CN108751986B - 一种利用电磁波烧结氧化锆-氧化钇陶瓷的装置 - Google Patents

一种利用电磁波烧结氧化锆-氧化钇陶瓷的装置 Download PDF

Info

Publication number
CN108751986B
CN108751986B CN201810698337.2A CN201810698337A CN108751986B CN 108751986 B CN108751986 B CN 108751986B CN 201810698337 A CN201810698337 A CN 201810698337A CN 108751986 B CN108751986 B CN 108751986B
Authority
CN
China
Prior art keywords
zirconia
sintering
yttria
chamber
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810698337.2A
Other languages
English (en)
Other versions
CN108751986A (zh
Inventor
冯广义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Zeerton New Materials Co.,Ltd.
Original Assignee
Anhui Phetom Intelligent Traffic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Phetom Intelligent Traffic Technology Co Ltd filed Critical Anhui Phetom Intelligent Traffic Technology Co Ltd
Priority to CN201810698337.2A priority Critical patent/CN108751986B/zh
Publication of CN108751986A publication Critical patent/CN108751986A/zh
Application granted granted Critical
Publication of CN108751986B publication Critical patent/CN108751986B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/06Induction heating, i.e. in which the material being heated, or its container or elements embodied therein, form the secondary of a transformer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system
    • F27D2099/0015Induction heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D2099/006Auxiliary heating, e.g. in special conditions or at special times

Abstract

本发明公开了一种利用最高功率1000W的2.45GHz电磁波烧结氧化锆‑氧化钇陶瓷的装置、该装置的使用方法,以及利用该方法制备的氧化锆‑氧化钇陶瓷。该装置的构造简单,具有热效率高、升温速度快,保温时间短,能耗低,污染小等优点。该装置的使用方法简单,自动化程度高,可以依据存储的烧结制度曲线自动执行。利用该装置和方法所制备的氧化锆‑氧化钇陶瓷的力学性能和综合性能优异,取得了良好的技术效果。

Description

一种利用电磁波烧结氧化锆-氧化钇陶瓷的装置
技术领域
本发明涉及一种陶瓷材料、其制备方法和制备设备,特别是涉及一种利用最高功率1000W的2.45GHz电磁波烧结氧化锆-氧化钇陶瓷的装置、该装置的使用方法,以及利用该方法制备的氧化锆-氧化钇陶瓷。
背景技术
氧化锆-氧化钇陶瓷是氧化钇增韧氧化锆的复合陶瓷产品,具有高的硬度、强度、韧性和耐磨性,综合性能优良,在机械、电子、航空航天等领域有着广泛的应用。
传统的特种陶瓷制备方法采用的是热压烧结法(HIP),该方法的缺点在于,不能制备复杂形状的陶瓷产品,而且加热方式的效率低下,装模拆模工作繁琐,不适于日益多样化的特种陶瓷产品需求。
另一种特种陶瓷制备方法是无压烧结法,该方法可以制备复杂形状的产品,但是存在生产周期长、效率低、加热效率低、浪费能源和不环保等问题。
因此有必要提出一种新的装置和方法以克服上述问题。
发明内容
本发明提供了一种利用电磁波烧结氧化锆-氧化钇陶瓷的装置、该装置的使用方法,以及利用该方法制备的氧化锆-氧化钇陶瓷。利用该装置和方法,可以解决氧化锆-氧化钇陶瓷的烧结时间长、烧结温度高、能源消耗高的问题,所得的氧化锆-氧化钇陶瓷具有优异的力学性能和综合性能。
为实现以上目的,本发明所采用的制备方法的技术方案是:
取原料粉体制成混合料,采用等静压成型工艺或注浆成型工艺成型制坯;
将氧化锆-氧化钇陶瓷坯体放入烧结室的转动台上;
在工控台,打开磁控管,并使转动台开始转动;
打开计算机设备,由红外测温器测定氧化锆-氧化钇陶瓷的温度,在到达设定温度时,启动激光束发射器用于辅助加热;
测温热电偶向工控台发出信号,在测温热电偶测得的温度到达设定的烧结温度和保温时间时,工控台自动结束烧结过程。
其中,该氧化锆-氧化钇陶瓷具有复杂的几何形状,不是常规的陶瓷圆片。
其中,该氧化锆-氧化钇陶瓷是偏心陶瓷环。
上述制备方法所采用的装置构造包括:
烧结室,在烧结室内设置电源、磁控管、反馈能量波导体、观察孔、转动台、工控台,
其中,电源与工控台、磁控管、转动台相连,工控台与磁控管、转动台相连,
其中,磁控管包括上部圆环磁铁,金属圆环阳极,下部圆环磁铁,柱形阴极,和多个隔片,以及由上部圆环磁铁、金属圆环阳极、下部圆环磁铁构成的共振室,柱形阴极竖直伸入共振室内,多个隔片沿金属圆环阳极的径向将共振室分为多个电子运动区域,
阳极接+4000V电压,产生电场,使电力离开阴极射向隔片,同时电子的运动受到磁场洛伦兹力的作用,产生运动轨迹偏移,从而在电子运动区域产生振荡,同时,电子所带的负电荷在运动过程中改变了电子运动区域的电厂,使阳极附近电场偏向电负性,电子减速并远离隔片运动,控制电场、磁场的强弱,可以在共振室内产生2.45GHz的高震荡电压,并和4000V的直流电压相叠加,保证电子在电子运动区域中做往复旋转,产生电磁波,加热烧结室内的氧化锆-氧化钇陶瓷,
转动台位于烧结室内下部,用于使在烧结过程中氧化锆-氧化钇陶瓷转动,
反馈能量波导体设置在烧结室的一个或多个侧面上,并且一端接磁控管,一端接烧结室,用于传递电磁波,
观察孔设置在烧结室的一个面上,用于观察氧化锆-氧化钇陶瓷的烧结情况,
电源用于提供电力,工控台用于控制磁控管的打开与关闭和控制转动台的转动。
其中,在烧结室的上方设置一个开孔,提供一个激光束发射器通过该开孔用于辅助加热氧化锆-氧化钇陶瓷,该激光束发射器是1.06μm的Nd:YAG激光发射器,并且与计算机设备相连。
其中,在烧结室上方设置另一个开孔,提供一个红外测温器通过该开孔测定温度,并且与所述计算机设备相连。
其中,所述计算机设备内存储有加热曲线,所述计算机设备以1-3秒的间隔控制所述激光发射器的功率以实现辅助加热。
其中,在烧结室内设置2-4个环绕氧化锆-氧化钇陶瓷的SiC块或MoSi2块。
其中,在烧结室的底部设置测温热电偶,所述测温热电偶与所述工控台相连。
其中,该装置的加热温度范围是500-2000℃。
利用上述方法和装置制备的氧化锆-氧化钇陶瓷,其中,所述氧化锆-氧化钇陶瓷的组成是98-95wt.%氧化锆和2-5wt.%氧化钇,氧化锆和氧化钇的粒径是160-220nm。
本发明的装置利用电磁波对氧化锆-氧化钇陶瓷进行加热,所用的装置可由微波炉改造而来,具有装置构造简单,热效率高、升温速度快,保温时间短,能耗低,污染小等优点。利用计算机控制的Nd:YAG激光发射器做辅助加热,有助于保证温度变化连续,不突变,以及起到在低温下辅助加热氧化锆-氧化钇陶瓷的效果。SiC块或MoSi2块的设置,用于在低温下吸收电磁波,起到在低温下加热氧化锆-氧化钇陶瓷的效果。红外测温期间和热电偶测温器件用于监控整个烧结过程的温度,并通过工控台和计算机实现按预定烧结制度的自动控制。
本发明的利用上述装置制备复杂形状的特种陶瓷产品的制备方法简单,所制备的氧化锆-氧化钇陶瓷的力学性能和综合性能优异,取得了良好的技术效果。
附图说明:
图1是本发明的制备装置的组成示意图。
图2是本发明的磁控管的组成示意图。
图3是本发明的制备方法的烧结制度曲线。
图4是本发明的氧化锆-氧化钇陶瓷的SEM微观形貌。
1-电源,2-工控台,3-磁控管,4-反馈能量波导体,5-,6-热电偶测温器件,7-激光束发射器,8-计算机设备,9-红外测温器件,10-烧结室,11-SiC块或MoSi2块,12-氧化锆-氧化钇陶瓷坯体,13-观察孔。
11-上部圆环磁铁,21-金属圆环阳极,31-下部圆环磁铁,41-柱形阴极,51-隔片,61-共振室,71-电子运动区域。
具体实施方案
取原料粉体制成混合料,采用注浆成型工艺成型制坯;氧化锆-氧化钇陶瓷的组成是97wt.%氧化锆和3wt.%氧化钇,氧化锆和氧化钇的粒径是190nm。
将氧化锆-氧化钇陶瓷坯体放入烧结室的转动台上;
在工控台,打开磁控管,并使转动台开始转动;
打开计算机设备,由红外测温器测定氧化锆-氧化钇陶瓷的温度,在到达设定温度20℃时,启动激光束发射器用于辅助加热;
测温热电偶向工控台发出信号,在测温热电偶测得的温度到达设定的烧结温度1620℃和保温时间900sec时,工控台自动结束烧结过程。
其中,该氧化锆-氧化钇陶瓷是偏心陶瓷环。
上述制备方法的最高功率1000w,所采用的装置构造包括:
烧结室,在烧结室内设置电源、磁控管、反馈能量波导体、观察孔、转动台、工控台,
其中,电源与工控台、磁控管、转动台相连,工控台与磁控管、转动台相连,
其中,磁控管包括上部圆环磁铁,金属圆环阳极,下部圆环磁铁,柱形阴极,和多个隔片,以及由上部圆环磁铁、金属圆环阳极、下部圆环磁铁构成的共振室,柱形阴极竖直伸入共振室内,多个隔片沿金属圆环阳极的径向将共振室分为多个电子运动区域,
阳极接+4000V电压,产生电场,使电力离开阴极射向隔片,同时电子的运动受到磁场洛伦兹力的作用,产生运动轨迹偏移,从而在电子运动区域产生振荡,同时,电子所带的负电荷在运动过程中改变了电子运动区域的电厂,使阳极附近电场偏向电负性,电子减速并远离隔片运动,控制电场、磁场的强弱,可以在共振室内产生2.45MHz的高震荡电压,并和4000V的直流电压相叠加,保证电子在电子运动区域中做往复旋转,产生电磁波,加热烧结室内的氧化锆-氧化钇陶瓷,
转动台位于烧结室内下部,用于使在烧结过程中氧化锆-氧化钇陶瓷转动,
反馈能量波导体设置在烧结室的一个或多个侧面上,并且一端接磁控管,一端接烧结室,用于传递电磁波,
观察孔设置在烧结室的一个面上,用于观察氧化锆-氧化钇陶瓷的烧结情况,
电源用于提供电力,工控台用于控制磁控管的打开与关闭和控制转动台的转动。
其中,在烧结室的上方设置一个开孔,提供一个激光束发射器通过该开孔用于辅助加热氧化锆-氧化钇陶瓷,该激光束发射器是1.06μm的Nd:YAG激光发射器,并且与计算机设备相连。
其中,在烧结室上方设置另一个开孔,提供一个红外测温器通过该开孔测定温度,并且与所述计算机设备相连。
其中,所述计算机设备内存储有加热曲线,所述计算机设备以1-3秒的间隔控制所述激光发射器的功率以实现辅助加热。
其中,在烧结室内设置2个环绕氧化锆-氧化钇陶瓷的MoSi2块。
其中,在烧结室的底部设置测温热电偶,所述测温热电偶与所述工控台相连。
利用上述方法和装置制备的氧化锆-氧化钇陶瓷,致密度99.6%,硬度13.9GPa。

Claims (5)

1.一种利用最高功率1000W的2.45GHz电磁波烧结氧化锆-氧化钇陶瓷的装置,包括:
烧结室,在烧结室内设置电源、磁控管、反馈能量波导体、观察孔、转动台、工控台,
其中,电源与工控台、磁控管、转动台相连,工控台与磁控管、转动台相连,
其中,磁控管包括上部圆环磁铁,金属圆环阳极,下部圆环磁铁,柱形阴极,和多个隔片,以及由上部圆环磁铁、金属圆环阳极、下部圆环磁铁构成的共振室,柱形阴极竖直伸入共振室内,多个隔片沿金属圆环阳极的径向将共振室分为多个电子运动区域,
阳极接+4000V电压,产生电场,使电力离开阴极射向隔片,同时电子的运动受到磁场洛伦兹力的作用,产生运动轨迹偏移,从而在电子运动区域产生振荡,同时,电子所带的负电荷在运动过程中改变了电子运动区域的电厂,使阳极附近电场偏向电负性,电子减速并远离隔片运动,控制电场、磁场的强弱,可以在共振室内产生2.45GHz的高震荡电压,并和4000V的直流电压相叠加,保证电子在电子运动区域中做往复旋转,产生电磁波,加热烧结室内的氧化锆-氧化钇陶瓷,
转动台位于烧结室内下部,用于使在烧结过程中氧化锆-氧化钇陶瓷转动,
反馈能量波导体设置在烧结室的多个侧面上,并且一端接磁控管,一端接烧结室,用于传递电磁波,
观察孔设置在烧结室的一个面上,用于观察氧化锆-氧化钇陶瓷的烧结情况,
电源用于提供电力,工控台用于控制磁控管的打开与关闭和控制转动台的转动;
在烧结室的上方设置一个开孔,提供一个激光束发射器通过该开孔用于辅助加热氧化锆-氧化钇陶瓷,该激光束发射器是1.06μm的Nd:YAG激光发射器,并且与计算机设备相连;
所述计算机设备内存储有加热曲线,所述计算机设备以1-3秒的间隔控制所述激光发射器的功率以实现辅助加热;
在烧结室内设置2-4个环绕氧化锆-氧化钇陶瓷的MoSi2块。
2.如权利要求1的装置,其特征在于,在烧结室上方设置另一个开孔,提供一个红外测温器通过该开孔测定温度,并且与所述计算机设备相连。
3.如权利要求1的装置,其特征在于,在烧结室的底部设置测温热电偶,所述测温热电偶与所述工控台相连。
4.如权利要求1的装置,其特征在于,所述氧化锆-氧化钇陶瓷的组成是98-95wt.%氧化锆和2-5wt.%氧化钇,氧化锆和氧化钇的粒径是160-220nm。
5.如权利要求1的装置,其特征在于,该装置的加热温度范围是500-2000℃。
CN201810698337.2A 2018-06-29 2018-06-29 一种利用电磁波烧结氧化锆-氧化钇陶瓷的装置 Active CN108751986B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810698337.2A CN108751986B (zh) 2018-06-29 2018-06-29 一种利用电磁波烧结氧化锆-氧化钇陶瓷的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810698337.2A CN108751986B (zh) 2018-06-29 2018-06-29 一种利用电磁波烧结氧化锆-氧化钇陶瓷的装置

Publications (2)

Publication Number Publication Date
CN108751986A CN108751986A (zh) 2018-11-06
CN108751986B true CN108751986B (zh) 2021-02-02

Family

ID=63975134

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810698337.2A Active CN108751986B (zh) 2018-06-29 2018-06-29 一种利用电磁波烧结氧化锆-氧化钇陶瓷的装置

Country Status (1)

Country Link
CN (1) CN108751986B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093770A (zh) * 2006-06-19 2007-12-26 东芝北斗电子株式会社 磁控管
CN101644531A (zh) * 2008-08-04 2010-02-10 义获嘉-伟瓦登特公司 陶瓷致密化方法及其装置
CN101851709A (zh) * 2009-12-15 2010-10-06 江苏大学 一种纳米多孔金属或陶瓷的制备方法及装置
CN102503380A (zh) * 2011-10-20 2012-06-20 西北工业大学 一种激光表面气氛加热炉制备氧化铝基共晶陶瓷的方法
CN103411428A (zh) * 2013-09-02 2013-11-27 湖南阳东微波科技有限公司 一种艺术陶瓷微波烧结炉

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160254125A1 (en) * 2015-02-27 2016-09-01 Lam Research Corporation Method for coating surfaces

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093770A (zh) * 2006-06-19 2007-12-26 东芝北斗电子株式会社 磁控管
CN101644531A (zh) * 2008-08-04 2010-02-10 义获嘉-伟瓦登特公司 陶瓷致密化方法及其装置
CN101851709A (zh) * 2009-12-15 2010-10-06 江苏大学 一种纳米多孔金属或陶瓷的制备方法及装置
CN102503380A (zh) * 2011-10-20 2012-06-20 西北工业大学 一种激光表面气氛加热炉制备氧化铝基共晶陶瓷的方法
CN103411428A (zh) * 2013-09-02 2013-11-27 湖南阳东微波科技有限公司 一种艺术陶瓷微波烧结炉

Also Published As

Publication number Publication date
CN108751986A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
CN108947542B (zh) 陶瓷粉末原料直接闪烧成型制备方法
Niu et al. Ultra-fast densification of boron carbide by flash spark plasma sintering
Rendtorff et al. Dense zircon (ZrSiO4) ceramics by high energy ball milling and spark plasma sintering
Khalil Advanced sintering of nano-ceramic materials
US20090079101A1 (en) Densification Process of Ceramics And Apparatus Therefor
AU2011293707B2 (en) Sintering of metal and alloy powders by microwave/millimeter-wave heating
Xu et al. Microwave sintering of ZnO at ultra high heating rates
CN103819202B (zh) 一种陶瓷材料烧结炉及等静压场控等离子烧结方法
CN109761587B (zh) 一种制备Al2O3-GdAlO3-ZrO2三元共晶陶瓷的方法
Benavente et al. Microwave, spark plasma and conventional sintering to obtain controlled thermal expansion β‐eucryptite materials
Chen et al. Preparation of large size ZTA ceramics with eccentric circle shape by microwave sintering
CN108751986B (zh) 一种利用电磁波烧结氧化锆-氧化钇陶瓷的装置
Hoshizuki et al. High temperature thermal insulation system for millimeter wave sintering of B 4 C
Peelamedu et al. Sintering of Zirconia Nanopowder by Microwave‐Laser Hybrid Process
Patterson et al. Batch process for microwave sintering of Si3N4
Peng et al. Microwave initiated self-propagating high-temperature synthesis of SiC
CN102531553A (zh) 一种制备氧化铝基共晶陶瓷的方法
Klimov et al. Influence of electron-beam processing mode on the sintering of alumina ceramics
Li et al. Preparation of dense nanostructured titania ceramic using two step sintering
Egorov et al. Additive Manufacturing of Ceramic Products Based on Millimeter-Wave Heating
German Rapid heating concepts in sintering
Klimov et al. Features of electron-beam processing of metal-ceramic powders in the forevacuum
Willert-Porada et al. Additive manufacturing of ceramic composites by laser assisted microwave plasma processing, LAMPP
Egorov et al. Application of Millimeter-Wave Radiation for Manufacture of Ceramic Items Using Additive Methods.
Chen et al. Research and improvement of SPS spark plasma sintering equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220119

Address after: 410221 No. 101, No. 3, haipingyuan production plant, No. 229, Guyuan Road, Changsha high tech Development Zone, Changsha City, Hunan Province

Patentee after: Changsha zeerton New Material Co.,Ltd.

Address before: 234000 No.123 Bianhe Road, Daodong sub district office, Yongqiao District, Suzhou City, Anhui Province

Patentee before: ANHUI PHETOM INTELLIGENT TRAFFIC TECHNOLOGY Co.,Ltd.

CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 410011 101, production plant III, Haipeng Park, 229 Guyuan Road, High-tech Development Zone, Changsha, Hunan Province

Patentee after: Hunan Zeerton New Materials Co.,Ltd.

Address before: 410221 No. 101, No. 3, haipingyuan production plant, No. 229, Guyuan Road, Changsha high tech Development Zone, Changsha City, Hunan Province

Patentee before: Changsha zeerton New Material Co.,Ltd.