CN108717201B - 一种隧道围岩微震源定位方法 - Google Patents

一种隧道围岩微震源定位方法 Download PDF

Info

Publication number
CN108717201B
CN108717201B CN201810634339.5A CN201810634339A CN108717201B CN 108717201 B CN108717201 B CN 108717201B CN 201810634339 A CN201810634339 A CN 201810634339A CN 108717201 B CN108717201 B CN 108717201B
Authority
CN
China
Prior art keywords
particle
value
tunnel
microseism
minimum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810634339.5A
Other languages
English (en)
Other versions
CN108717201A (zh
Inventor
马春驰
李天斌
张航
韩瑀萱
周雄华
王剑锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Univeristy of Technology
Original Assignee
Chengdu Univeristy of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Univeristy of Technology filed Critical Chengdu Univeristy of Technology
Priority to CN201810634339.5A priority Critical patent/CN108717201B/zh
Publication of CN108717201A publication Critical patent/CN108717201A/zh
Application granted granted Critical
Publication of CN108717201B publication Critical patent/CN108717201B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了一种隧道围岩微震源定位方法,该方法基于启发式类算法中的引力搜索法GSA,在隧道掌子面后方布置至少4个微震监测传感器,采集传感器接收范围内的岩体破裂的波形信号;建立隧道空间坐标系并准确测定传感器空间坐标,拾取各个传感器上波形信号的观测到时;并设定观测到时与计算到时的累积绝对差值为微震源定位的目标函数,最终通过计算目标函数满足终止准则来搜索微震源位置,本发明能够在较快时间内获取较准确的微震源位置,能够满足现场工程对定位精度需要,提高了微震震源定位精度,方法经济实用,操作简单,适用于各种交通、水利水电等隧道工程微震监测。

Description

一种隧道围岩微震源定位方法
技术领域
本发明涉及微震监测领域,尤其是一种基于启发式算法GSA的隧道围岩微震源定位方法,适用于各种交通、水利水电等隧道工程微震监测。
背景技术
岩体在外界扰动的影响下,内部会产生微裂隙并以弹性波的形式释放应变能,微裂隙不断发育伴随着弹性波在岩体内迅速传播与释放,这种弹性波被称之为微震。微震监测技术就是基于弹性波的解译来分析岩体内部微裂纹扩展以及岩体稳定性的监测方法。微震源定位是微震监测技术的核心,它是利用微震传感器记录的微震波形信号、到时数据和微震波波速反演微震事件的空间坐标和发震时刻。
目前,在微震源定位研究中,震源定位原理主要分为两大类:一类是基于到时不同理论的震源定位方法,另一类则是基于三轴传感器的震源定位方法。基于到时不同理论发展起来的震源定位方法种类繁多,是应用最广的一类震源定位方法,例如经典的Geiger法、Thurber法、单纯形定位算法、双重残差法等震源定位方法。但是,经典的Geiger法对初始条件的依赖性较大,在迭代过程中存在失稳发散问题;Thurber法虽然引入二阶偏导数提高了算法的稳定性,但同时也大大增加了计算量;单纯形定位算法与Powell等直接算法无须求解方程组,而是直接进行多维搜索,具有收敛速度快,简单且易实现等优点,但此类算法过于依赖初值的选取,与最小二乘法一样易陷入局部极小值。
目前的现有技术还存在获取难度高、工作量较大、误差较大和效率不高的缺陷。因此,研究一种在较快时间内获取较准确的微震源位置的方法十分有意义,能够很大程度上保证微震源定位精度。
发明内容
本发明为解决上述技术问题是提供一种能够在较快时间内获取较准确的隧道围岩微震源定位方法。
一种隧道围岩微震源定位方法一种隧道围岩微震源定位方法,其特征在于,包括以下步骤:
a.在隧道施工掌子面后方布置n个微震检测传感器,n≥4;
b.收集微震检测传感器接收范围内的岩体破裂的波形信号,定义所有传感器的观测到时与计算到时的累积绝对差值为震源波速反演的目标函数;
c.假定微震定位空间有多个粒子,并假定各个粒子的质量与多维位置向量,;
d.以各粒子的多维位置向量计算目标函数,记录得到的最小目标函数值及对应最小目标函数值的位置;
e.判断最小函数值是否小于规定量值ε,若最小目标函数值小于规定量值ε,则对应最小目标函数值的位置为震源,若最小目标函数值不小于规定量值ε,则更新各粒子的位置向量,重新计算目标函数值,至最小目标函数值小于规定量值ε为止。
更新假定粒子的位置向量时采用引力搜索算法GSA(Gravitational SearchAlgorithm)进行更新。
引力搜索算法GSA(Gravitational SearchAlgorithm)是基于万有引力定律和牛顿第二定律的种群优化算法,万有引力是自然界4种基础力之一。在自然界中,万有引力的作用无处不在,使得任意一个粒子都会与其它的粒子相互吸引而不断的靠近,即较大质量的粒子能吸引较小质量的粒子,较大质量粒子可代表较准确的微震源位置,从而最终获取到最准确的微震源位置。因此,利用基于自然界物理法则的引力搜索算法能实现对微震源的准确定位与获取。
进一步,所述的规定量值为ε,其范围为1e-4到1e-5。
如上所述的一种隧道围岩微震源定位方法,包括如下步骤:
a在隧道施工掌子面后方布置至少4个微震监测传感器。
b建立隧道空间坐标系,采集传感器接收范围内的岩体破裂的波形信号,定义所有传感器的观测到时与计算到时的累积绝对差值为震源波速反演的目标函数,所述目标函数的计算公式如下:
式中,fit为到时的累积绝对差值,n为监测传感器数量;ti为第i个传感器的观测到时,上标p,s为P波或S波,t0为震源的初始发震时刻,Ri/V为计算走时,Ri为微震源位置(x1,x2,x3)与第i个传感器位置(xi,yi,zi)的距离,V代表微震波在传播路径上的速度。
c假定微震定位空间有N个粒子(代表计算震源)。在初始时刻,每个粒子有质量Mi和多维位置向量Xi
M=(M1,...,Mi,...,MN),(i=1,2,...,N) (2)
式2代表有N个具有质量的粒子,式3代表每个粒子具有n维的数值(若仅为三维空间则退化为三维数值),其中,表示第i个粒子在第d维的数值,且有上下限值,即
d将各粒子的多维位置向量X(包含震源的位置和微震波速)带入式1,获得各粒子的目标函数值。记录历史循环目标函数的最小值fitbest及对应粒子的多维位置Xbest
e判断当前目标函数最小值是否满足终止条件(残差值是否小于规定量值ε),即是否fitbest<ε。如果fitbest<ε则输出最优微震源位置,如果fitbest>ε执行下一步骤,所述ε的范围为1e-4到1e-5,ε取值越小,获取的震源定位精度就越高,但需要运算时间也会越久,因此ε的具体取值与工程实际情况相关。
f计算粒子间相互作用的引力。在第k次迭代,定义为在d维度上粒子i受到粒子j作用的引力:
其中,Maj(k)和Mpi(k)分别为主动粒子j的惯性质量和被动粒子i的惯性质量,ε为小量值常量。G(k)为引力系数函数,满足如下:
其中,G0与α为已知值;k为当前迭代次数,K为迭代总次数。
Rij(k)为粒子i和粒子j的欧式距离:
Rij(k)=||Xi(k),Xj(k)||2 (6)
第d维上第i个粒子受到其他所有粒子引力作用的总和为:
式中,randj为[0,1]之间的随机数,为引力的总和添加随机。
在每一次迭代中,每个粒子都会更新惯性质量。惯性质量根据目标函数值计算,粒子惯性质量越大,表明越接近最优值,也表明对其他粒子有更大的吸引力。根据以下公式更新粒子的惯性质量Mi
Mai=Mpi=Mii=Mi,(i=1,2,...,N) (8)
其中,Mai表示主动粒子i的惯性质量,Mpi表示被动粒子i的惯性质量,Mii表示粒子i的惯性质量,fiti(k)为粒子i在第k次迭代的目标函数值大小。
对于求解最小目标函数值问题,best为N个粒子目标函数的最小值,worst为N个粒子目标函数的最大值,定义如下:
g计算每个粒子的加速度和速度。根据牛顿第二定理,第d维上粒子i的加速度和速度为:
其中,为第d维上粒子i的第k+1次迭代更新后的粒子速度,为第d维上粒子i的第k次迭代的粒子速度,Mi(k)为当前时刻粒子i的惯性质量。
h在每一次迭代中,每个粒子都会根据以下公式更新位置:
i根据各粒子更新后的位置向量重新计算目标函数值,并判断是否fitbest<ε,若满足则退出循环,输出全体粒子目标函数的最小值fitbest和对应的最优震源位置向量Xbest;否则继续执行迭代循环。
作为优选,G0为100,α为20。
采用本发明所述的方法对隧道围岩微震源进行定位,具备以下有益效果:
(1)提供了一种新的方法用于微震源定位,且该方法与传统的微震源定位方法相比,经济实用、操作简单、参数设置较少、收敛速度快,且能够很好的和各种优化问题相结合。
(2)本发明所采用的方法的通用性比较强,对问题中不确定的信息具有一定的适应能力。
(3)本发明所采用的方法能够在较快时间内获取较准确的微震源位置,能够满足现场工程对定位精度需要,提高了微震震源定位精度。
附图说明
图1是万有引力作用示意图;
图2是本发明提供的隧道围岩微震源定位方法的流程图。
具体实施方式
下面结合附图及具体实施内容对本发明进一步说明。
以某高地应力高速公路双洞隧道安装微震监测系统为例,依照图2流程获取微震源位置。在该高地应力高速公路双洞隧道安装微震监测系统中,该监测系统含有8个微震传感器,分别布置在左右双洞掌子面后方,其中滞后洞布置3个,超前洞布置5个,共3个监测断面。建立隧道空间坐标系,由此开展针对隧道围岩内部破裂发生的实时监测,捕捉微震触发的微震波形信号,拾取微震波形信号在每个传感器上的观测到时,在所建立的隧道空间坐标系内采用全站仪精确测得各传感器空间坐标(表1)。同时,提取对各微震传感器所接受的微震波形到时(表1)。
表1各微震传感器坐标
定义所有传感器的观测到时与计算到时的累积绝对差值为震源定位的目标函数,其计算公式如下:
在上述基础上,基于启发式算法GSA获取隧道围岩微震波速,其参数选取如下:K=1000,G0=100,α=20;采用的微震波速Vp=5800m/s。最终根据上述发明,计算的最小目标函数fitbest=3.45E-4,对应的粒子位置向量Xbest=(916.40,919.79,1006.92),即该实例搜索获取的最优微震源位置X=916.40,Y=919.79,Z=1006.92。
采用本发明进行微震源位置的搜索和计算,能够在较快时间内获取较准确的微震源定位,能够满足现场工程对定位精度需要。
以上实例仅用以说明本发明的技术方案而非限制,本领域的普通技术人员应当理解,本发明的技术方案进行修改或同等替换,而不脱离本发明方案的精神和范围,均应覆盖在本发明中。

Claims (4)

1.一种隧道围岩微震源定位方法,其特征在于,包括以下步骤:
a.在隧道施工掌子面后方布置n个微震检测传感器,n≥4;
b.收集微震检测传感器接收范围内的岩体破裂的波形信号,定义所有传感器的观测到时与计算到时的累积绝对差值为震源波速反演的目标函数;
c.假定微震定位空间有多个粒子,并假定各个粒子的质量与多维位置向量;
d.以各粒子的多维位置向量计算目标函数,记录得到的最小目标函数值及对应最小目标函数值的位置;
e.判断最小函数值是否小于规定量值ε,若最小目标函数值小于规定量值ε,则对应最小目标函数值的位置为震源,若最小目标函数值不小于规定量值ε,则更新各粒子的位置向量,重新计算目标函数值,至最小目标函数值小于规定量值ε为止;
更新各粒子的位置向量时采用引力搜索算法进行更新。
2.根据权利要求1所述的一种隧道围岩微震源定位方法,其特征在于:所述的规定量值为ε,其范围为1e-4到1e-5。
3.根据权利要求1或2所述的一种隧道围岩微震源定位方法,其特征在于,包括以下步骤:
a.在隧道施工掌子面后方布置n个微震监测传感器,n≥4;
b.建立隧道空间坐标系,采集传感器接收范围内的岩体破裂的波形信号,定义所有传感器的观测到时与计算到时的累积绝对差值为震源波速反演的目标函数,所述目标函数的计算公式如下:
式1中,fit为到时的累积绝对差值,n为监测传感器数量;ti为第i个传感器的观测到时,上标p,s为P波或S波,t0为震源的初始发震时刻,Ri/V为计算走时,Ri为微震源位置与第i个传感器位置的距离,V代表微震波在传播路径上的速度;
c.假定微震定位空间有N个粒子,在初始时刻,每个粒子有质量Mi和多维位置向量Xi
M=(M1,...,Mi,...,MN),(i=1,2,...,N) (2)
式2代表有N个具有质量的粒子,式3代表每个粒子具有n维的数值(若仅为三维空间则退化为三维数值),其中,表示第i个粒子在第d维的数值,且有上下限值,即
d.将各粒子的多维位置向量X带入式1,获得各粒子的目标函数值,记录历史循环目标函数的最小值fitbest及对应粒子的多维位置Xbest
e.判断当前目标函数最小值是否满足终止条件,即是否fitbest<ε,如果fitbest<ε则输出最优微震源位置为Xbest,如果fitbest>ε执行下一步骤;
f.计算粒子间相互作用的引力,在第k次迭代,定义为在d维度上粒子i受到粒子j作用的引力:
其中,Maj(k)和Mpi(k)分别为主动粒子j的惯性质量和被动粒子i的惯性质量,ε为小量值常量,G(k)为引力系数函数,满足如下:
其中,G0与α为确定值,k为当前迭代次数,K为迭代总次数;
Rij(k)为粒子i和粒子j的欧式距离:
Rij(k)=||Xi(k),Xj(k)||2 (6)
第d维上第i个粒子受到其他所有粒子引力作用的总和为:
式中,randj为[0,1]之间的随机数,为引力的总和添加随机;
在每一次迭代中,每个粒子都会更新惯性质量,根据以下公式更新粒子的惯性质量Mi
Mai=Mpi=Mii=Mi,(i=1,2,...,N) (8)
其中,Ma表示主动粒子i的惯性质量,Mp表示被动粒子i的惯性质量,M表示粒子i的惯性质量,fiti(k)为粒子i在第k次迭代的目标函数值大小;
对于求解最小目标函数值问题,best(k)为N个粒子目标函数的最小值,worst(k)为N个粒子目标函数的最大值,定义如下:
g.计算每个粒子的加速度和速度,根据牛顿第二定理,第d维上粒子i的加速度和速度为:
其中,为第d维上粒子i的第k+1次迭代更新后的粒子速度,为第d维上粒子i的第k次迭代的粒子速度,Mi(k)为当前时刻粒子i的惯性质量;
h.在每一次迭代中,每个粒子都会根据以下公式更新位置:
i.根据各粒子更新后的位置向量重新计算目标函数值,并判断是否fitbest<ε,若满足则退出循环,输出全体粒子目标函数的最小值fitbest和对应的最优震源位置向量Xbest;否则继续执行迭代循环。
4.根据权利要求3所述的一种隧道围岩微震源定位方法,其特征在于:G0为100,α为20。
CN201810634339.5A 2018-06-20 2018-06-20 一种隧道围岩微震源定位方法 Active CN108717201B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810634339.5A CN108717201B (zh) 2018-06-20 2018-06-20 一种隧道围岩微震源定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810634339.5A CN108717201B (zh) 2018-06-20 2018-06-20 一种隧道围岩微震源定位方法

Publications (2)

Publication Number Publication Date
CN108717201A CN108717201A (zh) 2018-10-30
CN108717201B true CN108717201B (zh) 2019-10-25

Family

ID=63912149

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810634339.5A Active CN108717201B (zh) 2018-06-20 2018-06-20 一种隧道围岩微震源定位方法

Country Status (1)

Country Link
CN (1) CN108717201B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109597125B (zh) * 2018-11-27 2020-10-16 湖北海震科创技术有限公司 一种基于p波到时与最大振幅波形的微震源定位方法
CN111308548A (zh) * 2019-11-21 2020-06-19 四川圭度科技有限公司 一种高精度微震数据初至拾取装置、系统及方法
CN111880220B (zh) * 2020-09-07 2022-02-22 中国科学院武汉岩土力学研究所 震源定位方法、装置、设备和存储介质
CN112904277B (zh) * 2021-01-25 2023-06-02 招商局重庆交通科研设计院有限公司 基于改进灰狼算法的隧道围岩破裂点定位方法
CN113176606B (zh) * 2021-06-02 2023-09-26 中国恩菲工程技术有限公司 微震震源定位方法、系统、设备及存储介质
CN114047546B (zh) * 2021-11-18 2023-06-16 辽宁大学 基于传感器三维空间联合布置的群智螺旋矿震定位方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104076392B (zh) * 2014-05-28 2015-04-22 中国矿业大学(北京) 基于网格搜索和牛顿迭代的微震震源定位联合反演方法
CN106154334B (zh) * 2015-04-13 2018-02-16 中石化石油工程地球物理有限公司胜利分公司 基于网格搜索的井下微地震事件实时反演定位方法
US10227865B2 (en) * 2015-05-14 2019-03-12 Conocophillips Company System and method for determining drill string motions using acceleration data
CN106990792B (zh) * 2017-05-23 2019-12-27 西北工业大学 混合引力搜索算法的多无人机协同时序耦合任务分配方法
CN107168050B (zh) * 2017-06-01 2020-04-17 武汉科技大学 一种引力搜索算法及基于该算法的污水处理控制方法
CN107703540B (zh) * 2017-06-26 2018-07-20 河海大学 一种微地震定位及层析成像方法

Also Published As

Publication number Publication date
CN108717201A (zh) 2018-10-30

Similar Documents

Publication Publication Date Title
CN108717201B (zh) 一种隧道围岩微震源定位方法
CN105022031B (zh) 一种区域岩体微震震源的分层速度定位方法
CN105589108B (zh) 基于不同约束条件的瞬变电磁快速三维反演方法
CN105842735B (zh) 具有复杂速度分布的区域岩体微震震源定位方法
CN108802814B (zh) 一种隧道围岩微震波速的获取方法
JP5650353B2 (ja) 地震イベントパラメータの推定を取得する方法及びそのシステム、地震イベント探索エンジン
CN109738940B (zh) 一种存在空区条件下的声发射/微震事件定位方法
CN105589100A (zh) 一种微地震震源位置和速度模型同时反演方法
CN105954796B (zh) 一种确定微地震的震源位置的方法和装置
CN109991658B (zh) 一种基于“震源-台站”速度模型的微地震事件定位方法
CN109375253A (zh) 基于全部发震构造最大可信地震的地震动参数评价方法
CN105242328B (zh) 古热岩石圈厚度的确定方法及装置
CN109597125B (zh) 一种基于p波到时与最大振幅波形的微震源定位方法
CN110261903B (zh) 一种基于逆时能量聚焦的地下震源被动定位方法
CN113189644B (zh) 一种微震震源定位方法及系统
JP4506625B2 (ja) リアルタイム地震情報を利用した地震動の予測システム
CN104749630B (zh) 构建微地震监测速度模型的方法
CN109061723B (zh) 一种隧洞岩爆孕育过程的微震源高精度定位方法及系统
CN103364823A (zh) 震动源实时定位与分析系统
CN105022091B (zh) 一种无预测速的远场震源快速定位方法
CN110398775A (zh) 隧道突涌水灾害微震事件信号波动初至拾取方法及系统
CN111736208B (zh) 变权重联合P波和S波初至数据的微震事件Bayes定位方法、系统及介质
CN117454256A (zh) 基于人工智能的地质勘测方法及系统
CN116577729A (zh) 微震震源智能定位的方法、装置、计算机设备及存储介质
CN105093285A (zh) 人工智能地震判断方法及地震侦测系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant