CN108736049B - 一种燃料电池内部温度和湿度在线测量系统 - Google Patents

一种燃料电池内部温度和湿度在线测量系统 Download PDF

Info

Publication number
CN108736049B
CN108736049B CN201810373653.2A CN201810373653A CN108736049B CN 108736049 B CN108736049 B CN 108736049B CN 201810373653 A CN201810373653 A CN 201810373653A CN 108736049 B CN108736049 B CN 108736049B
Authority
CN
China
Prior art keywords
fuel cell
humidity
temperature
sensor
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810373653.2A
Other languages
English (en)
Other versions
CN108736049A (zh
Inventor
邵恒
邱殿凯
彭林法
易培云
来新民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201810373653.2A priority Critical patent/CN108736049B/zh
Publication of CN108736049A publication Critical patent/CN108736049A/zh
Application granted granted Critical
Publication of CN108736049B publication Critical patent/CN108736049B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04328Temperature; Ambient temperature of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04335Temperature; Ambient temperature of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/045Humidity; Ambient humidity; Water content of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/04507Humidity; Ambient humidity; Water content of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种燃料电池内部温度和湿度在线测量系统,该系统包括与燃料电池连接的信号收发模块、与所述信号收发模块连接的直流电源、信号转换记录模块,检测燃料电池内部阴极和阳极反应气体的温度和湿度信息的传感器组件。与现有技术相比,本发明能够在线检测燃料电池内部温度和湿度参数,实时分析燃料电池内部水汽含量。在实际应用中,能够根据该系统诊断结果实时调整电池控制策略,提高燃料电池效率和寿命。

Description

一种燃料电池内部温度和湿度在线测量系统
技术领域
本发明属于燃料电池技术领域,尤其是涉及一种燃料电池内部温度和湿度在线测量系统。
背景技术
质子交换膜燃料电池(PEMFC)是一种将氢气中的化学能直接转变成电能的发电装置,其发电效率可达50%以上。质子交换膜燃料电池运行过程中的唯一产物是水,对环境十分友好,同时具有启动快、工作温度低、噪声小等特点,是未来汽车、无人机等的理想动力源。
质子交换膜燃料电池在发电过程中的产物是水。研究表明,燃料电池内部水的含量和分布直接影响燃料电池工作效率、稳定性和寿命。一方面,燃料电池中的质子交换膜需要在足够的润湿条件下才能保证较高的质子传导率。另一方面,燃料电池生成的水若不能及时排除会造成催化层和气体扩散层中的微孔水淹堵塞,阻碍反应气体供应。电池长时间工作在干燥或水淹的状态下,会导致反应物和催化剂的利用率下降,性能衰减加速,使用寿命降低。另外,燃料电池的运行温度通常为60~80℃,过高或过低的温度都会影响电池内部催化剂的活性,同时影响电池内部水汽比例和电池内部水分排出速率。因此,燃料电池运行过程中需要对反应气体的湿度和湿度进行监测和控制,维持合理的水热平衡。
从以上可以看出,设计一种燃料电池内部温度和湿度在线测量系统及方法,对于考察燃料电池的工作状态,实时表征显示燃料电池的水热分布信息,分析影响燃料电池性能和寿命的关键因素,制定合理的燃料电池水热管理策略,具有重要的指导意义。
现有的技术多采用可见光观测方法定性判断燃料电池反应气体通道内的含水量状态,然而可见光观测方法需要在被测量燃料电池上设置透明的观察窗,对于燃料电池输出功率影响较大,且不能定量测量水汽含量。此外还有中子成像、X射线成像和核磁共振成像等方法探测燃料电池内部水含量,这种成像方法所使用的设备复杂,成本较高,占用体积极大,无法适用于测量在车载等实际工况下运行的燃料电池。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种实时监燃料电池内部温度和湿度参数,实时分析燃料电池内部水汽含量,并根据诊断结果实时调整电池控制策略的燃料电池内部温度和湿度在线测量系统。
本发明的目的可以通过以下技术方案来实现:
一种燃料电池内部温度和湿度在线测量系统,用于采集嵌入温湿度传感器的燃料电池运行状态下阴极和阳极反应气体流场中多个位置的气体温度和湿度数值,包括与燃料电池连接的信号收发模块、与所述信号收发模块连接的直流电源、信号转换记录模块,检测燃料电池内部阴极和阳极反应气体的温度和湿度信息的传感器组件。燃料电池内部阴极和阳极反应气体的温度和湿度信息由传感器组件转换为电信号,经由信号收发模块和信号转换记录模块处理并分别显示温度和湿度分布。
所述的燃料电池内部温度和湿度在线测量系统及方法,其特征在于,所述的燃料电池由膜电极组件(MEA)、金属或石墨双极板、集流板、绝缘板、端板等构成。
优选地,所述的信号收发模块由一个或几个多路数字信号收发器组成,每个信号收发器能够连接至少8个传感器组件。信号收发模块能够向湿度传感器发送测量命令,传感器在收到测量命令之后进行测量,并将测量电信号返回给信号收发器。所有数字收发器共同连接至一条串行总线上,所述串行总线上的信号通过有线或无线路径传输至所述的信号转换和记录模块。无线传输路径可以选用Wifi或Bluetooth协议。
优选地,所述的信号转换记录模块是基于计算机、单片机或可编程控制器等具有数字信号输入和分析功能的硬件平台,硬件平台上搭载具有数据计算转换和展示功能的软件程序组成。信号转换记录模块将采集到的原始信号进行解码,并将原始数据根据预先标定的函数关系转换为真实的温度和湿度数值。来自所有温湿度传感器组件的温度和湿度数据按照一定时间间隔存储在存储介质中,同时将这些数据显示和实时绘图。
优选地,所述的双极板上具有用于嵌入温湿度传感器组件的传感器安装槽和与反应气体流道相连通的探测孔。传感器安装槽位于气体流场的对侧,开口形状为长方形,底部形状为圆形。每片双极板上具有多个传感器安装槽,每个传感器安装槽对应底部位置设有一个探测孔。所述的探测孔与流场进出口区域或活性区域相连。探测孔的直径为1.0~2.0mm,探测孔的长度为0.5~1.0mm。传感器安装槽和探测孔在阴极或阳极流板上加工,亦可同时在阴极和阳极流场板上加工。多个上述探测孔设置在同一根反应气体流道的不同位置。多根气体流道上同时具有上述探测孔。所述的集流板和绝缘板上具有与传感器安装槽位置相匹配的穿线孔,所述的绝缘板上具有同时连接多个穿线孔的穿线槽。
优选地,每个上述传感器安装槽底部安装有一个隔水膜片。所述的隔水膜片是安装于树脂支架上的使用聚四氟乙烯等材料的具有一定透气隔水功能的薄膜。隔水膜片放置在温湿度传感器组件和所述探测孔之间。隔水膜片与安装槽底面和传感器组件之间通过密封圈或密封胶连接,实现阻止反应气体流道中过饱和的水与传感器组件直接接触的效果。所述传感器组件由焊接在印刷电路板或柔性电路板上的传感器芯片、信号调理电路和传感器电缆构成。
优选地,所述的燃料电池装配时,传感器组件装配在预先放置了隔水膜片的传感器安装槽内,传感器组件与安装槽之间的空腔使用硅橡胶、环氧树脂等密封胶填充并固化,保证反应气体能够在燃料电池工作压力下不向电池外部泄漏。所述传感器线缆穿过的绝缘板和集流板上的穿线孔,并在穿过绝缘板上的穿线孔之后弯折嵌入绝缘板上的穿线槽,并延伸到达所述燃料电池外部。引出至燃料电池外部的温湿度传感器电缆的电源引脚与直流电源相连接,信号引脚与信号收发模块相连接。
本发明在燃料电池电堆中在装配时,两片安装有温湿度传感器的双极板之间放置带有边框的膜电极组件(MEA),双极板外侧安装集流板,集流板外侧安装绝缘板,绝缘板外侧使用紧固件固定电池端板。
本发明在实际使用时,阴极气体和阳极气体分别通过设置在端板上的反应气体进出口流入和流出燃料电池,反应产生的电流通过集流板引出供给外部负载。阴极气体和阳极气体分别在阴极流场和阳极反应气体流道中流动,反应气体通过探测孔和隔水膜片接触温湿度传感器,液态水则无法通过隔水膜片。
作为优选的技术方案,在阴极和阳极反应气体流场进口和出口位置各布置一个探测点,在流场活性区域内选取至少5根等间隔的流道,每根流道布置至少5个探测点,形成探测点阵列,以得到流场温湿度分布情况。
与现有技术相比,本发明具有以下优点:
1)电池工作状态下实时得到阴极和阳极反应气体流场温度和湿度分布;
2)判断电池内部水分含量;
3)用于研究电池操作条件对于内部水含量的影响规律;
4)根据得到的温湿度分布结果调整电池控制策略,达到最佳性能输出。。
附图说明
图1为本发明的结构示意图;
图2为本发明的燃料电池结构示意图;
图3为本发明的燃料电池A-A截面示意图;
图4为本发明中探测点位置分布示意图;
图5为本发明在实际使用中测量到的温度和湿度分布图。
图中:1-燃料电池、11-膜电极组件、12-双极板、121-传感器安装槽、122-探测孔、123-活性区域、124-反应气体流向、125-反应气体流道、13-集流板、131-穿线孔、14-绝缘板、141-穿线孔、142-穿线槽、15-端板、151-反应气体进出口、2-信号收发模块、3-直流电源、4-信号转换记录模块、5-传感器组件、51-温湿度传感器、52-电路板、53-传感器电缆、6-隔水膜片、61-薄膜、62-支架、71-密封圈A、72-密封圈B、73-密封胶。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例:
一种燃料电池内部温度和湿度在线测量系统,如图1所示,燃料电池内部温度和湿度在线测量系统及方法用于采集嵌入温湿度传感器的燃料电池运行状态下阴极和阳极反应气体流场中多个位置的气体温度和湿度数值。系统包括信号收发模块2、直流电源3、信号转换记录模块4和传感器组件5。
燃料电池1的结构如图2-3所示,由膜电极组件11、石墨或金属材质的双极板12、集流板13、绝缘板14、端板15等组件构成。燃料电池内部阴极和阳极反应气体的温度和湿度信息由传感器组件5转换为电信号,经由信号收发模块2和信号转换记录模块4处理并分别显示温度和湿度分布。
信号收发模块2由4个多路数字信号收发器组成,每个信号收发器能够连接8个传感器组件5,总计32个。信号收发模块2能够向湿度传感器51发送测量命令,温湿度传感器51在收到测量命令之后进行测量,并将测量电信号通过传感器电缆53返回给信号收发器。所有数字收发器共同连接至一条串行总线上,所述串行总线上的信号传输至所述的信号转换和记录模块4。
本实例中信号转换记录模块4是基于计算机的,计算机上搭载具有数据计算转换和展示功能的软件程序。信号转换记录模块4将采集到的原始信号进行解码,并将原始数据根据预先标定的函数关系转换为真实的温度和湿度数值,燃料电池工作状态下内部温度约为60~80℃,湿度约为20~100%RH。来自所有温湿度传感器组件5的温度和湿度数据按照1秒间隔存储在存储介质中,同时将这些数据显示和实时绘图。
双极板12上具有用于嵌入温湿度传感器组件5的传感器安装槽121和与反应气体流道相连通的探测孔122。传感器安装槽121位于气体流场的对侧,开口形状为长方形6×8mm,底部形状为圆形。每片双极板上具有多个传感器安装槽121,如图4所示,每个传感器安装槽121对应底部位置设有一个探测孔122。探测孔122与流场进出口区域或活性区域123相连。探测孔122的直径为1.0mm,探测孔122的高度为1.0mm。1.0mm的探测孔长度有利于温湿度传感器快速响应。传感器安装槽121和探测孔122在阴极和阳极流板上加工。集流板13上具有与传感器安装槽121位置相匹配的穿线孔131。绝缘板14上具有与传感器安装槽121位置相匹配的穿线孔141和具有同时连接多个穿线孔141的穿线槽142。
每个传感器安装槽121底部安装有一个隔水膜片6。隔水膜片是安装于支架62上的使用聚四氟乙烯等材料的薄膜61,薄膜厚度小于0.1mm。隔水膜片6放置在温湿度传感器组件5和探测孔122之间。隔水膜片6与传感器安装槽底面之间通过“O”型密封圈A71连接,和传感器组件5之间通过“O”型密封圈B72连接,实现阻止反应气体流道中过饱和的水与传感器组件直接接触的效果。传感器组件5由温湿度传感器51、焊接在电路板52上的传感器芯片和传感器电缆53构成。
燃料电池装配时,传感器组件装配在预先放置了隔水膜片6的传感器安装槽内,传感器组件与传感器安装槽之间的空腔使用硅橡胶密封胶73填充并固化,保证反应气体能够在燃料电池工作压力下不向电池外部泄漏。传感器线缆53穿过的绝缘板上的穿线孔131和集流板上的穿线孔141,并在穿过绝缘板上的穿线孔141之后弯折嵌入绝缘板上的穿线槽142,并延伸到达所述燃料电池外部。引出至燃料电池外部的温湿度传感器电缆53的电源引脚与直流电源相连接,信号引脚与信号收发模块相连接。
本发明在燃料电池电堆装配时,两片安装有温湿度传感器的双极板12之间放置带有边框的膜电极组件(MEA)11,双极板外侧安装集流板13,集流板外侧安装绝缘板14,绝缘板外侧使用紧固件固定电池端板15。
本发明在实际使用时,阴极气体和阳极气体分别通过设置在端板上的反应气体进出口151流入和流出燃料电池,反应产生的电流通过集流板13引出供给外部负载。阴极气体和阳极气体的反应气体流向124如图3、4所示,分别在阴极流场和阳极反应气体流道125中流动,反应气体通过探测孔122和隔水膜片6接触温湿度传感器51,液态水则无法通过隔水膜片6。
作为优选的技术方案,根据反应气体流向124在阴极和阳极反应气体流场进口和出口位置各布置一个探测点122,在流场活性区域123内选取5根等间隔的反应气体流道125,每根流道布置5个探测点,形成探测点阵列,以得到流场温湿度分布情况。
如图5所示,本实施例中,得到了反应气体流场内温度和湿度分布数据和云图。从图中可以读出反应气体流场入口温度为68.5℃,出口温度为69.7℃反应气体流场内温度具有一定差异,最高温度为70.8℃,位置在最中间气体通道靠近末端的位置。同时可以读出反应气体流场入口湿度为17.9%RH,出口湿度为59.9%RH,湿度数值沿着反应气体流向逐渐增加。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (8)

1.一种燃料电池内部温度和湿度在线测量系统,其特征在于,该系统包括与燃料电池连接的信号收发模块、与所述信号收发模块连接的直流电源、信号转换记录模块,检测燃料电池内部阴极和阳极反应气体的温度和湿度信息的传感器组件;
所述燃料电池由膜电极组件、金属或石墨材质的双极板、集流板、绝缘板、端板构成;
所述双极板上具有多个用于嵌入温湿度传感器组件的传感器安装槽和与反应气体流道相连通的探测孔,每个传感器安装槽对应底部位置设有一个探测孔。
2.根据权利要求1所述的一种燃料电池内部温度和湿度在线测量系统,其特征在于,所述传感器组件由温湿度传感器、电路板和传感器电缆构成。
3.根据权利要求1所述的一种燃料电池内部温度和湿度在线测量系统,其特征在于,所述信号收发模块由一个或几个多路数字信号收发器组成,所有数字收发器共同连接至一条串行总线上,该串行总线上的信号通过有线或无线路径传输至所述的信号转换记录模块。
4.根据权利要求1所述的一种燃料电池内部温度和湿度在线测量系统,其特征在于,所述信号转换记录模块是基于计算机、单片机或可编程控制器具有数字信号输入和分析功能的硬件平台,硬件平台上搭载具有数据计算转换和展示功能的软件程序。
5.根据权利要求1所述的一种燃料电池内部温度和湿度在线测量系统,其特征在于,所述探测孔与流场进出口区域或活性区域相连,多根流道同时布置探测孔,一根流道的不同位置设置多个探测孔。
6.根据权利要求1所述的一种燃料电池内部温度和湿度在线测量系统,其特征在于,所述传感器安装槽底部安装有具有透气隔水功能的隔水膜片或薄膜,位于传感器组件和所述探测孔之间,所述隔水膜片或薄膜与传感器安装槽底面和传感器组件之间通过密封圈或密封胶连接。
7.根据权利要求1所述的一种燃料电池内部温度和湿度在线测量系统,其特征在于,所述集流板和绝缘板上具有与安装槽位置相匹配的穿线孔,所述的绝缘板上具有同时连接多个穿线孔的穿线槽。
8.根据权利要求7所述的一种燃料电池内部温度和湿度在线测量系统,其特征在于,所述传感器组件的线缆穿过的绝缘板和集流板上的穿线孔,并在穿过绝缘板上的穿线孔之后弯折嵌入绝缘板上的穿线槽,并延伸到达所述燃料电池外部。
CN201810373653.2A 2018-04-24 2018-04-24 一种燃料电池内部温度和湿度在线测量系统 Active CN108736049B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810373653.2A CN108736049B (zh) 2018-04-24 2018-04-24 一种燃料电池内部温度和湿度在线测量系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810373653.2A CN108736049B (zh) 2018-04-24 2018-04-24 一种燃料电池内部温度和湿度在线测量系统

Publications (2)

Publication Number Publication Date
CN108736049A CN108736049A (zh) 2018-11-02
CN108736049B true CN108736049B (zh) 2021-08-13

Family

ID=63939770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810373653.2A Active CN108736049B (zh) 2018-04-24 2018-04-24 一种燃料电池内部温度和湿度在线测量系统

Country Status (1)

Country Link
CN (1) CN108736049B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110057395B (zh) * 2018-09-26 2021-08-06 南方科技大学 燃料电池内部温湿度检测装置
CN109301289B (zh) * 2018-11-20 2023-08-22 安徽明天氢能科技股份有限公司 一种大面积燃料电池内部温度与压力分布的测试装置
CN109860664A (zh) * 2019-03-01 2019-06-07 一汽解放汽车有限公司 质子交换膜燃料电池阴极侧气体湿度调节系统及其方法
CN110137544B (zh) * 2019-04-18 2021-12-24 上海交通大学 质子交换膜燃料电池电堆反应状态在线检测系统及其应用
CN110816366B (zh) * 2019-10-31 2022-12-09 上海交通大学 适用于单体电池内部的温度估算方法、系统、介质及设备
CN111540930B (zh) * 2020-05-09 2023-01-31 电子科技大学 一种具有进出口空气湿度检测的空冷燃料电池电堆
CN111864238B (zh) * 2020-06-28 2021-12-21 江苏大学 一种燃料电池水含量的检测装置及控制方法
CN112212991B (zh) * 2020-10-10 2022-01-25 电子科技大学 一种燃料电池端部温度分布在线检测装置
CN113745597B (zh) * 2021-08-31 2022-10-25 西安交通大学 一种质子交换膜燃料电池流道内水含量测量系统
CN113964348B (zh) * 2021-10-19 2023-08-01 上海恒劲动力科技有限公司 一种加湿特性实时响应的加湿装置、燃料电池及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114720A (zh) * 2006-07-28 2008-01-30 元智大学 具有微传感器的燃料电池
CN103733406A (zh) * 2011-08-11 2014-04-16 联合工艺公司 有水储存器的密封冷却剂流场燃料电池发电设备的控制系统
CN104409753A (zh) * 2014-11-05 2015-03-11 北京工业大学 燃料电池内部温度-湿度分布测量插片
CN104916855A (zh) * 2015-06-30 2015-09-16 中国东方电气集团有限公司 燃料电池装置
CN206945028U (zh) * 2017-04-21 2018-01-30 士彩材料科技(苏州)有限公司 防水透气的传感器保护机构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114720A (zh) * 2006-07-28 2008-01-30 元智大学 具有微传感器的燃料电池
CN103733406A (zh) * 2011-08-11 2014-04-16 联合工艺公司 有水储存器的密封冷却剂流场燃料电池发电设备的控制系统
CN104409753A (zh) * 2014-11-05 2015-03-11 北京工业大学 燃料电池内部温度-湿度分布测量插片
CN104916855A (zh) * 2015-06-30 2015-09-16 中国东方电气集团有限公司 燃料电池装置
CN206945028U (zh) * 2017-04-21 2018-01-30 士彩材料科技(苏州)有限公司 防水透气的传感器保护机构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于数据采集卡的再生燃料电池控制系统开发;冯锦;《万方学位论文数据库》;20140522;正文第5、13、18页 *

Also Published As

Publication number Publication date
CN108736049A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
CN108736049B (zh) 一种燃料电池内部温度和湿度在线测量系统
US6519539B1 (en) Measurement of fuel cell impedance
CN103576095B (zh) 一种燃料电池内部性能实时检测系统及方法
US20120135327A1 (en) Monitoring the operational state of a fuel cell stack
US11973248B2 (en) Method for diagnosing degradation of fuel cell stack, method for multi-point analysis of fuel cell, and method for estimating performance of fuel cell membrane electrode
CN104597407A (zh) 一种双功能燃料电池分区阻抗测试设备及测试方法
CN111731155B (zh) 氢燃料电池车氢耗的测量方法及装置
CN111600050B (zh) 一种多功能质子交换膜燃料电池测试台架
CN115207417A (zh) 一种大面积燃料电池电流密度分布计算方法
CN109065919A (zh) 一种可自动检测性能的质子交换膜燃料电池结构
KR100798699B1 (ko) 가정용 연료전지 성능 평가 장치
CN110057395B (zh) 燃料电池内部温湿度检测装置
CN110752393A (zh) 一种车用燃料电池电堆状态监控系统
CN211088402U (zh) 流场优化验证装置
CN109799276B (zh) 用于评估燃料电池催化剂氧还原活性的气体电极装置
CN114628740B (zh) 一种燃料电池电堆流体分配一致性的检测方法及装置
CN113740402B (zh) 一种bod测量智能传感器
CN112710717B (zh) 一种用于测量甲醇浓度的氧化电流型传感器及其计算方法
CN214043733U (zh) 一种醇类燃料电池电堆
CN101261244B (zh) 一种利用氢传感器测量空气中氢气含量的方法
CN113745597B (zh) 一种质子交换膜燃料电池流道内水含量测量系统
CN221100812U (zh) 氢燃料电池的检测系统
CN217114530U (zh) 一种可测内部温度的方形锂电池及电池包
CN215986238U (zh) 一种质子交换膜分布电流及温度巡检装置
CN109959594A (zh) 一种检测多孔气体扩散电极透气性及电导性的装置、检测系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant