据图3A中所示,AcrIIA4和sgRNA分别以 紫色和橙色示出。由图可知,AcrIIA4结合在SpyCas9的CTD、TOPO和RuvC 三个结构域形成的凹槽区域中,并采取了一种新的蛋白折叠构象。与结合 sgRNA的SpyCas9结构(SpyCas9-sgRNA复合物,PDB:4ZT0)相比,发 现AcrIIA4结合并未引起结合sgRNA的SpyCas9的显著构象改变。
AcrIIA4在SpyCas9-sgRNA-AcrIIA4复合物中的构象见图4中的图4A, 其中白色、蓝色和红色分别指示中性、阳性和阴性表面。研究该复合物中 AcrIIA4与SpyCas9各结构域的界面接触情况。图4B示出AcrIIA4与SpyCas9 的TOPO、CTD和RuvC结构域的相互作用,其中左上图示出AcrIIA4位于 围绕SpyCas9的CTD、TOPO和RuvC结构域的交界处;右上图示出在与 TOPO的界面处,来自AcrIIA4的α1-β1和β1-β2的氨基酸残基Asp14和Asp36 与TOPO的氨基酸残基Glu1108、Ser1109和Ser1136分别形成极性接触;右 下图示出来自CTD的β-发夹的Arg1333和Arg1335由AcrIIA4的α1-α2环 充分识别,与Tyr67、Asp69、Glu70和Asn39形成总计5个氢键,并且来自 AcrIIA4的β1-β2发夹一侧的Asp37和Glu40与Ser1216和Lys1200分别氢 键键合,而来自另一侧的Asn48接触His1311,从而进一步加强了相互作用; 左下图示出AcrIIA4的β1前面突出的环(氨基酸残基Leu19-Gln29)通过 Asp23、Ser24和Asn25与RuvC的Asn767、Thr13、Ala764和Arg976相互 作用,完全覆盖RuvC活性位点(氨基酸残基Asp10、Glu762、His983和 Asp986)的底物入口。这一结构观察结果表明,阻止底物进入RuvC活性位点对于AcrIIA4抑制SpyCas9的酶促活性非常重要。
实施例4 AcrIIA4与SpyCas9相互作用的进一步研究
比较制得的AcrIIA4-SpyCas9-sgRNA复合物和SpyCas9-sgRNA-dsDNA (PDB:4UN3)的结构,发现AcrIIA4在SpyCas9的PI结构域上的结合位点 与含PAM基序的dsDNA在SpyCas9上的结合位点完全重叠,参见图5中的 图5A,其示出了AcrIIA4-SpyCas9-sgRNA和SpyCas9-sgRNA-dsDNA(PDB: 4UN3)的结构叠加结果,其中以红色示出了AcrIIA4和含PAM基序的dsDNA。进一步结构分析表明,AcrIIA4的酸性氨基酸Asp14、Asp37、Glu40、 Asp69和Glu70所处的位置与含PAM基序的dsDNA主链的几个磷酸盐位置 相同,而且AcrIIA4的这些氨基酸残基也与SpyCas9PI结构域的识别PAM 的氨基酸残基Glu1108、Ser1109、Ser1216、Lys1200、Arg1335和Arg1333 相互作用,具体参见图5中的图5B(上图为PAM:SpyCas9,下图为AcrIIA4:SpyCas9)。这些结构观察结果表明,AcrIIA4通过占据SpyCas9的 PAM结合位点、由此阻断底物识别来抑制SpyCas9。
采用微量热泳动(MST)分析计算AcrIIA2、AcrIIA4和dsDNA对纯化 的SpyCas9-sgRNA复合物(PDB:4ZT0)的亲和力,采用Monolith NT.115 (NanoTemper TechnologiesGmbH,Munich,Germany)进行。将蛋白用 NT-647-NHS荧光染料标记。在室温下将不同浓度(0.15nM至5μM)的三 种底物AcrIIA2、AcrIIA4和dsDNA(双链分别见SEQ ID NO.11和SEQ IDNO.12)分别与20nM标记的SpyCas9-sgRNA在含25mM Tris-HCl(pH 7.5) 和100mM NaCl的缓冲液中孵育15分钟。将样品上样到NanoTemper亲水处 理的毛细管中,在24℃下测量。所有实验重复3次,数据使用NanoTemper 分析软件进行分析,结果见图5中的图5C(误差计算为标准差),表明与 AcrIIA2或AcrIIA4相比,dsDNA底物与SpyCas9-sgRNA的结合亲和力更低。
进一步进行体外GST拉下实验以证明AcrIIA4与dsDNA底物的竞争关 系。在缓冲液C中,将GST-SpyCas9蛋白与sgRNA在室温下混合5分钟, 然后加入AcrIIA2或AcrIIA4,在4℃下混合并孵育15分钟,再加入含PAM 基序的dsDNA(SEQ ID NO.11和SEQ ID NO.12),GST-SpyCas9蛋 白:sgRNA:AcrIIA2或AcrIIA4:dsDNA的摩尔比为1:2.5:4:4。将反应混合物装载到GS4B珠子上并且孵育15分钟。充分洗涤后,添加变性凝胶上样缓冲 液终止反应,使用10%TBE尿素变性凝胶监测反应混合物,溴化乙锭染色。 实验重复三次。结果见图5中的图5D,表明AcrIIA4与dsDNA底物竞争对 SpyCas9-sgRNA的结合。
综合上述实验结果,发现AcrIIA4在SpyCas9PI结构域上的结合位点完 全覆盖SpyCas9的含PAM基序的dsDNA的结合位点,具体地,发现AcrIIA4 氨基酸残基与SpyCas9的识别PAM DNA的氨基酸残基Glu1108、Ser1109、 Ser1216、Lys1200、Arg1335、Arg976和Arg1333相互作用。并且结构分析 与其他证明实验表明,AcrIIA4与SpyCas9的相互作用是通过靶向SpyCas9 的PI结构域进行的,而PI结构域是SpyCas9识别dsDNA底物的关键区域。进一步发现,AcrIIA4直接和SpyCas9PI结构域上的识别含PAM基序的 dsDNA的氨基酸残基Glu1108、Ser1109、Ser1216、Lys1200、Arg1335、Arg976 和Arg1333结合来抑制SpyCas9的活性。
实施例5 SpyCas9关键氨基酸残基突变后与dsDNA结合能力的检测
按照本领域常规方法制备特定位点突变的突变体SpyCas9。在缓冲液C 中,将突变体SpyCas9与sgRNA在室温下混合5分钟,然后加入含PAM基 序的dsDNA(SEQ ID NO.11和SEQID NO.12)反应15分钟,SpyCas9蛋 白:sgRNA:dsDNA的摩尔比为1:1.5:3。将反应混合物装载到GS4B珠子上并 且孵育15分钟。充分洗涤后,添加变性凝胶上样缓冲液终止反应,使用10%TBE尿素变性凝胶监测反应混合物,溴化乙锭染色。实验重复三次。
结果见图6,SpyCas9蛋白在突变了Ser1109、Ser1216、Lys1200、Arg1335 和Arg1333氨基酸后,不再具有与含PAM基序的dsDNA的结合能力。
以上对本发明具体实施方式的描述并不限制本发明,本领域技术人员可 以根据本发明作出各种改变或变形,只要不脱离本发明的精神,均应属于本 发明所附权利要求的范围。
序列表
<110> 哈尔滨工业大学
<120> SpyCas9的基因编辑活性抑制位点及其抑制剂
<130> LC17110029R
<150> CN201710284103.9
<151> 2017-04-26
<160> 12
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1368
<212> PRT
<213> Spycas9
<400> 1
Met Asp Lys Lys Tyr Ser Ile Gly Leu Asp Ile Gly Thr Asn Ser Val
1 5 10 15
Gly Trp Ala Val Ile Thr Asp Glu Tyr Lys Val Pro Ser Lys Lys Phe
20 25 30
Lys Val Leu Gly Asn Thr Asp Arg His Ser Ile Lys Lys Asn Leu Ile
35 40 45
Gly Ala Leu Leu Phe Asp Ser Gly Glu Thr Ala Glu Ala Thr Arg Leu
50 55 60
Lys Arg Thr Ala Arg Arg Arg Tyr Thr Arg Arg Lys Asn Arg Ile Cys
65 70 75 80
Tyr Leu Gln Glu Ile Phe Ser Asn Glu Met Ala Lys Val Asp Asp Ser
85 90 95
Phe Phe His Arg Leu Glu Glu Ser Phe Leu Val Glu Glu Asp Lys Lys
100 105 110
His Glu Arg His Pro Ile Phe Gly Asn Ile Val Asp Glu Val Ala Tyr
115 120 125
His Glu Lys Tyr Pro Thr Ile Tyr His Leu Arg Lys Lys Leu Val Asp
130 135 140
Ser Thr Asp Lys Ala Asp Leu Arg Leu Ile Tyr Leu Ala Leu Ala His
145 150 155 160
Met Ile Lys Phe Arg Gly His Phe Leu Ile Glu Gly Asp Leu Asn Pro
165 170 175
Asp Asn Ser Asp Val Asp Lys Leu Phe Ile Gln Leu Val Gln Thr Tyr
180 185 190
Asn Gln Leu Phe Glu Glu Asn Pro Ile Asn Ala Ser Gly Val Asp Ala
195 200 205
Lys Ala Ile Leu Ser Ala Arg Leu Ser Lys Ser Arg Arg Leu Glu Asn
210 215 220
Leu Ile Ala Gln Leu Pro Gly Glu Lys Lys Asn Gly Leu Phe Gly Asn
225 230 235 240
Leu Ile Ala Leu Ser Leu Gly Leu Thr Pro Asn Phe Lys Ser Asn Phe
245 250 255
Asp Leu Ala Glu Asp Ala Lys Leu Gln Leu Ser Lys Asp Thr Tyr Asp
260 265 270
Asp Asp Leu Asp Asn Leu Leu Ala Gln Ile Gly Asp Gln Tyr Ala Asp
275 280 285
Leu Phe Leu Ala Ala Lys Asn Leu Ser Asp Ala Ile Leu Leu Ser Asp
290 295 300
Ile Leu Arg Val Asn Thr Glu Ile Thr Lys Ala Pro Leu Ser Ala Ser
305 310 315 320
Met Ile Lys Arg Tyr Asp Glu His His Gln Asp Leu Thr Leu Leu Lys
325 330 335
Ala Leu Val Arg Gln Gln Leu Pro Glu Lys Tyr Lys Glu Ile Phe Phe
340 345 350
Asp Gln Ser Lys Asn Gly Tyr Ala Gly Tyr Ile Asp Gly Gly Ala Ser
355 360 365
Gln Glu Glu Phe Tyr Lys Phe Ile Lys Pro Ile Leu Glu Lys Met Asp
370 375 380
Gly Thr Glu Glu Leu Leu Val Lys Leu Asn Arg Glu Asp Leu Leu Arg
385 390 395 400
Lys Gln Arg Thr Phe Asp Asn Gly Ser Ile Pro His Gln Ile His Leu
405 410 415
Gly Glu Leu His Ala Ile Leu Arg Arg Gln Glu Asp Phe Tyr Pro Phe
420 425 430
Leu Lys Asp Asn Arg Glu Lys Ile Glu Lys Ile Leu Thr Phe Arg Ile
435 440 445
Pro Tyr Tyr Val Gly Pro Leu Ala Arg Gly Asn Ser Arg Phe Ala Trp
450 455 460
Met Thr Arg Lys Ser Glu Glu Thr Ile Thr Pro Trp Asn Phe Glu Glu
465 470 475 480
Val Val Asp Lys Gly Ala Ser Ala Gln Ser Phe Ile Glu Arg Met Thr
485 490 495
Asn Phe Asp Lys Asn Leu Pro Asn Glu Lys Val Leu Pro Lys His Ser
500 505 510
Leu Leu Tyr Glu Tyr Phe Thr Val Tyr Asn Glu Leu Thr Lys Val Lys
515 520 525
Tyr Val Thr Glu Gly Met Arg Lys Pro Ala Phe Leu Ser Gly Glu Gln
530 535 540
Lys Lys Ala Ile Val Asp Leu Leu Phe Lys Thr Asn Arg Lys Val Thr
545 550 555 560
Val Lys Gln Leu Lys Glu Asp Tyr Phe Lys Lys Ile Glu Cys Phe Asp
565 570 575
Ser Val Glu Ile Ser Gly Val Glu Asp Arg Phe Asn Ala Ser Leu Gly
580 585 590
Thr Tyr His Asp Leu Leu Lys Ile Ile Lys Asp Lys Asp Phe Leu Asp
595 600 605
Asn Glu Glu Asn Glu Asp Ile Leu Glu Asp Ile Val Leu Thr Leu Thr
610 615 620
Leu Phe Glu Asp Arg Glu Met Ile Glu Glu Arg Leu Lys Thr Tyr Ala
625 630 635 640
His Leu Phe Asp Asp Lys Val Met Lys Gln Leu Lys Arg Arg Arg Tyr
645 650 655
Thr Gly Trp Gly Arg Leu Ser Arg Lys Leu Ile Asn Gly Ile Arg Asp
660 665 670
Lys Gln Ser Gly Lys Thr Ile Leu Asp Phe Leu Lys Ser Asp Gly Phe
675 680 685
Ala Asn Arg Asn Phe Met Gln Leu Ile His Asp Asp Ser Leu Thr Phe
690 695 700
Lys Glu Asp Ile Gln Lys Ala Gln Val Ser Gly Gln Gly Asp Ser Leu
705 710 715 720
His Glu His Ile Ala Asn Leu Ala Gly Ser Pro Ala Ile Lys Lys Gly
725 730 735
Ile Leu Gln Thr Val Lys Val Val Asp Glu Leu Val Lys Val Met Gly
740 745 750
Arg His Lys Pro Glu Asn Ile Val Ile Glu Met Ala Arg Glu Asn Gln
755 760 765
Thr Thr Gln Lys Gly Gln Lys Asn Ser Arg Glu Arg Met Lys Arg Ile
770 775 780
Glu Glu Gly Ile Lys Glu Leu Gly Ser Gln Ile Leu Lys Glu His Pro
785 790 795 800
Val Glu Asn Thr Gln Leu Gln Asn Glu Lys Leu Tyr Leu Tyr Tyr Leu
805 810 815
Gln Asn Gly Arg Asp Met Tyr Val Asp Gln Glu Leu Asp Ile Asn Arg
820 825 830
Leu Ser Asp Tyr Asp Val Asp His Ile Val Pro Gln Ser Phe Leu Lys
835 840 845
Asp Asp Ser Ile Asp Asn Lys Val Leu Thr Arg Ser Asp Lys Asn Arg
850 855 860
Gly Lys Ser Asp Asn Val Pro Ser Glu Glu Val Val Lys Lys Met Lys
865 870 875 880
Asn Tyr Trp Arg Gln Leu Leu Asn Ala Lys Leu Ile Thr Gln Arg Lys
885 890 895
Phe Asp Asn Leu Thr Lys Ala Glu Arg Gly Gly Leu Ser Glu Leu Asp
900 905 910
Lys Ala Gly Phe Ile Lys Arg Gln Leu Val Glu Thr Arg Gln Ile Thr
915 920 925
Lys His Val Ala Gln Ile Leu Asp Ser Arg Met Asn Thr Lys Tyr Asp
930 935 940
Glu Asn Asp Lys Leu Ile Arg Glu Val Lys Val Ile Thr Leu Lys Ser
945 950 955 960
Lys Leu Val Ser Asp Phe Arg Lys Asp Phe Gln Phe Tyr Lys Val Arg
965 970 975
Glu Ile Asn Asn Tyr His His Ala His Asp Ala Tyr Leu Asn Ala Val
980 985 990
Val Gly Thr Ala Leu Ile Lys Lys Tyr Pro Lys Leu Glu Ser Glu Phe
995 1000 1005
Val Tyr Gly Asp Tyr Lys Val Tyr Asp Val Arg Lys Met Ile Ala Lys
1010 1015 1020
Ser Glu Gln Glu Ile Gly Lys Ala Thr Ala Lys Tyr Phe Phe Tyr Ser
1025 1030 1035 1040
Asn Ile Met Asn Phe Phe Lys Thr Glu Ile Thr Leu Ala Asn Gly Glu
1045 1050 1055
Ile Arg Lys Arg Pro Leu Ile Glu Thr Asn Gly Glu Thr Gly Glu Ile
1060 1065 1070
Val Trp Asp Lys Gly Arg Asp Phe Ala Thr Val Arg Lys Val Leu Ser
1075 1080 1085
Met Pro Gln Val Asn Ile Val Lys Lys Thr Glu Val Gln Thr Gly Gly
1090 1095 1100
Phe Ser Lys Glu Ser Ile Leu Pro Lys Arg Asn Ser Asp Lys Leu Ile
1105 1110 1115 1120
Ala Arg Lys Lys Asp Trp Asp Pro Lys Lys Tyr Gly Gly Phe Asp Ser
1125 1130 1135
Pro Thr Val Ala Tyr Ser Val Leu Val Val Ala Lys Val Glu Lys Gly
1140 1145 1150
Lys Ser Lys Lys Leu Lys Ser Val Lys Glu Leu Leu Gly Ile Thr Ile
1155 1160 1165
Met Glu Arg Ser Ser Phe Glu Lys Asn Pro Ile Asp Phe Leu Glu Ala
1170 1175 1180
Lys Gly Tyr Lys Glu Val Lys Lys Asp Leu Ile Ile Lys Leu Pro Lys
1185 1190 1195 1200
Tyr Ser Leu Phe Glu Leu Glu Asn Gly Arg Lys Arg Met Leu Ala Ser
1205 1210 1215
Ala Gly Glu Leu Gln Lys Gly Asn Glu Leu Ala Leu Pro Ser Lys Tyr
1220 1225 1230
Val Asn Phe Leu Tyr Leu Ala Ser His Tyr Glu Lys Leu Lys Gly Ser
1235 1240 1245
Pro Glu Asp Asn Glu Gln Lys Gln Leu Phe Val Glu Gln His Lys His
1250 1255 1260
Tyr Leu Asp Glu Ile Ile Glu Gln Ile Ser Glu Phe Ser Lys Arg Val
1265 1270 1275 1280
Ile Leu Ala Asp Ala Asn Leu Asp Lys Val Leu Ser Ala Tyr Asn Lys
1285 1290 1295
His Arg Asp Lys Pro Ile Arg Glu Gln Ala Glu Asn Ile Ile His Leu
1300 1305 1310
Phe Thr Leu Thr Asn Leu Gly Ala Pro Ala Ala Phe Lys Tyr Phe Asp
1315 1320 1325
Thr Thr Ile Asp Arg Lys Arg Tyr Thr Ser Thr Lys Glu Val Leu Asp
1330 1335 1340
Ala Thr Leu Ile His Gln Ser Ile Thr Gly Leu Tyr Glu Thr Arg Ile
1345 1350 1355 1360
Asp Leu Ser Gln Leu Gly Gly Asp
1365
<210> 2
<211> 4107
<212> DNA
<213> Spycas9 DNA序列()
<400> 2
atggacaaga agtacagcat cggcctggac atcggcacca actctgtggg ctgggccgtg 60
atcaccgacg agtacaaggt gcccagcaag aaattcaagg tgctgggcaa caccgaccgg 120
cacagcatca agaagaacct gatcggagcc ctgctgttcg acagcggcga aacagccgag 180
gccacccggc tgaagagaac cgccagaaga agatacacca gacggaagaa ccggatctgc 240
tatctgcaag agatcttcag caacgagatg gccaaggtgg acgacagctt cttccacaga 300
ctggaagagt ccttcctggt ggaagaggat aagaagcacg agcggcaccc catcttcggc 360
aacatcgtgg acgaggtggc ctaccacgag aagtacccca ccatctacca cctgagaaag 420
aaactggtgg acagcaccga caaggccgac ctgcggctga tctatctggc cctggcccac 480
atgatcaagt tccggggcca cttcctgatc gagggcgacc tgaaccccga caacagcgac 540
gtggacaagc tgttcatcca gctggtgcag acctacaacc agctgttcga ggaaaacccc 600
atcaacgcca gcggcgtgga cgccaaggcc atcctgtctg ccagactgag caagagcaga 660
cggctggaaa atctgatcgc ccagctgccc ggcgagaaga agaatggcct gttcggaaac 720
ctgattgccc tgagcctggg cctgaccccc aacttcaaga gcaacttcga cctggccgag 780
gatgccaaac tgcagctgag caaggacacc tacgacgacg acctggacaa cctgctggcc 840
cagatcggcg accagtacgc cgacctgttt ctggccgcca agaacctgtc cgacgccatc 900
ctgctgagcg acatcctgag agtgaacacc gagatcacca aggcccccct gagcgcctct 960
atgatcaaga gatacgacga gcaccaccag gacctgaccc tgctgaaagc tctcgtgcgg 1020
cagcagctgc ctgagaagta caaagagatt ttcttcgacc agagcaagaa cggctacgcc 1080
ggctacattg acggcggagc cagccaggaa gagttctaca agttcatcaa gcccatcctg 1140
gaaaagatgg acggcaccga ggaactgctc gtgaagctga acagagagga cctgctgcgg 1200
aagcagcgga ccttcgacaa cggcagcatc ccccaccaga tccacctggg agagctgcac 1260
gccattctgc ggcggcagga agatttttac ccattcctga aggacaaccg ggaaaagatc 1320
gagaagatcc tgaccttccg catcccctac tacgtgggcc ctctggccag gggaaacagc 1380
agattcgcct ggatgaccag aaagagcgag gaaaccatca ccccctggaa cttcgaggaa 1440
gtggtggaca agggcgcttc cgcccagagc ttcatcgagc ggatgaccaa cttcgataag 1500
aacctgccca acgagaaggt gctgcccaag cacagcctgc tgtacgagta cttcaccgtg 1560
tataacgagc tgaccaaagt gaaatacgtg accgagggaa tgagaaagcc cgccttcctg 1620
agcggcgagc agaaaaaggc catcgtggac ctgctgttca agaccaaccg gaaagtgacc 1680
gtgaagcagc tgaaagagga ctacttcaag aaaatcgagt gcttcgactc cgtggaaatc 1740
tccggcgtgg aagatcggtt caacgcctcc ctgggcacat accacgatct gctgaaaatt 1800
atcaaggaca aggacttcct ggacaatgag gaaaacgagg acattctgga agatatcgtg 1860
ctgaccctga cactgtttga ggacagagag atgatcgagg aacggctgaa aacctatgcc 1920
cacctgttcg acgacaaagt gatgaagcag ctgaagcggc ggagatacac cggctggggc 1980
aggctgagcc ggaagctgat caacggcatc cgggacaagc agtccggcaa gacaatcctg 2040
gatttcctga agtccgacgg cttcgccaac agaaacttca tgcagctgat ccacgacgac 2100
agcctgacct ttaaagagga catccagaaa gcccaggtgt ccggccaggg cgatagcctg 2160
cacgagcaca ttgccaatct ggccggcagc cccgccatta agaagggcat cctgcagaca 2220
gtgaaggtgg tggacgagct cgtgaaagtg atgggccggc acaagcccga gaacatcgtg 2280
atcgaaatgg ccagagagaa ccagaccacc cagaagggac agaagaacag ccgcgagaga 2340
atgaagcgga tcgaagaggg catcaaagag ctgggcagcc agatcctgaa agaacacccc 2400
gtggaaaaca cccagctgca gaacgagaag ctgtacctgt actacctgca gaatgggcgg 2460
gatatgtacg tggaccagga actggacatc aaccggctgt ccgactacga tgtggaccat 2520
atcgtgcctc agagctttct gaaggacgac tccatcgaca acaaggtgct gaccagaagc 2580
gacaagaacc ggggcaagag cgacaacgtg ccctccgaag aggtcgtgaa gaagatgaag 2640
aactactggc ggcagctgct gaacgccaag ctgattaccc agagaaagtt cgacaatctg 2700
accaaggccg agagaggcgg cctgagcgaa ctggataagg ccggcttcat caagagacag 2760
ctggtggaaa cccggcagat cacaaagcac gtggcacaga tcctggactc ccggatgaac 2820
actaagtacg acgagaatga caagctgatc cgggaagtga aagtgatcac cctgaagtcc 2880
aagctggtgt ccgatttccg gaaggatttc cagttttaca aagtgcgcga gatcaacaac 2940
taccaccacg cccacgacgc ctacctgaac gccgtcgtgg gaaccgccct gatcaaaaag 3000
taccctaagc tggaaagcga gttcgtgtac ggcgactaca aggtgtacga cgtgcggaag 3060
atgatcgcca agagcgagca ggaaatcggc aaggctaccg ccaagtactt cttctacagc 3120
aacatcatga actttttcaa gaccgagatt accctggcca acggcgagat ccggaagcgg 3180
cctctgatcg agacaaacgg cgaaaccggg gagatcgtgt gggataaggg ccgggatttt 3240
gccaccgtgc ggaaagtgct gagcatgccc caagtgaata tcgtgaaaaa gaccgaggtg 3300
cagacaggcg gcttcagcaa agagtctatc ctgcccaaga ggaacagcga taagctgatc 3360
gccagaaaga aggactggga ccctaagaag tacggcggct tcgacagccc caccgtggcc 3420
tattctgtgc tggtggtggc caaagtggaa aagggcaagt ccaagaaact gaagagtgtg 3480
aaagagctgc tggggatcac catcatggaa agaagcagct tcgagaagaa tcccatcgac 3540
tttctggaag ccaagggcta caaagaagtg aaaaaggacc tgatcatcaa gctgcctaag 3600
tactccctgt tcgagctgga aaacggccgg aagagaatgc tggcctctgc cggcgaactg 3660
cagaagggaa acgaactggc cctgccctcc aaatatgtga acttcctgta cctggccagc 3720
cactatgaga agctgaaggg ctcccccgag gataatgagc agaaacagct gtttgtggaa 3780
cagcacaagc actacctgga cgagatcatc gagcagatca gcgagttctc caagagagtg 3840
atcctggccg acgctaatct ggacaaagtg ctgtccgcct acaacaagca ccgggataag 3900
cccatcagag agcaggccga gaatatcatc cacctgttta ccctgaccaa tctgggagcc 3960
cctgccgcct tcaagtactt tgacaccacc atcgaccgga agaggtacac cagcaccaaa 4020
gaggtgctgg acgccaccct gatccaccag agcatcaccg gcctgtacga gacacggatc 4080
gacctgtctc agctgggagg cgactaa 4107
<210> 3
<211> 3249
<212> DNA
<213> Nmecas9 DNA序列()
<400> 3
atggctgcct tcaaacctaa ttcaatcaac tacatcctcg gcctcgatat cggcatcgca 60
tccgtcggct gggcgatggt agaaattgac gaagaagaaa accccatccg cctgattgat 120
ttgggcgtgc gcgtatttga gcgtgccgaa gtaccgaaaa caggcgactc ccttgccatg 180
gcaaggcgtt tggcgcgcag tgttcgccgc ctgacccgcc gtcgcgccca ccgcctgctt 240
cggacccgcc gcctattgaa acgcgaaggc gtattacaag ccgccaattt tgacgaaaac 300
ggcttgatta aatccttacc gaatacacca tggcaacttc gcgcagccgc attagaccgc 360
aaactgacgc ctttagagtg gtcggcagtc ttgttgcatt taatcaaaca tcgcggctat 420
ttatcgcaac ggaaaaacga gggcgaaact gccgataagg agcttggcgc tttgcttaaa 480
ggcgtagccg gcaatgccca tgccttacag acaggcgatt tccgcacacc ggccgaattg 540
gctttaaata aatttgagaa agaaagcggc catatccgca atcagcgcag cgattattcg 600
catacgttca gccgcaaaga tttacaggcg gagctgattt tgctgtttga aaaacaaaaa 660
gaatttggca atccgcatgt ttcaggcggc cttaaagaag gtattgaaac cctactgatg 720
acgcaacgcc ctgccctgtc cggcgatgcc gttcaaaaaa tgttggggca ttgcaccttc 780
gaaccggcag agccgaaagc cgctaaaaac acctacacag ccgaacgttt catctggctg 840
accaagctga acaacctgcg tattttagag caaggcagcg agcggccatt gaccgatacc 900
gaacgcgcca cgcttatgga cgagccatac agaaaatcca aactgactta cgcacaagcc 960
cgtaagctgc tgggtttaga agataccgcc tttttcaaag gcttgcgcta tggtaaagac 1020
aatgccgaag cctcaacatt gatggaaatg aaggcctacc atgccatcag ccgtgcactg 1080
gaaaaagaag gattgaaaga caaaaaatcc ccattaaacc tttctcccga attacaagac 1140
gaaatcggca cggcattctc cctgttcaaa accgatgaag acattacagg ccgtctgaaa 1200
gaccgtatac agcccgaaat cttagaagcg ctgttgaaac acatcagctt cgataagttc 1260
gtccaaattt ccttgaaagc attgcgccga attgtgcctc taatggaaca aggcaaacgt 1320
tacgatgaag cctgcgccga aatctacgga gaccattacg gcaagaagaa tacggaagaa 1380
aagatttatc tgccgccgat tcccgccgac gaaatccgca accccgtcgt cttgcgcgcc 1440
ttatctcaag cacgtaaggt cattaacggc gtggtacgcc gttacggctc cccagctcgt 1500
atccatattg aaactgcaag ggaagtaggt aaatcgttta aagaccgcaa agaaattgag 1560
aaacgccaag aagaaaaccg caaagaccgg gaaaaagccg ccgccaaatt ccgagagtat 1620
ttccccaatt ttgtcggaga acccaaatcc aaagatattc tgaaactgcg cctgtacgag 1680
caacaacacg gcaaatgcct gtattcgggc aaagaaatca acttaggccg tctgaacgaa 1740
aaaggctatg tcgaaatcga ccatgccctg ccgttctcgc gcacatggga cgacagtttc 1800
aacaataaag tactggtatt gggcagcgaa aaccaaaaca aaggcaatca aaccccttac 1860
gaatacttca acggcaaaga caacagccgc gaatggcagg aatttaaagc gcgtgtcgaa 1920
accagccgtt tcccgcgcag taaaaaacaa cggattctgc tgcaaaaatt cgatgaagac 1980
ggctttaaag aacgcaatct gaacgacacg cgctacgtca accgtttcct gtgtcaattt 2040
gttgccgacc gtatgcggct gacaggtaaa ggcaagaaac gtgtctttgc atccaacgga 2100
caaattacca atctgttgcg cggcttttgg ggattgcgca aagtgcgtgc ggaaaacgac 2160
cgccatcacg ccttggacgc cgtcgtcgtt gcctgctcga ccgttgccat gcagcagaaa 2220
attacccgtt ttgtacgcta taaagagatg aacgcgtttg acggtaaaac catagacaaa 2280
gaaacaggag aagtgctgca tcaaaaaaca cacttcccac aaccttggga atttttcgca 2340
caagaagtca tgattcgcgt cttcggcaaa ccggacggca aacccgaatt cgaagaagcc 2400
gataccctag aaaaactgcg cacgttgctt gccgaaaaat tatcatctcg ccccgaagcc 2460
gtacacgaat acgttacgcc actgtttgtt tcacgcgcgc ccaatcggaa gatgagcggg 2520
caagggcata tggagaccgt caaatccgcc aaacgactgg acgaaggcgt cagcgtgttg 2580
cgcgtaccgc tgacacagtt aaaactgaaa gacttggaaa aaatggtcaa tcgggagcgc 2640
gaacctaagc tatacgaagc actgaaagca cggctggaag cacataaaga cgatcctgcc 2700
aaagcctttg ccgagccgtt ttacaaatac gataaagcag gcaaccgcac ccaacaggta 2760
aaagccgtac gcgtagagca agtacagaaa accggcgtat gggtgcgcaa ccataacggt 2820
attgccgaca acgcaaccat ggtgcgcgta gatgtgtttg agaaaggcga caagtattat 2880
ctggtaccga tttacagttg gcaggtagcg aaagggattt tgccggatag ggctgttgta 2940
caaggaaaag atgaagaaga ttggcaactt attgatgata gtttcaactt taaattctca 3000
ttacacccta atgatttagt cgaggttata acaaaaaaag ctagaatgtt tggttacttt 3060
gccagctgcc atcgaggcac aggtaatatc aatatacgca ttcatgatct tgatcataaa 3120
attggcaaaa atggaatact ggaaggtatc ggcgtcaaaa ccgccctttc attccaaaaa 3180
taccaaattg acgaactggg caaagaaatc agaccatgcc gtctgaaaaa acgcccgcct 3240
gtccgttaa 3249
<210> 4
<211> 372
<212> DNA
<213> AcrIIA2 DNA序列()
<400> 4
atgacattaa caagagcaca aaaaaagtat gcagaagcga tgcacgagtt tataaatatg 60
gtggatgact ttgaagagtc tacaccggat tttgcaaagg aagttctaca tgattctgac 120
tatgtagtta ttacaaaaaa tgaaaaatat gcagtagctc tttgctctct tagcactgat 180
gaatgtgaat atgatactaa cttatactta gatgaaaaat tggttgatta ctcaacagtt 240
gacgtaaacg gtgtgacata ctacatcaac attgttgaaa ctaacgatat cgatgattta 300
gaaatcgcta cggatgaaga tgagatgaaa agtggcaacc aagaaattat tttaaaaagt 360
gagttgaagt aa 372
<210> 5
<211> 264
<212> DNA
<213> AcrIIA4 DNA序列()
<400> 5
atgaatatta atgacttaat tagagaaatc aaaaacaaag attacacagt gaaattgagt 60
ggtacggata gcaatagtat cacacagcta attattcgcg ttaataatga tggcaacgag 120
tatgtaattt ctgaaagtga aaatgaatca atcgttgaaa aattcatctc tgcattcaaa 180
aacggttgga atcaagaata cgaggatgaa gaagaatttt ataatgacat gcaaacaatc 240
accttaaaaa gtgagttgaa ctaa 264
<210> 6
<211> 98
<212> RNA
<213> SpyCas9_sgRNA
<400> 6
ggaaauuagg ugcgcuuggc guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugcuu 98
<210> 7
<211> 118
<212> DNA
<213> SpyCas9_sgRNA的RNA转录模板()
<400> 7
atgtaatacg actcactata ggaaattagg tgcgcttggc gttttagagc tagaaatagc 60
aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt ggcaccgagt cggtgctt 118
<210> 8
<211> 123
<212> RNA
<213> Nmecas9_sgRNA
<400> 8
gggugcgcgg cgcauuaccu uuacguugua gcucccuuuc ucauuucgga aacgaaauga 60
gaaccguugc uacaauaagg ccgucugaaa agaugugccg caacgcucug ccccuuaaag 120
cuu 123
<210> 9
<211> 143
<212> DNA
<213> Nmecas9_sgRNA的RNA转录模板()
<400> 9
atgtaatacg actcactata gggtgcgcgg cgcattacct ttacgttgta gctccctttc 60
tcatttcgga aacgaaatga gaaccgttgc tacaataagg ccgtctgaaa agatgtgccg 120
caacgctctg ccccttaaag ctt 143
<210> 10
<211> 271
<212> DNA
<213> dsDNA
<400> 10
tcggtgcggg cctcttcgct attacgccag ctggcgaaag ggggatgtgc tgcaaggcga 60
ttaagttggg taacgccagg gttttcccag tcacgacgtt gtaaaacgac ggccagtgcc 120
aagcttgcat gcctgcaggt cgactctaga ggatcccaat cccagccaag cgcacctaat 180
ttccgaattc gtaatcatgg tcatagctgt ttcctgtgtg aaattgttat ccgctcacaa 240
ttccacacaa catacgagcc ggaagcataa a 271
<210> 11
<211> 28
<212> DNA
<213> dsDNA(+)
<400> 11
caatcccagc caagcgcacc taatttcc 28
<210> 12
<211> 28
<212> DNA
<213> dsDNA(-)
<400> 12
ggaaattagg tgcgcttggc tgggattg 28

Claims (10)

1.SpyCas9的基因编辑活性抑制位点,所述活性抑制位点选自SpyCas9中的Glu1108、Ser1109、Ser1216、Lys1200、Arg1335、Arg976和Arg1333中的一个或多个。
2.权利要求1所述的基因编辑活性抑制位点在制备基因编辑相关制剂中的用途。
3.根据权利要求2所述的用途,其特征在于,所述基因编辑相关制剂为SpyCas9的基因编辑/核酸酶活性的活性抑制剂;
优选地,所述基因编辑相关制剂为SpyCas9剪切含PAM基序的dsDNA的活性抑制剂。
4.根据权利要求2或3所述的用途,其特征在于,所述基因编辑相关制剂结合SpyCas9的PI结构域;
优选地,所述基因编辑相关制剂通过占据SpyCas9的PI结构域中的PAM-DNA相互作用位点而抑制SpyCas9的基因编辑/核酸酶活性。
5.根据权利要求2至4中任一项所述的用途,所述基因编辑相关制剂结合SpyCas9的Glu1108、Ser1109、Ser1216、Lys1200、Arg1335、Arg976和Arg1333中的一个或多个;
优选地,所述基因编辑相关制剂通过模拟PAM而阻断SpyCas9对dsDNA底物的识别和/或结合。
6.一种能够抑制SpyCas9的基因编辑/核酸酶活性的抑制剂,所述抑制剂结合SpyCas9的PI结构域;
优选地,所述抑制剂通过占据PI结构域中的PAM-DNA相互作用位点而抑制SpyCas9的基因编辑/核酸酶活性。
7.根据权利要求6所述的抑制剂,其特征在于,所述抑制剂结合SpyCas9的Glu1108、Ser1109、Ser1216、Lys1200、Arg1335、Arg976和Arg1333中的一个或多个。
8.根据权利要求6或7所述的抑制剂,其特征在于,所述抑制剂通过模拟PAM而阻断SpyCas9对dsDNA底物的识别和/或结合。
9.一种抑制SpyCas9的基因编辑活性的方法,所述方法包括提供权利要求6至8中任一项所述的抑制剂。
10.一种SpyCas9突变体,所述SpyCas9突变体相对于野生型SpyCas9在选自第1108、1109、1216、1200、1335、976和1333中的一个或多个氨基酸位点具有突变;
优选地,所述SpyCas9突变体相对于野生型SpyCas9具有选自以下突变中的一个或多个:S1216T、S1216R、R1333Y、R1333H、R1335Y、S1109R、K1200Y。
CN201810384117.2A 2017-04-26 2018-04-26 SpyCas9的基因编辑活性抑制位点及其抑制剂 Pending CN108795989A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2017102841039 2017-04-26
CN201710284103 2017-04-26

Publications (1)

Publication Number Publication Date
CN108795989A true CN108795989A (zh) 2018-11-13

Family

ID=64093890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810384117.2A Pending CN108795989A (zh) 2017-04-26 2018-04-26 SpyCas9的基因编辑活性抑制位点及其抑制剂

Country Status (1)

Country Link
CN (1) CN108795989A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110577971A (zh) * 2019-08-08 2019-12-17 复旦大学 CRISPR/Sa-SauriCas9基因编辑系统及其应用
CN111278975A (zh) * 2017-08-18 2020-06-12 海德堡大学 抗CRISPR多肽用于Cas核酸酶特异性激活的用途
CN112391367A (zh) * 2019-08-13 2021-02-23 西安宇繁生物科技有限责任公司 一种可用于人原代细胞基因编辑的Cas9蛋白的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016141224A1 (en) * 2015-03-03 2016-09-09 The General Hospital Corporation Engineered crispr-cas9 nucleases with altered pam specificity
WO2016205613A1 (en) * 2015-06-18 2016-12-22 The Broad Institute Inc. Crispr enzyme mutations reducing off-target effects
WO2017040348A1 (en) * 2015-08-28 2017-03-09 The General Hospital Corporation Engineered crispr-cas9 nucleases

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016141224A1 (en) * 2015-03-03 2016-09-09 The General Hospital Corporation Engineered crispr-cas9 nucleases with altered pam specificity
WO2016205613A1 (en) * 2015-06-18 2016-12-22 The Broad Institute Inc. Crispr enzyme mutations reducing off-target effects
WO2017040348A1 (en) * 2015-08-28 2017-03-09 The General Hospital Corporation Engineered crispr-cas9 nucleases

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BENJAMIN J. RAUCH等: "Inhibition of CRISPR-Cas9 with Bacteriophage Proteins", 《CELL》 *
DE DONG等: "Structural basis of CRISPR–SpyCas9 inhibition by an anti-CRISPR protein", 《NATURE》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278975A (zh) * 2017-08-18 2020-06-12 海德堡大学 抗CRISPR多肽用于Cas核酸酶特异性激活的用途
CN110577971A (zh) * 2019-08-08 2019-12-17 复旦大学 CRISPR/Sa-SauriCas9基因编辑系统及其应用
CN110577971B (zh) * 2019-08-08 2022-11-18 复旦大学 CRISPR/Sa-SauriCas9基因编辑系统及其应用
CN112391367A (zh) * 2019-08-13 2021-02-23 西安宇繁生物科技有限责任公司 一种可用于人原代细胞基因编辑的Cas9蛋白的制备方法

Similar Documents

Publication Publication Date Title
AU2017272206B2 (en) Materials and methods for the synthesis of error-minimized nucleic acid molecules
CN108795989A (zh) SpyCas9的基因编辑活性抑制位点及其抑制剂
Stewart et al. Reconstitution of human topoisomerase I by fragment complementation
AU777229B2 (en) Thermostable enzyme promoting the fidelity of thermostable DNA polymerases-for improvement of nucleic acid synthesis and amplification in vitro
US6365355B1 (en) Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches
Moncalian et al. The rad50 signature motif: essential to ATP binding and biological function
EP0466083A2 (en) Method for site-directed mutagenesis
Yeh et al. Mammalian topoisomerase I has base mismatch nicking activity.
CN108265039A (zh) 一种突变TaqDNA聚合酶及其纯化方法
AU721493B2 (en) Mismatch endonucleases and uses thereof in identifying mutations in targeted polynucleotide strands
AU2005266465A1 (en) Method for producing highly sensitive endonucleases, novel preparations of endonucleases and uses thereof
CN108350087A (zh) Dna聚合酶变体
CN108473970A (zh) Dna聚合酶变体
CN109384833B (zh) 特异性识别甲基化修饰dna碱基的tale rvd及其应用
Déclais et al. The active site of the junction-resolving enzyme T7 endonuclease I
CN111278848B (zh) 特异性识别甲基化修饰dna碱基的tale rvd及其应用
BISWAS et al. Heteroduplex DNA and ATP induced conformational changes of a MutS mismatch repair protein from Thermus aquaticus
Hockings et al. Identification of four GyrA residues involved in the DNA breakage–reunion reaction of DNA gyrase
Yang et al. Determining the site and nature of DNA mutations with the cloned MutY mismatch repair enzyme
CN106749637B (zh) 一种丝氨酸蛋白酶抑制剂重组分子、其制备方法及应用
WO2024065925A1 (zh) 一种dna聚合酶及其制备方法和应用
Osula Functional Investigations of Proteins and Enzymatic Toxins from Full-Length-Enriched cDNA of Timber Rattlesnake (Crotalus Horridus)
US20230332118A1 (en) Dna polymerase and dna polymerase derived 3&#39;-5&#39;exonuclease
Kaziales The human and C. elegans Hsp90 chaperone machinery in the context of steroid receptor clients
OA20789A (en) Novel CRISPR-Associated Protein And Use Thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181113

WD01 Invention patent application deemed withdrawn after publication