CN108761954B - 一种二维光学相控阵消栅瓣与相位调制方法 - Google Patents

一种二维光学相控阵消栅瓣与相位调制方法 Download PDF

Info

Publication number
CN108761954B
CN108761954B CN201810349623.8A CN201810349623A CN108761954B CN 108761954 B CN108761954 B CN 108761954B CN 201810349623 A CN201810349623 A CN 201810349623A CN 108761954 B CN108761954 B CN 108761954B
Authority
CN
China
Prior art keywords
array
phase
dimensional
optical phased
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810349623.8A
Other languages
English (en)
Other versions
CN108761954A (zh
Inventor
张文富
孙笑晨
章羚璇
王国玺
杜书剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XiAn Institute of Optics and Precision Mechanics of CAS
Original Assignee
XiAn Institute of Optics and Precision Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XiAn Institute of Optics and Precision Mechanics of CAS filed Critical XiAn Institute of Optics and Precision Mechanics of CAS
Priority to CN201810349623.8A priority Critical patent/CN108761954B/zh
Publication of CN108761954A publication Critical patent/CN108761954A/zh
Application granted granted Critical
Publication of CN108761954B publication Critical patent/CN108761954B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/292Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/291Two-dimensional analogue deflection

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明涉及一种二维光学相控阵消栅瓣与相位调制方法,解决现有片上二维光学相控阵偏转角不够大、分辨率不够高的问题。该方法包括以下步骤:1)将一维天线阵元的均匀间隔由相位加权法优化出一维非均匀阵列间隔;2)将步骤1)得到的阵元间隔用于二维阵列,通过转化算法对阵元出射光加上调制相位,同时调制每个阵元的相位;3)将得到的阵元间隔用于片上二维光学相控阵的制作,将得到的相位差用于电调,得到低栅瓣光学相控阵。

Description

一种二维光学相控阵消栅瓣与相位调制方法
技术领域
本发明涉及一种光学相控阵领域,具体涉及一种二维光学相控阵消栅瓣与相位调制方法,该方法是一种高分辨率、低栅瓣,同时对集成度要求不高的片上二维光学相控阵阵元排布与相位调制技术。
背景技术
相控阵是一种由相位控制阵元组成的阵列,能够通过调节每个阵元出射波相位来实现波束转向,相较于传统的机械控制波束转向技术,它响应速度较快,同时在指向精确度、稳定性方面有很大提升。光学相控阵工作于光学频段,可用于点对点自由空间光通信、光探测与测量、全息成像以及生成涡旋光等,在对功耗、体积要求较高的智能移动设备上有重要的应用前景。
目前,最常用的光学相控阵技术是通过微纳集成天线阵列来实现,光学相控阵用作实现扫描与探测功能的激光雷达已经开始商用。商品化光学相控阵主要有两种途径实现:微机电系统与硅基片上集成。微机电系统集成受限于功耗、体积与重量,无法应用于具有庞大市场规模的智能移动设备与智能可穿戴设备。硅基片上集成光学相控阵,因其完全与CMOS兼容的工艺,使其加工难度与工艺成本很低,同时集成化的产品功耗、体积、重量都很低,可以完美应用于移动设备。但是,受阵元集成数量的影响,能够实现光束二维偏转片上集成光学相控阵面临着栅瓣较大,主瓣较宽,二维相位调制不够准确的问题,使得其偏转角不够大、分辨率不够高,严重制约了其应用。
因此,为了进一步拓展二维片上光学相控阵的应用范围,亟需一种新的技术降低栅瓣收窄主瓣,同时更加精确调制每个阵元的相位,从而提升光束偏转角以及分辨率。
发明内容
本发明的目的是解决现有片上二维光学相控阵偏转角不够大、分辨率不够高的问题,提供一种二维光学相控阵消栅瓣与相位调制方法,该方法是一种在阵元集成度无法大幅提高、阵元间距相对光波长很大的前提下消除栅瓣、收窄主瓣的方法,同时可合理调制每个阵元相位。
本发明解决上述问题的技术方案是,
一种二维光学相控阵消栅瓣与相位调制方法,包括以下步骤:
1)将一维天线阵元的均匀间隔由相位加权法优化为一维非均匀阵列间隔,优化的阵元间隔d0为:
d0=d+g(c) (9)
其中:d为阵元初始间距,g(c)为步长函数,c为步长系数;
2)将步骤1)得到的阵元间隔用于二维阵列,通过转化算法对阵元出射光加上调制相位,同时调制每个阵元的相位;
设ABCD是呈矩形排列的四个阵元,O点为相控阵某个扫描点,点E和F均在平面ABCD内,且点E在AB直线上,点F在CD直线上,且EF和AD平行,x方向与AD的方向相同,y方向与AB的方向相同,则∠DOF=θy,θy为y方向偏转角,∠EOF=θx,θx为x方向偏转角,阵元AD距离为dx,阵元AB距离为dy,且OF⊥平面ABCD,步骤1)优化后得:dx=d+gx(c),dy=d+gy(c),gx(c)为x方向的步长函数,gy(c)为y方向的步长函数;
则AC两阵元之间相位差αAC为:
Figure GDA0002285212790000021
由该公式可得到任意两个阵元之间的相位差,并可将其应用于电调;
3)将得到的阵元间隔dx、dy用于片上二维光学相控阵的制作,将得到的相位差αAC用于电调所有阵元的相位,得到低栅瓣光学相控阵。
进一步地,步骤1)中的步长函数g(c)优选取值为:
g(c)=sin(c×n) (10)
其中:n为正整数,代表阵元序号;c为步长系数,根据最终仿真结果选取。
本发明与现有技术相比,具有以下技术效果:
1.本发明方法经过相位加权法优化后的非均匀间隔能够有效破坏栅瓣形成所必需的干涉相长条件,从而使得栅瓣被压缩。由于限制光束偏转范围的主要因素是栅瓣的干扰,因此该优化方法能够提升光束偏转范围,从而拓宽了其在扫描探测方面的应用。
2.本发明阵元的调制相位经过转化算法修正后更加精确,同时间隔经过相位加权法优化后对干涉相长条件要求更加严格,会使主瓣收窄,从而提高了分辨率,有利于相控阵应用于3D建模与成像。
3.本发明方法适用于所有类型的相控阵,尤其能使片上二维光学相控阵的实用性有巨大飞跃,使光学相控阵技术应用于更多要求低功耗、轻重量、小体积的应用场景。
附图说明
图1为一维相控阵原理图;
图2为本发明二维天线阵列结构示意图;
图3为微型天线远场衍射强度分布示意图;
图4为未经过优化的等间距阵列远场强度分布图;
图5为本发明远场栅瓣抑制比与优化参数c的关系图;
图6为本发明经过优化后一维相控阵列压缩栅瓣与收窄主瓣效果图;
图7为本发明二维阵列加调制相位原理示意图;
图8为本发明校正一维非均匀阵列间隔应用于二维阵列时所加调制相位产生偏差后的二维效果图。
附图标记:1-微型天线。
具体实施方式
本发明提供了一种适用于稀布(阵元间距>8倍波长)、少阵元(单一维度阵元数量<10)的片上二维光学相控阵的消栅瓣与收窄主瓣的方法,该方法解决了二维相控阵相位调制不精确的问题,该方法基于均匀间隔的二维相控阵结构。本发明首先将一维天线阵元的均匀间隔由相位加权法优化出一维非均匀阵列间隔,然后将该组间隔用于二维阵列后,通过转化算法对阵元出射光加上调制相位,可降低栅瓣收窄主瓣,同时更加精确调制每个阵元的相位,从而提升光束偏转角以及分辨率的相控阵设计。该方法使片上二维光学相控阵的实用性有巨大飞跃,能够应用于点对点自由空间光通信、光探测与测量、全息成像以及生成涡旋光等,在对功耗、体积要求较高的智能移动设备上有重要的应用前景。
一种二维光学相控阵消栅瓣与相位调制方法,具体包括以下步骤:
步骤一将一维天线阵元的均匀间隔由相位加权法优化出一维非均匀阵列间隔;
图1是一维相控阵原理简图,距离为d的N个发射天线辐射出的光束在相控阵的控制下偏转了θS,θS为光束偏转角,远场光场的主瓣在O点,图4为均匀间隔的一维相控阵远场强度示意图,若各个天线辐射强度相同,远场成像距离为D,则远场电场分布E(θ)可以表示为:
Figure GDA0002285212790000041
其中:e、j、n均为常数;
Figure GDA0002285212790000042
为光束偏转θS需要相位控制阵元产生的相位差;
Figure GDA0002285212790000051
为阵元由于空间间隔d产生的空间相位差;
Figure GDA0002285212790000052
Figure GDA0002285212790000053
其中:λ为光波的波长,d为阵元初始间距,θ为远场角度;
则在不考虑衍射因子情况下,由干涉公式可得远场光强I(θ)分布为:
Figure GDA0002285212790000054
由式(4)可知,当sinθ=sinθs时,远场光强I(θ)有最大值,此时远场产生主瓣,且由式(2)(3)可得,阵元间总的相位差为:
Figure GDA0002285212790000056
同时,由式(4)、式(5)可知,当
Figure GDA0002285212790000057
时,远场干涉相长,远场光强I(θ)有极大值,此时会产生栅瓣;
消除栅瓣要求破坏栅瓣的干涉相长条件,此时可以在总相位差上引入一个微扰相位
Figure GDA0002285212790000058
使总相位差不再等于±2nπ,即:
Figure GDA0002285212790000059
在破坏栅瓣干涉相长条件同时,需要保留主瓣干涉相长条件,即在θ=θs时,
Figure GDA00022852127900000510
要满足该条件,易得
Figure GDA00022852127900000511
需要保持的形式为:
Figure GDA00022852127900000512
将式(7)代入式(6),此时有:
Figure GDA0002285212790000061
类比式(5)的形式,d+g(c)整体可以看做新的阵元间隔,由此可得优化出来的阵元间隔d0
d0=d+g(c) (9)
其中:d为阵元初始间距,g(c)为步长函数,c为步长系数;
因此,只要选取合适的步长函数g(c),就能对原均匀间隔阵列进行优化,优化后的非均匀间隔阵列取得压缩栅瓣的效果;
由于优化间距时需要间距保持在一定范围内,所以g(c)值需要在一定范围内摆动,本发明选取:
g(c)=sin(c×n) (10)
其中:n为正整数,代表阵元序号,c为步长系数,根据最终仿真结果选取。
加了不同步长系数c所对应的微扰相位之后,栅瓣相对于主瓣的压缩比如图5,选取压缩比最大的c值,代入式(9)、(10),即可得到优化完成的低栅瓣高精度相控阵间隔,效果如图6。
步骤二:将上述优化后的间隔用于二维阵列,通过转化算法对阵元出射光加上调制相位,得到降低栅瓣收窄主瓣,同时调制每个阵元的相位。
以上步骤得到了一维阵列间隔之后,对于一维阵列阵元间的相位差为α:
Figure GDA0002285212790000062
如图7所示,为一维调制算法转二维调制算法原理示意图,ABCD是呈矩形排列的四个阵元,O点为相控阵某个扫描点,ABCD为四个呈矩形排列的阵元,O为某扫描点,点E和F均在平面ABCD内,且点E在AB直线上,点F在CD直线上,且EF和AD平行,x方向与AD的方向相同,y方向与AB的方向相同,∠DOF=θy,为y方向偏转角,∠EOF=θx,为x方向偏转角,阵元AD距离为dx,阵元AB距离为dy,且OF⊥平面ABCD,步骤1)优化后得:dx=d+gx(c),dy=d+gy(c),gx(c)为x方向的步长函数,gy(c)为y方向的步长函数;
将式(11)用于该二维阵列时,则有AB两阵元间的相位差αAB
Figure GDA0002285212790000071
同理,可得AD两阵元之间相位差αAD为:
Figure GDA0002285212790000072
由式(12)和式(13)的形式,将间距dx、dy替换为AC,将θx、θy替换为AC之间的夹角∠OAC,得:AC之间相位差αAC的形式为:
其中:
Figure GDA0002285212790000074
Figure GDA0002285212790000076
FC=dy-OF×tg(θy) (18)
由式(14)-(19)可最终求得AC之间相位差αAC为:
Figure GDA0002285212790000081
上式中,dx即为x方向阵元间隔;dy即为y方向阵元间隔;r为微型天线1尺寸;
由式(20)可得整个经过相位加权法优化过间距的相控阵列每个阵元应调制的精确相位,二维效果如图7;
步骤三:将得到的阵元间隔dx、dy用于片上二维光学相控阵的制作,将得到的相位差αAC用于电调所有阵元的相位,得到低栅瓣光学相控阵。
综上所述,该片上二维光学相控阵相位加权法优化出的非均匀阵元间隔完成了消除栅瓣的设计目标,该优化方法能够提升光束偏转范围,从而拓宽了其在扫描探测方面的应用,同时向二维阵列匹配了精确的相位调制方法,使该消栅瓣方法能在二维阵列顺利达成效果,使片上二维光学相控阵的实用性有巨大飞跃,能够应用于点对点自由空间光通信、光探测与测量、全息成像以及生成涡旋光等,在对功耗、体积要求较高的智能移动设备上有重要的应用前景。
如图2所示,通过本发明方法得到的具有高精度、大偏转角、低栅瓣的非均匀间隔排布相控阵列,阵元数量为较少,阵元数量为可为81,nx为x方向阵元数量;ny为y方向阵元数量;均匀间隔一维天线阵元的间隔由相位加权法优化出一维非均匀阵列间隔,将该组间隔用于二维阵列后通过转化算法对阵元出射光加上调制相位。该阵列设计方案的特点在于:微型天线1间隔较大,微型天线1尺寸较小,非均匀间隔通过相位加权法优化而得,阵元排布方式为二维方阵,给阵元加调制相位由转化算法得到。
图3为微型天线远场衍射强度分布示意图,图8为本发明校正一维非均匀阵列间隔应用于二维阵列时所加调制相位产生偏差后的二维效果图。
通过该方法得到的低栅瓣二维光学相控阵的二维方阵排布方式为9行9纵,单一维度的间隔数量为8个,低栅瓣二维光学相控阵进行相位调制的是阵元里的相位调制器,通常是热调或者电调方式来调制出射光相位,低栅瓣二维光学相控阵的天线是光栅结构,用来将调制好的光从波导向自由空间辐射。上述光栅结构需要保证尺寸较小,一般为亚波长量级,从而使远场发散角较大,保证光束扫描有较大偏转角,低栅瓣二维光学相控阵的出射光波长为近红外光,波长为1310nm,低栅瓣二维光学相控阵的天线间隔为8倍波长以上,约为10-20μm。,工作的波段在近红外波段,阵元稀布(间距在8倍工作波长以上),阵元数量较少(单一维度阵元数量<10)。
本发明转化算法即为二维相控阵列的相位调制方法,适用于校正一维非均匀阵列间隔应用于二维阵列时所加的调制相位产生的偏差。阵元排布方式为非均匀间隔排布,非均匀的间隔由均匀间隔通过相位加权法优化方法得到。优化间隔后的一维阵列加调制相位的方式根据优化出的间隔计算而得,优化间隔后一维阵列的结果可以用于二维阵列间隔的优化,但是二维阵列的阵元加上调制相位时需经过转化算法才能得到准确的调制相位。

Claims (2)

1.一种二维光学相控阵消栅瓣与相位调制方法,其特征在于,包括以下步骤:
1)将一维天线阵元的均匀间隔由相位加权法优化为一维非均匀阵列间隔,优化的阵元间隔d0为:
d0=d+g(c)
其中:d为阵元初始间距,g(c)为步长函数,c为步长系数;
2)将步骤1)得到的阵元间隔用于二维阵列,通过转化算法对阵元出射光加上调制相位,调制每个阵元的相位;
设ABCD是呈矩形排列的四个阵元,O点为相控阵某个扫描点,点E和F均在平面ABCD内,且点E在AB直线上,点F在CD直线上,且EF和AD平行,x方向与AD的方向相同,y方向与AB的方向相同,则∠DOF=θy,θy为y方向偏转角,∠EOF=θx,θx为x方向偏转角,阵元AD距离为dx,阵元AB距离为dy,且OF⊥平面ABCD,步骤1)优化后得:dx=d+gx(c),dy=d+gy(c),gx(c)为x方向的步长函数,gy(c)为y方向的步长函数;
则AC两阵元之间相位差αAC为:
Figure FDA0002285212780000011
由该公式得到任意两个阵元之间的相位差;
3)将阵元间隔dx、dy用于片上二维光学相控阵的制作,将得到的相位差αAC用于电调阵元的相位,得到低栅瓣光学相控阵。
2.根据权利要求1所述的二维光学相控阵消栅瓣与相位调制方法,其特征在于:步骤1)中的步长函数g(c)为:
g(c)=sin(c×n)
其中:n为正整数,代表阵元序号;c为步长系数,根据仿真结果选取。
CN201810349623.8A 2018-04-18 2018-04-18 一种二维光学相控阵消栅瓣与相位调制方法 Active CN108761954B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810349623.8A CN108761954B (zh) 2018-04-18 2018-04-18 一种二维光学相控阵消栅瓣与相位调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810349623.8A CN108761954B (zh) 2018-04-18 2018-04-18 一种二维光学相控阵消栅瓣与相位调制方法

Publications (2)

Publication Number Publication Date
CN108761954A CN108761954A (zh) 2018-11-06
CN108761954B true CN108761954B (zh) 2020-02-28

Family

ID=64011202

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810349623.8A Active CN108761954B (zh) 2018-04-18 2018-04-18 一种二维光学相控阵消栅瓣与相位调制方法

Country Status (1)

Country Link
CN (1) CN108761954B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110737144A (zh) * 2019-09-17 2020-01-31 浙江大学 一种稀疏/半波排布二维天线的集成光学相控阵
CN112038756B (zh) * 2020-08-27 2022-08-30 成都天锐星通科技有限公司 一种抑制圆极化阵列天线栅瓣的组阵方法
CN114509726B (zh) * 2021-12-31 2023-01-03 杭州洛微科技有限公司 一维相控阵设计方法、一种光路、装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179683A (en) * 1978-01-23 1979-12-18 Electric Power Research Institute, Inc. Method and apparatus for energizing an array of acoustic transducers to eliminate grating lobes
CN102521472A (zh) * 2012-01-04 2012-06-27 电子科技大学 一种稀疏mimo平面阵列雷达天线构建方法
CN107422569A (zh) * 2017-07-06 2017-12-01 南京航空航天大学 一种二维光学相控阵

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017218291A1 (en) * 2016-06-14 2017-12-21 The Charles Stark Draper Laboratory, Inc. Wide angle steering with phase array with wide-element spacing and lens array

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179683A (en) * 1978-01-23 1979-12-18 Electric Power Research Institute, Inc. Method and apparatus for energizing an array of acoustic transducers to eliminate grating lobes
CN102521472A (zh) * 2012-01-04 2012-06-27 电子科技大学 一种稀疏mimo平面阵列雷达天线构建方法
CN107422569A (zh) * 2017-07-06 2017-12-01 南京航空航天大学 一种二维光学相控阵

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
On-chip silicon optical phased array for two-dimensional beam steering;David Kwong etc.;《OPTICS LETTERS》;20140210;第39卷(第4期);全文 *

Also Published As

Publication number Publication date
CN108761954A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
CN108761954B (zh) 一种二维光学相控阵消栅瓣与相位调制方法
US11249370B2 (en) Optical phased arrays and methods for calibrating and focusing of optical phased arrays
Hayat et al. 3-D-printed phase-rectifying transparent superstrate for resonant-cavity antenna
KR102129858B1 (ko) 회절 광학 소자, 이의 제조 방법 및 이를 포함하는 광학 장치
US20150380829A1 (en) Configurable microwave deflection system
CN109541743B (zh) 一种硅基光学天线及制备方法
WO2014004918A1 (en) Systems and methods for adjustable aberration lens
CN104600438A (zh) 基于滑动口面的多波束天线阵
Abiri et al. Electronic two-dimensional beam steering for integrated optical phased arrays
Liu et al. Terahertz beam steering using a MEMS-based reflectarray configured by a genetic algorithm
WO2004068633A1 (en) Phased array antenna and inter-element mutual coupling control method
CN108539425A (zh) 轨道角动量涡旋电磁波发生装置的设计方法
WO2018121174A1 (zh) 基于变换光学构建超材料的本构参数的方法
Al-Sadoon et al. A New Beamforming Approach Using 60 GHz Antenna Arrays for Multi-Beams 5G Applications
WO2022188301A1 (zh) 一种可见光稀疏阵波导光学相控阵
Biswas et al. Additively manufactured Luneburg lens based conformal beamformer
CN112965155B (zh) 基于三维立体微结构的反射式超透镜及其制备方法
CN109901246B (zh) 基于三维复合结构单元的多功能偏振调节元器件
Banerji et al. Demonstration of computational THz diffractive optical elements enabled by a modified direct binary search technique
CN111596499A (zh) 波导光栅天线构建方法及装置
CN113448136A (zh) 一种基于涡旋光的集成光学相控阵
Yi et al. Metamaterial lens for beam steering
Ashtiani et al. 2-D Optical Phased Arrays with Multilayer Antenna Elements and Off-Aperture Phase Control
Shin et al. Aperiodic optical phased array based on number theory
Mizrahi et al. Flexible Phased Array Sheets: A Techno-Economic Analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant