CN108539425A - 轨道角动量涡旋电磁波发生装置的设计方法 - Google Patents

轨道角动量涡旋电磁波发生装置的设计方法 Download PDF

Info

Publication number
CN108539425A
CN108539425A CN201810233261.6A CN201810233261A CN108539425A CN 108539425 A CN108539425 A CN 108539425A CN 201810233261 A CN201810233261 A CN 201810233261A CN 108539425 A CN108539425 A CN 108539425A
Authority
CN
China
Prior art keywords
microwave lens
lens
dielectric constant
electromagnetic wave
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810233261.6A
Other languages
English (en)
Other versions
CN108539425B (zh
Inventor
衣建甲
冯瑞
曹雪琦
孟颖繁
黄晋鹏
梁晓涓
张海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201810233261.6A priority Critical patent/CN108539425B/zh
Publication of CN108539425A publication Critical patent/CN108539425A/zh
Application granted granted Critical
Publication of CN108539425B publication Critical patent/CN108539425B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/104Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本发明公开了一种轨道角动量涡旋电磁波发生装置的设计方法,包括以下步骤:一、设计圆柱状微波透镜并计算不同尺寸的基础单元结构所对应的相对介电常数;二、形成微波透镜;三、制作微波透镜;四、放置微波透镜和馈源。本发明的有益之处在于:(1)本发明中的微波透镜与离散的旋转相位板相比,结构连接紧密,更容易固定、携带与使用,产生的涡旋电磁波的波束的发散角更小,方向更集中,传播的距离更远;(2)本发明中的微波透镜允许发射天线频带宽度拓宽到了7GHz到13GHz;(3)本发明中微波透镜采用全电介质材料,能耗很低且耐腐蚀;(4)使用3D打印技术制造微波透镜,价格低廉,能大大降低工业制造成本。

Description

轨道角动量涡旋电磁波发生装置的设计方法
技术领域
本发明涉及一种装置的设计方法,具体涉及轨道角动量涡旋电磁波发生装置的设计方法,属于变换光学及无线通信技术领域。
背景技术
无线系统中的通用通信服务通常是基于电磁(EM)领域的线性动量,一般采用基于电磁信号的相位、频率或振幅进行调制的通信方案。随着无线通信技术的快速发展,各通信系统可以分配的频谱越来越拥挤,频带资源的匮乏正成为影响无线通信技术发展的重要因素。近年来,能够携带轨道角动量(OAM)的涡旋电磁波在光学频率和射频频率范围内得到了极大的关注。涡旋电磁波在无线通信中的应用采用基于角动量的新的调制形式,OAM的引入可以通过利用与电磁场相关的基本物理量来进一步改善通信系统的信道容量。由正交OAM波束组成的信号空间基于旋转自由度为无线通信系统提供新的物理层。具有不同模值的OAM波束是相互正交的,它们可以沿相同的波束轴复用在一起,并以低串扰进行解复用,这为无线通信技术中存在的频带拥塞问题提供了新的解决方案。
到目前为止,用于产生微波、毫米波轨道角动量波束的主要方法为透射型旋转相位板、螺旋拋物面和阵列天线。这几种方案中旋转相位板的应用最为广泛,其特点在于理论与结构简单,方便制造,可以双极化激励,转换效率较高,但是产生的波束发散角较大不利于远距离传输、介质板对波束的反射会降低发射效率、复用方案复杂等问题限制了这一在光频段应用广泛的方案。
发明内容
为解决现有技术的不足,本发明的目的在于提供一种轨道角动量涡旋电磁波发生装置的设计方法,该设计方法不仅可以解决上述旋转相位板结构复杂的问题,而且可以极大的减小波束的发散角、提升传输距离,同时更易于轨道角动量涡旋电磁波发生装置的安装固定与使用。
为了实现上述目标,本发明采用如下的技术方案:
轨道角动量涡旋电磁波发生装置的设计方法,其特征在于,包括以下步骤:
一、设计圆柱状微波透镜并计算不同尺寸的基础单元结构所对应的相对介电常数
利用基于拉普拉斯方程的空间变换理论,设计圆柱状微波透镜,通过PDE求解器来计算不同扇柱形结构的连续介电常数分布,将每个扇柱形结构的介电常数分布离散成若干个介电常数值,然后计算出微波透镜每一个基础单元所对应的相对介电常数;
二、形成微波透镜
选取不同尺寸的基础单元,与微波透镜相应位置上介电常数一一对应,将这些基础单元拼接到一起,组成扇形结构,使各基础单元向扇形结构的圆心弯曲,并且使弯曲后各基础单元的曲率与所在扇形的圆弧的曲率相同,从而形成微波透镜;
三、制作微波透镜
将仿真软件中搭建好的全电介质透镜三维模型导出,采用3D打印技术得到全电介质透镜实体;
四、放置微波透镜和馈源
将微波透镜放置在平面金属反射板上,将馈源放置在微波透镜的中心轴向处。
前述的轨道角动量涡旋电磁波发生装置的设计方法,其特征在于,在步骤一中,设计圆柱状微波透镜的过程具体如下:
(1)选定轨道角动量涡旋电磁波发生装置的本征模态数和中心频率;
(2)计算微波透镜各部分所对应的相对介电常数
(2a)确定微波透镜的边界条件从虚拟空间到物理空间的转换;
(2b)假设将微波透镜放置在平面金属反射板上、将馈源放置在微波透镜的中心轴向处,馈源发射入射平面波,波端口与原点之间的距离在虚拟空间和物理空间都是相同的,使用商业软件Comsol Multiphysics的偏微分方程求解器来求解拉普拉斯方程预定义边界条件;
(2c)在微波透镜的边缘设置Neumann-Dirichlet滑动边界条件;
(2d)将中间介质的特性进一步简化为:
其中,ε为相对介电常数,εr为全电介质材料的介电常数,μ为磁导率,xi,xi′分别为光学变换前后的坐标位置。
前述的轨道角动量涡旋电磁波发生装置的设计方法,其特征在于,在步骤三中,微波透镜使用3D打印机制作而成,选取的材料为介电常数为2.8的打印材料。
本发明的有益之处在于:
(1)本发明中的微波透镜在结构上连接紧密,与离散的旋转相位板相比,更容易固定、携带与使用,更易于集成到其它的设备上。
(2)本发明中的微波透镜,与传统的旋转相位板相比,产生的涡旋电磁波的波束的发散角更小,方向更集中,传播的距离更远。
(3)本发明中的微波透镜,通过改变基础单元的尺寸,进而改变相对介电常数,使得透镜各单元不会发生谐振,允许发射天线频带宽度拓宽到7GHz到13GHz。
(4)本发明中微波透镜采用的材质是全电介质材料,用这种材料制造出的器件不仅能耗很低而且耐腐蚀。
(5)本发明使用3D打印技术制造微波透镜,价格低廉,能大大降低工业制造成本。
附图说明
图1是本发明的轨道角动量涡旋电磁波发生装置的设计方法实现流程图;
图2是采用本发明的设计方法所设计得到的轨道角动量涡旋电磁波发生装置的整体结构示意图;
图3是本发明实施例中组成微波透镜的基础单元的结构示意图;
图4是本发明中微波透镜设计从虚拟空间到物理空间的空间转换示意图;
图5是本发明实施例中产生的本征模态为1的涡旋电磁波;
图6是理论的本征模态为1的轨道角动量电场相位曲线;
图7是本发明实施例中微波透镜结构的远场三维辐射方向图;
图8是理论的本征模态为1的轨道角动量涡旋波束辐射图。
图中附图标记的含义:1-微波透镜、2-金属反射板、3-馈源、1111-基础单元。
具体实施方式
本发明提供的轨道角动量涡旋电磁波发生装置的设计方法,整体思路是:通过空间变换理论,将离散的旋转相位板等效变换为圆柱状透镜,改变微波透镜各个基础单元的尺寸大小,实现各个基础单元相对介电常数的变化,使入射平面波在微波透镜中的传播路径发生改变,实现相位补偿,经金属反射板反射后,实现第二次相位补偿,经两次相位补偿后生成涡旋电磁波。
以设计能够产生中心频率为10GHz、本征模态为1的涡旋电磁波的轨道角动量涡旋电磁波发生装置为例,以下结合附图和具体实施例对本发明作具体的介绍。
参照图1,本发明提供的轨道角动量涡旋电磁波发生装置的设计方法,具体包括以下步骤:
一、设计圆柱状微波透镜并计算不同尺寸的基础单元结构所对应的相对介电常数
利用基于拉普拉斯方程的空间变换理论,将离散的旋转相位板等效变换为圆柱状透镜,过程具体如下:
1、选定轨道角动量涡旋电磁波发生装置的本征模态数L(L=1)和中心频率f(f=10GHz)。
2、计算微波透镜各部分所对应的相对介电常数
首先,确定微波透镜的边界条件从虚拟空间到物理空间的转换,变换关系如图4所示,其中,物理空间的坐标用(x,y)表示,虚拟空间的坐标用(x',y')表示。
然后,假设将微波透镜放置在平面金属反射板上、将馈源放置在微波透镜的中心轴向处,馈源发射入射平面波,波端口与原点之间的距离在虚拟空间和物理空间都是相同的,圆弧CD和直线段C'D'都代表完美的电导体(PEC)表面。由于从圆弧CD到直线段C'D'的转换,涡旋电磁波可以由平面而不是曲面生成,所以为了获得作为虚拟空间的自由空间与作为变换介质的物理空间之间的期望映射,我们使用商业软件Comsol Multiphysics的偏微分方程(PDE)求解器来求解拉普拉斯方程预定义边界条件。
坐标A和A'以及坐标B和B'共享相同的位置,设线段AB和线段A'B'的长度都等于W,线段BC的长度被取为变量L,线段DE的长度被取为变量H,线段CE垂直于线段DA,线段DA被转换为长度为M的线段D'A',线段BC被转换为长度为M的线段B'C',类似的,圆弧CD被转换成水平线段C'D'。因此,矩形A'B'C'D'是从四边形ABCD映射而来的。
我们所设计的微波透镜模型是基于变换光学理论的,通过求解拉普拉斯方程来实现,为了在虚拟空间外边界的场中建立等价关系,接下来,我们在微波透镜的边缘设置Neumann-Dirichlet滑动边界条件,如下式所示:
其中,是边界表面的法向向量,x,y,z分别为虚拟空间坐标系中的x,y,z轴,x'为物理空间坐标系中的x轴。
最后,考虑到激励的极化,中间介质的特性可以进一步简化为:
其中,ε为相对介电常数,εr为全电介质材料的介电常数,μ为磁导率,xi,xi′分别为光学变换前后的坐标位置。
将离散的旋转相位板等效变换为圆柱状透镜之后,微波透镜的基础单元为由三个相互垂直的圆柱体组成的立体结构,如图3所示。
接下来,计算不同尺寸的基础单元结构所对应的相对介电常数,过程具体如下:
首先,通过PDE求解器来计算不同扇柱形结构的连续介电常数分布;
然后,将每个扇柱形结构的介电常数分布离散成147个介电常数值;
最后,计算出微波透镜每一个基础单元所对应的相对介电常数ε。
二、形成微波透镜
选取不同尺寸的12936个基础单元,与微波透镜相应位置上介电常数一一对应,将这些基础单元拼接到一起,组成扇形结构,以y轴为轴线的圆柱向扇形结构的圆心弯曲,并且使弯曲后圆柱的曲率与所在扇形的圆弧的曲率相同,从而形成微波透镜。
这种连接方式实现了相邻的基础单元平滑连接,解决了微波透镜拼接上的问题。
三、制作微波透镜
将仿真软件(例如:HFSS_15.0)中搭建好的全电介质透镜三维模型导出,根据介质透镜所需电磁材料参数选取介电常数为2.8的打印材料,依据打印的精度要求选取合适的3D打印机,依据导出的模型打印得到全电介质透镜实体模型。
四、放置微波透镜和馈源
将微波透镜放置在平面金属反射板上,将馈源(即喇叭天线)放置在微波透镜的中心轴向处,如图2所示。
采用本发明的设计方法,我们设计得到了一个形状规则、方便集成且制作成本低廉的涡旋电磁波发生装置。
相位补偿原理:由馈源发出的入射平面波照射到微波透镜上,入射平面波通过微波透镜时,在不同相对介电常数的基础单元处发生传播路径的改变,实现第一次相位补偿,经金属反射板反射后,通过微波透镜实现第二次相位补偿,经两次相位补偿后即产生模态为1的涡旋电磁波(反射波)。
以下结合仿真实验,对本发明的设计方法的技术效果作进一步说明。
1、仿真条件和内容
利用商业仿真软件HFSS_15.0,对采用本发明的设计方法设计得到的轨道角动量涡旋电磁波产生装置(中心频率为10GHz)进行仿真,在工作频率为10GHz时,生成模态为1的涡旋电磁波。
2、仿真结果
经仿真计算,生成的模态为1的涡旋电磁波的相位特性如图5所示,远场辐射图如图7所示。
3、仿真结果分析
参照图5,颜色的深浅代表每一处涡旋电磁波的相位的大小(颜色深、相位大,颜色浅、相位小),采用本发明的设计方法设计得到的装置其所产生的模态为1的涡旋电磁波每绕轴线旋转一周,相位增加360°,相位特性与图6所示的本征模态为1的涡旋电磁波的理论相位特性基本一致。
参照图7,采用本发明的设计方法设计得到的装置其所产生的模态为1的涡旋电磁波为中间凹陷的高增益波,与图8所示的理论的本征模态为1的轨道角动量涡旋波束辐射图一致。
以上仿真结果说明,采用本发明的设计方法设计得到的轨道角动量涡旋电磁波发生装置可以有效产生高增益的轨道角动量涡旋电磁波。
需要说明的是,上述实施例不以任何形式限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (3)

1.轨道角动量涡旋电磁波发生装置的设计方法,其特征在于,包括以下步骤:
一、设计圆柱状微波透镜并计算不同尺寸的基础单元结构所对应的相对介电常数
利用基于拉普拉斯方程的空间变换理论,设计圆柱状微波透镜,通过PDE求解器来计算不同扇柱形结构的连续介电常数分布,将每个扇柱形结构的介电常数分布离散成若干个介电常数值,然后计算出微波透镜每一个基础单元所对应的相对介电常数;
二、形成微波透镜
选取不同尺寸的基础单元,与微波透镜相应位置上介电常数一一对应,将这些基础单元拼接到一起,组成扇形结构,使各基础单元向扇形结构的圆心弯曲,并且使弯曲后各基础单元的曲率与所在扇形的圆弧的曲率相同,从而形成微波透镜;
三、制作微波透镜
将仿真软件中搭建好的全电介质透镜三维模型导出,采用3D打印技术得到全电介质透镜实体;
四、放置微波透镜和馈源
将微波透镜放置在平面金属反射板上,将馈源放置在微波透镜的中心轴向处。
2.根据权利要求1所述的轨道角动量涡旋电磁波发生装置的设计方法,其特征在于,在步骤一中,设计圆柱状微波透镜的过程具体如下:
(1)选定轨道角动量涡旋电磁波发生装置的本征模态数和中心频率;
(2)计算微波透镜各部分所对应的相对介电常数
(2a)确定微波透镜的边界条件从虚拟空间到物理空间的转换;
(2b)假设将微波透镜放置在平面金属反射板上、将馈源放置在微波透镜的中心轴向处,馈源发射入射平面波,波端口与原点之间的距离在虚拟空间和物理空间都是相同的,使用商业软件Comsol Multiphysics的偏微分方程求解器来求解拉普拉斯方程预定义边界条件;
(2c)在微波透镜的边缘设置Neumann-Dirichlet滑动边界条件;
(2d)将中间介质的特性进一步简化为:
其中,ε为相对介电常数,εr为全电介质材料的介电常数,μ为磁导率,xi,xi′分别为光学变换前后的坐标位置。
3.根据权利要求1所述的轨道角动量涡旋电磁波发生装置的设计方法,其特征在于,在步骤三中,微波透镜使用3D打印机制作而成,选取的材料为介电常数为2.8的打印材料。
CN201810233261.6A 2018-03-21 2018-03-21 轨道角动量涡旋电磁波发生装置的设计方法 Active CN108539425B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810233261.6A CN108539425B (zh) 2018-03-21 2018-03-21 轨道角动量涡旋电磁波发生装置的设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810233261.6A CN108539425B (zh) 2018-03-21 2018-03-21 轨道角动量涡旋电磁波发生装置的设计方法

Publications (2)

Publication Number Publication Date
CN108539425A true CN108539425A (zh) 2018-09-14
CN108539425B CN108539425B (zh) 2020-09-15

Family

ID=63484265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810233261.6A Active CN108539425B (zh) 2018-03-21 2018-03-21 轨道角动量涡旋电磁波发生装置的设计方法

Country Status (1)

Country Link
CN (1) CN108539425B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110266354A (zh) * 2019-06-12 2019-09-20 西安电子科技大学 轨道角动量无线通信系统的信号接收方法
CN110765687A (zh) * 2019-10-23 2020-02-07 哈尔滨工业大学 基于时域有限差分方法的涡旋波束源合成方法
CN110957584A (zh) * 2019-12-18 2020-04-03 厦门大学 一种提高宽带oam方向性的新方法
CN114361800A (zh) * 2021-12-14 2022-04-15 浙江大学 一种基于透射型超表面的模态复用型可重构太赫兹轨道角动量波束产生方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160111781A1 (en) * 2013-07-01 2016-04-21 Marco Celso Matteoni System for generation and management of orbital angular momentum in an electromagnetic radiation by means of special lens
CN105552556A (zh) * 2015-12-28 2016-05-04 西安电子科技大学 轨道角动量涡旋波束产生装置及方法
CN105846106A (zh) * 2016-05-26 2016-08-10 哈尔滨工业大学 基于超表面产生携带轨道角动量的贝塞尔波束的透镜及方法
CN108281800A (zh) * 2017-12-15 2018-07-13 西安电子科技大学 一种涡旋电磁波的发生装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160111781A1 (en) * 2013-07-01 2016-04-21 Marco Celso Matteoni System for generation and management of orbital angular momentum in an electromagnetic radiation by means of special lens
CN105552556A (zh) * 2015-12-28 2016-05-04 西安电子科技大学 轨道角动量涡旋波束产生装置及方法
CN105846106A (zh) * 2016-05-26 2016-08-10 哈尔滨工业大学 基于超表面产生携带轨道角动量的贝塞尔波束的透镜及方法
CN108281800A (zh) * 2017-12-15 2018-07-13 西安电子科技大学 一种涡旋电磁波的发生装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
袁乐眙: "微波段相位叠加型超表面透镜的设计方法", 《中国优秀硕士学位论文全文数据库》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110266354A (zh) * 2019-06-12 2019-09-20 西安电子科技大学 轨道角动量无线通信系统的信号接收方法
CN110266354B (zh) * 2019-06-12 2021-05-18 西安电子科技大学 轨道角动量无线通信系统的信号接收方法
CN110765687A (zh) * 2019-10-23 2020-02-07 哈尔滨工业大学 基于时域有限差分方法的涡旋波束源合成方法
CN110957584A (zh) * 2019-12-18 2020-04-03 厦门大学 一种提高宽带oam方向性的新方法
CN110957584B (zh) * 2019-12-18 2021-02-19 厦门大学 一种提高宽带oam方向性的新方法
CN114361800A (zh) * 2021-12-14 2022-04-15 浙江大学 一种基于透射型超表面的模态复用型可重构太赫兹轨道角动量波束产生方法
CN114361800B (zh) * 2021-12-14 2022-11-08 浙江大学 一种基于透射型超表面的模态复用型可重构太赫兹轨道角动量波束产生方法

Also Published As

Publication number Publication date
CN108539425B (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
CN108539425A (zh) 轨道角动量涡旋电磁波发生装置的设计方法
CN105680162B (zh) 轨道角动量多波束产生方法
Hu et al. An intelligent programmable omni‐metasurface
CN108281800B (zh) 一种涡旋电磁波的发生装置
Karimipour et al. Holographic-inspired multibeam reflectarray with linear polarization
Beaskoetxea et al. 3-D-printed 96 GHz bull’s-eye antenna with off-axis beaming
CN105552556A (zh) 轨道角动量涡旋波束产生装置及方法
Li et al. Low‐profile electromagnetic holography by using coding fabry–perot type metasurface with in‐plane feeding
CN108664694B (zh) 一种圆极化涡旋电磁波产生方法
CN104377452B (zh) 一种基于人工电磁表面的纯介质电磁透镜的设计方法
CN103956568B (zh) 一种盒状扇形波束天线
CN103367926B (zh) 一种基于全息阻抗表面的多波束天线设计方法
CN111682320A (zh) 一种涡旋电磁超表面结构
CN102480034B (zh) 一种后馈式微波天线
Yi et al. Design and validation of an all-dielectric metamaterial medium for collimating orbital-angular-momentum vortex waves at microwave frequencies
CN104319434A (zh) 能产生轨道角动量波束的极低反射率旋转相位板设计方法
CN105161800A (zh) 优化电磁传输特性的双屏频率选择表面
CN106848581A (zh) 用于近场聚焦的内向零阶Hankel漏波天线
Petrov et al. Mobile near-field terahertz communications for 6G and 7G networks: Research challenges
CN110212310B (zh) 加载qcto透镜的共形相控阵天线
CN108987939B (zh) 一种涡旋电磁波的汇聚装置、无线通信系统
CN208226084U (zh) 一种基片集成波导谐振腔oam天线
Chou et al. An all-metallic reflectarray and its element design: Exploring the radiation characteristics of antennas for directional beam applications
Maltsev et al. Scanning toroidal lens-array antenna with a zoned profile for 60 GHz band
Fan et al. Compound diffractive lens consisting of Fresnel zone plate and frequency selective screen

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant