CN108712070A - 基于zcs pwm双向dc-dc cuk变换器、变换系统和方法 - Google Patents

基于zcs pwm双向dc-dc cuk变换器、变换系统和方法 Download PDF

Info

Publication number
CN108712070A
CN108712070A CN201810552743.8A CN201810552743A CN108712070A CN 108712070 A CN108712070 A CN 108712070A CN 201810552743 A CN201810552743 A CN 201810552743A CN 108712070 A CN108712070 A CN 108712070A
Authority
CN
China
Prior art keywords
inductance
resonant
capacitance
end connects
power switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810552743.8A
Other languages
English (en)
Other versions
CN108712070B (zh
Inventor
凌睿
胡青
冯洋飞
王殿
刘姝
何欣驰
邓策亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201810552743.8A priority Critical patent/CN108712070B/zh
Publication of CN108712070A publication Critical patent/CN108712070A/zh
Application granted granted Critical
Publication of CN108712070B publication Critical patent/CN108712070B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/005Conversion of dc power input into dc power output using Cuk converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

本发明提出了一种基于ZCS PWM双向DC‑DC CUK变换器、变换系统和方法,包括:第一变换器正极输出端连接均衡总线正极端,第一变换器负极输出端连接均衡总线负极端,第二变换器正极输出端连接均衡总线正极端,第二变换器负极输出端连接均衡总线负极端,第N变换器正极输出端连接均衡总线正极端,第N变换器负极输出端连接均衡总线负极端,所述N为正整数。通过在均衡总线中使用变换器,实现了能量在总线中的平衡,使均衡总线系统运行更加稳定、更加流畅,能量损耗更小。

Description

基于ZCS PWM双向DC-DC CUK变换器、变换系统和方法
技术领域
本发明涉及电子自动化领域,尤其涉及一种基于ZCS PWM双向DC-DC CUK变换器、变换系统和方法。
背景技术
直流变换器电路一般采用PWM控制方式,开关管工作在硬开关状态。双向DC-DCCuk变换器是一种典型的直流变换器,其结构如图8所示。由于开关管不是理想器件,在开通时开关的电压不是立即下降到零,而是有一个下降时间,同时它的电流也不是立即上升到负载电流,也有一个上升时间。在这段时间里,电流和电压有一个交叠区,产生损耗,我们称之为开通损耗。当开关管关断时,开关管的电压不是立即从零上升到电源电压,而是有一个上升时间,同时它的电流也不是立即下降到零,也有一个下降时间。在这段时间里,电流和电压也有一个交叠区,产生损耗,我们称之为关断损耗。在一定条件下,开关管在每个开关周期中的开关损耗是恒定的,变换器总的开关损耗与开关频率成正比,开关频率越高,总的开关损耗就越大,变换器的效率就越低。开关的存在限制了变换器开关频率的提高,从而限制了变换器的小型化和轻量化。
发明内容
本发明旨在至少解决现有技术中存在的技术问题,特别创新地提出了一种基于ZCS PWM双向DC-DC CUK变换器、变换系统和方法。
为了实现本发明的上述目的,本发明提供了一种基于ZCS PWM双向DC-DCCUK变换器,包括:第一电感、第四电感、第一a电容、第一b电容、第二电容、第一功率开关、第二功率开关、第一辅助开关、第二辅助开关、第一谐振电容、第二谐振电容、第一谐振电感、第二谐振电感;
第一电感一端连接储能元件正极,所述第一电感另一端连接第一辅助开关源极,第一谐振电容一端连接第1辅助开关漏极,所述第一谐振电容另一端连接储能元件负极,所述第一谐振电容另一端还连接第一功率开关源极,第一谐振电感一端连接第一辅助开关源极,所述第一谐振电感另一端连接第一功率开关漏极,第一a电容一端连接第一辅助开关源极,所述第一a电容另一端连接第二功率开关源极,第一b电容一端连接第一功率开关源极,所述第一b电容另一端连接第二谐振电感一端,所述第一b电容另一端还连接第二辅助开关源极,所述第二谐振电感另一端连接第二功率开关漏极,第二谐振电容一端连接第二功率开关源极,所述第二谐振电容另一端连接第二辅助开关漏极,第二电容一端连接第二功率开关源极,所述第二电容另一端连接第四电感一端,所述第四电感另一端连接第二辅助开关源极。
所述的基于ZCS PWM双向DC-DC CUK变换器,优选的,还包括:第一二极管、第二二极管、第一谐振二极管、第二谐振二极管;所述第一二极管正极连接第一功率开关源极,所述第一二极管负极连接第一功率开关漏极,所述第二二极管正极连接第二功率开关源极,所述第二二极管负极连接第二功率开关漏极,所述第一谐振二极管正极连接第一辅助开关源极,所述第一谐振二极管负极连接第一辅助开关漏极,所述第二谐振二极管正极连接第二辅助开关源极,所述第二谐振二极管负极连接第二辅助开关漏极。
所述的基于ZCS PWM双向DC-DC CUK变换器,优选的,还包括:第二电感,
所述第二电感一端连接电源负极,所述第二电感另一端连接第一谐振电容。
所述的基于ZCS PWM双向DC-DC CUK变换器,优选的,还包括:第三电感,
所述第三电感一端连接第二谐振电容一端,所述第三电感另一端连接第二电容。
5、一种基于ZCS PWM双向DC-DC CUK变换系统,其特征在于,包括:第一变换器正极输出端连接均衡总线正极端,第一变换器负极输出端连接均衡总线负极端,第二变换器正极输出端连接均衡总线正极端,第二变换器负极输出端连接均衡总线负极端,第N变换器正极输出端连接均衡总线正极端,第N变换器负极输出端连接均衡总线负极端,所述N为正整数。
本发明公开一种基于ZCS PWM双向DC-DC CUK变换系统的工作方法,包括如下步骤:
该电路从左侧向右侧供电时分为三个阶段,
S1,此阶段第一辅助开关、第一功率开关均关断,电流通过第二功率开关续流二极管流通,ID=Ii+Id
其中,Ii表示输入电流,Id表示输出电流;
S2,此阶段,S1导通,由于S1两端压差大于S2两端压差,电源和第一a电容、第一b电容开始给第一谐振电感充电,Iq+ID=Ii+Id。其中lq表示流过S1的电流;当Iq=Ii+Id时,流过第二功率开关续流二极管的电流自动断流;
S3,此阶段,第一辅助开关Sr1导通,第一谐振电感、第一谐振电容、第一功率开关、第一辅助开关构成谐振电路;当Iq<0时,这时候关断S1可以实现第一功率开关的零电流开关,当第一谐振电容放电完全时,关断第一辅助开关,可以实现第一辅助开关的零电流开关;
通过改变第二阶段和第三阶段之间的时间间隔来改变输出电压。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1该电路引入谐振电路可以实现开关管的软开关,降低开关损耗;
2变换器可以采用恒定频率控制,即PWM控制;
3该电路可以应用更高频率开关管,实现变换器的小型化和轻量化;
4该电路完全对称,能量双向流动分析一致;
5该电路可用于均衡网络中,各均衡电路可以实现独立工作,相互干扰很小。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明基于ZCS PWM双向DC-DC CUK变换系统连接示意图;
图2是本发明基于ZCS PWM双向DC-DC CUK变换器连接示意图;
图3是本发明基于ZCS PWM双向DC-DC CUK变换器工作第一阶段;
图4是本发明基于ZCS PWM双向DC-DC CUK变换器工作第二阶段;
图5是本发明基于ZCS PWM双向DC-DC CUK变换器工作第三阶段;
图6是基于ZCS PWM双向DC-DC CUK变换器的时序图。
图7是本发明基于ZCS PWM双向DC-DC CUK变换器连接示意图;
图8是本发明基于ZCS PWM双向DC-DC CUK变换器连接示意图;
图9是本发明基于ZCS PWM双向DC-DC CUK变换器连接示意图;
图10是本发明基于ZCS PWM双向DC-DC CUK变换器连接示意图;
图11是本发明基于ZCS PWM双向DC-DC CUK变换器连接示意图;
图12是本发明基于ZCS PWM双向DC-DC CUK变换器连接示意图;
图13是本发明基于ZCS PWM双向DC-DC CUK变换器连接示意图;
图14是本发明基于ZCS PWM双向DC-DC CUK变换器连接示意图.
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
如图1所示,本发明提供了一种基于ZCS PWM双向DC-DC CUK变换系统,包括:第一变换器正极输出端连接均衡总线正极端,第一变换器负极输出端连接均衡总线负极端,第二变换器正极输出端连接均衡总线正极端,第二变换器负极输出端连接均衡总线负极端,第N变换器正极输出端连接均衡总线正极端,第N变换器负极输出端连接均衡总线负极端,所述N为正整数。
通过在均衡总线中使用变换器,实现了能量在总线中的平衡,使均衡总线系统运行更加稳定、更加流畅,能量损耗更小。
如图2和7所示,本发明提供了一种基于ZCS PWM双向DC-DC CUK变换器,包括第一电感、第四电感、第一a电容、第一b电容、第二电容、第一功率开关、第二功率开关、第一辅助开关、第二辅助开关、第一谐振电容、第二谐振电容、第一谐振电感、第二谐振电感;
第一电感一端连接储能元件正极,所述第一电感另一端连接第一辅助开关源极,第一谐振电容一端连接第1辅助开关漏极,所述第一谐振电容另一端连接储能元件负极,所述第一谐振电容另一端还连接第一功率开关源极,第一谐振电感一端连接第一辅助开关源极,所述第一谐振电感另一端连接第一功率开关漏极,第一a电容一端连接第一辅助开关源极,所述第一a电容另一端连接第二功率开关源极,第一b电容一端连接第一功率开关源极,所述第一b电容另一端连接第二谐振电感,所述第一b电容另一端还连接第二辅助开关源极,所述第二谐振电感另一端连接第二功率开关漏极,第二谐振电容一端连接第二功率开关源极,所述第二谐振电容另一端连接第二辅助开关漏极,第二电容一端连接第二功率开关源极,所述第二电容另一端连接第四电感,所述第四电感另一端连接第二辅助开关源极。
上述技术方案的有益效果为:该电路添加谐振电路,实现开关管的软开关,该电路完全对称,能量双向流动分析一致。
所述的基于ZCS PWM双向DC-DC CUK变换器,优选的,还包括:第一二极管、第二二极管、第一谐振二极管、第二谐振二极管;所述第一二极管正极连接第一功率开关源极,所述第一二极管负极连接第一功率开关漏极,所述第二二极管正极连接第二功率开关源极,所述第二二极管负极连接第二功率开关漏极,所述第一谐振二极管正极连接第一辅助开关源极,所述第一谐振二极管负极连接第一辅助开关漏极,所述第二谐振二极管正极连接第二辅助开关源极,所述第二谐振二极管负极连接第二辅助开关漏极。
上述技术方案的有益效果为:所述第一二极管、第二二极管、第一谐振二极管、第二谐振二极管能够提高相应功率开关的开关速度。
所述的基于ZCS PWM双向DC-DC CUK变换器,优选的,还包括:第二电感,
所述第二电感一端连接电源负极,所述第二电感另一端连接第一谐振电容。
上述技术方案的有益效果为:该电路可应用于均衡网络中,各均衡电路可以实现独立工作,相互干扰很小。
所述的基于ZCS PWM双向DC-DC CUK变换器,优选的,还包括:第三电感,
所述第三电感一端连接第二谐振电容一端,所述第三电感另一端连接第二电容。
上述技术方案的有益效果为:该电路可应用于均衡网络中,各均衡电路可以实现独立工作,相互干扰很小。
由于设计的电路双向对称,因此电路从左侧向右侧供电与右侧向左侧供电原理相同。该电路从左侧向右侧供电(第二辅助开关、第二功率开关恒关断)时分为三个阶段,图3为第一阶段;此阶段第一辅助开关、第一功率开关均关断,电流通过第二功率开关续流二极管流通,ID=Ii+Id
其中,Ii表示输入电流,Id表示输出电流。
图4为变换器工作的第二阶段;
此阶段,S1导通,由于S1两端压差大于S2两端压差,电源和第一a电容、第一b电容开始给第一谐振电感充电,Iq+ID=Ii+Id。其中Iq表示流过S1的电流。当Iq=Ii+Id时,流过第二功率开关续流二极管的电流自动断流。
图5为变换器工作的第三阶段;
此阶段,第一辅助开关Sr1导通,第一谐振电感、第一谐振电容、第一功率开关、第一辅助开关构成谐振电路。当Iq<0时,这时候关断S1可以实现第一功率开关的零电流开关,当第一谐振电容放电完全时,关断第一辅助开关,可以实现第一辅助开关的零电流开关。
可以通过改变第二阶段和第三阶段之间的时间间隔来改变输出电压。
图6是基于ZCS PWM双向DC-DC Cuk电路的时序图,通过时序图对CUK变换器进行时序控制。
图8是本发明具体实施方式基于ZCS PWM双向DC-DC Cuk电路连接示意图;
第二电感一端连接储能元件负极,所述第二电感另一端连接第一谐振电容一端,储能元件正极连接第一辅助开关源极,第一谐振电容另一端连接第1辅助开关漏极,所述第一谐振电容一端还连接第一功率开关源极,第一谐振电感一端连接第一辅助开关源极,所述第一谐振电感另一端连接第一功率开关漏极,第一a电容一端连接第一辅助开关源极,所述第一a电容另一端连接第二功率开关源极,第一b电容一端连接第一功率开关源极,所述第一b电容另一端连接第二谐振电感,所述第一b电容另一端还连接第二辅助开关源极,所述第二谐振电感另一端连接第二功率开关漏极,第二谐振电容一端连接第二功率开关源极,第二谐振电容一端还连接第三电感一端,第二谐振电容另一端连接第二辅助开关漏极,第二电容一端连接第三电感另一端,第二电容另一端连接第二功率开关源极。
图9是本发明具体实施方式基于ZCS PWM双向DC-DC Cuk电路连接示意图;
第一电感一端连接储能元件正极,所述第一电感另一端连接第一辅助开关源极,第一谐振电容一端连接第1辅助开关漏极,所述第一谐振电容另一端连接储能元件负极,所述第一谐振电容另一端还连接第一功率开关源极,第一谐振电感一端连接第一辅助开关源极,所述第一谐振电感另一端连接第一功率开关漏极,第一a电容一端连接第一辅助开关源极,所述第一a电容另一端连接第二功率开关源极,第一b电容一端连接第一功率开关源极,所述第一b电容另一端连接第二谐振电感,所述第一b电容另一端还连接第二辅助开关源极,所述第二谐振电感另一端连接第二功率开关漏极,第二谐振电容一端连接第二功率开关源极,第二谐振电容一端还连接第三电感一端,第二谐振电容另一端连接第二辅助开关漏极,第二电容一端连接第三电感另一端,第二电容另一端连接第二功率开关源极。
图10是本发明具体实施方式基于ZCS PWM双向DC-DC Cuk电路连接示意图;
第二电感一端连接储能元件负极,所述第二电感另一端连接第一谐振电容一端,储能元件正极连接第一辅助开关源极,第一谐振电容另一端连接第1辅助开关漏极,所述第一谐振电容一端还连接第一功率开关源极,第一谐振电感一端连接第一辅助开关源极,所述第一谐振电感另一端连接第一功率开关漏极,第一a电容一端连接第一辅助开关源极,所述第一b电容另一端连接第二谐振电感,所述第一b电容另一端还连接第二辅助开关源极,所述第二谐振电感另一端连接第二功率开关漏极,第二谐振电容一端连接第二功率开关源极,所述第二谐振电容另一端连接第二辅助开关漏极,第二电容一端连接第二功率开关源极,所述第二电容另一端连接第四电感,所述第四电感另一端连接第二辅助开关源极。
图11是本发明具体实施方式基于ZCS PWM双向DC-DC Cuk电路连接示意图;
第一电感一端连接储能元件正极,所述第一电感另一端连接第一辅助开关源极,第一谐振电容一端连接第1辅助开关漏极,所述第一谐振电容另一端连接第二电感一端,所述第二电感另一端连接储能元件负极,所述第一谐振电容另一端还连接第一功率开关源极,第一谐振电感一端连接第一辅助开关源极,所述第一谐振电感另一端连接第一功率开关漏极,第一a电容一端连接第一辅助开关源极,所述第一a电容另一端连接第二功率开关源极,第一b电容一端连接第一功率开关源极,所述第一b电容另一端连接第二谐振电感,所述第一b电容另一端还连接第二辅助开关源极,所述第二谐振电感另一端连接第二功率开关漏极,第二谐振电容一端连接第二功率开关源极,第二谐振电容一端还连接第三电感一端,第二谐振电容另一端连接第二辅助开关漏极,第二电容一端连接第三电感另一端,第二电容另一端连接第二功率开关源极。
图12是本发明具体实施方式基于ZCS PWM双向DC-DC Cuk电路连接示意图;
第一电感一端连接储能元件正极,所述第一电感另一端连接第一辅助开关源极,第一谐振电容一端连接第1辅助开关漏极,所述第一谐振电容另一端连接第二电感一端,第二电感另一端连接储能元件负极,所述第一谐振电容另一端还连接第一功率开关源极,第一谐振电感一端连接第一辅助开关源极,所述第一谐振电感另一端连接第一功率开关漏极,第一a电容一端连接第一辅助开关源极,所述第一b电容另一端连接第二谐振电感,所述第一b电容另一端还连接第二辅助开关源极,所述第二谐振电感另一端连接第二功率开关漏极,第二谐振电容一端连接第二功率开关源极,所述第二谐振电容另一端连接第二辅助开关漏极,第二电容一端连接第二功率开关源极,所述第二电容另一端连接第四电感,所述第四电感另一端连接第二辅助开关源极。
图13是本发明具体实施方式基于ZCS PWM双向DC-DC Cuk电路连接示意图;
第一电感一端连接储能元件正极,所述第一电感另一端连接第一辅助开关源极,第一谐振电容一端连接第1辅助开关漏极,所述第一谐振电容另一端连接储能元件负极,所述第一谐振电容另一端还连接第一功率开关源极,第一谐振电感一端连接第一辅助开关源极,所述第一谐振电感另一端连接第一功率开关漏极,第一a电容一端连接第一辅助开关源极,所述第一a电容另一端连接第二功率开关源极,第一b电容一端连接第一功率开关源极,所述第一b电容另一端连接第二谐振电感,所述第一b电容另一端还连接第二辅助开关源极,所述第二谐振电感另一端连接第二功率开关漏极,第二谐振电容一端连接第二功率开关源极,第二谐振电容一端还连接第三电感一端,第二谐振电容另一端连接第二辅助开关漏极,第二电容一端连接第三电感另一端,第二电容另一端连接第四电感一端,第四电感另一端连接第二功率开关源极。
图14是本发明具体实施方式基于ZCS PWM双向DC-DC Cuk电路连接示意图;
第二电感一端连接储能元件负极,所述第二电感另一端连接第一谐振电容一端,储能元件正极连接第一辅助开关源极,第一谐振电容另一端连接第1辅助开关漏极,所述第一谐振电容一端还连接第一功率开关源极,第一谐振电感一端连接第一辅助开关源极,所述第一谐振电感另一端连接第一功率开关漏极,第一a电容一端连接第一辅助开关源极,所述第一b电容另一端连接第二谐振电感,所述第一b电容另一端还连接第二辅助开关源极,所述第二谐振电感另一端连接第二功率开关漏极,第二谐振电容一端连接第二功率开关源极,第二谐振电容一端还连接第三电感一端,所述第二谐振电容另一端连接第二辅助开关漏极,第二电容一端连接第三电感另一端,第三电感一端连接第二功率开关源极,所述第二电容另一端连接第四电感,所述第四电感另一端连接第二辅助开关源极。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (6)

1.一种基于ZCS PWM双向DC-DC CUK变换器,其特征在于,包括:第一电感、第四电感、第一a电容、第一b电容、第二电容、第一功率开关、第二功率开关、第一辅助开关、第二辅助开关、第一谐振电容、第二谐振电容、第一谐振电感、第二谐振电感;
第一电感一端连接储能元件正极,所述第一电感另一端连接第一辅助开关源极,第一谐振电容一端连接第1辅助开关漏极,所述第一谐振电容另一端连接储能元件负极,所述第一谐振电容另一端还连接第一功率开关源极,第一谐振电感一端连接第一辅助开关源极,所述第一谐振电感另一端连接第一功率开关漏极,第一a电容一端连接第一辅助开关源极,所述第一a电容另一端连接第二功率开关源极,第一b电容一端连接第一功率开关源极,所述第一b电容另一端连接第二谐振电感一端,所述第一b电容另一端还连接第二辅助开关源极,所述第二谐振电感另一端连接第二功率开关漏极,第二谐振电容一端连接第二功率开关源极,所述第二谐振电容另一端连接第二辅助开关漏极,第二电容一端连接第二功率开关源极,所述第二电容另一端连接第四电感一端,所述第四电感另一端连接第二辅助开关源极。
2.根据权利要求1所述的基于ZCS PWM双向DC-DC CUK变换器,其特征在于,还包括:第一二极管、第二二极管、第一谐振二极管、第二谐振二极管;所述第一二极管正极连接第一功率开关源极,所述第一二极管负极连接第一功率开关漏极,所述第二二极管正极连接第二功率开关源极,所述第二二极管负极连接第二功率开关漏极,所述第一谐振二极管正极连接第一辅助开关源极,所述第一谐振二极管负极连接第一辅助开关漏极,所述第二谐振二极管正极连接第二辅助开关源极,所述第二谐振二极管负极连接第二辅助开关漏极。
3.根据权利要求1所述的基于ZCS PWM双向DC-DC CUK变换器,其特征在于,还包括:第二电感,
所述第二电感一端连接电源负极,所述第二电感另一端连接第一谐振电容。
4.根据权利要求1所述的基于ZCS PWM双向DC-DC CUK变换器,其特征在于,还包括:第三电感,
所述第三电感一端连接第二谐振电容一端,所述第三电感另一端连接第二电容。
5.一种基于ZCS PWM双向DC-DC CUK变换系统,其特征在于,包括:第一变换器正极输出端连接均衡总线正极端,第一变换器负极输出端连接均衡总线负极端,第二变换器正极输出端连接均衡总线正极端,第二变换器负极输出端连接均衡总线负极端,第N变换器正极输出端连接均衡总线正极端,第N变换器负极输出端连接均衡总线负极端,所述N为正整数。
6.一种基于ZCS PWM双向DC-DC CUK变换系统的工作方法,其特征在于,包括如下步骤:
该电路从左侧向右侧供电时分为三个阶段,
S1,此阶段第一辅助开关、第一功率开关均关断,电流通过第二功率开关续流二极管流通,ID=Ii+Id
其中,Ii表示输入电流,Id表示输出电流;
S2,此阶段,S1导通,由于S1两端压差大于S2两端压差,电源和第一a电容、第一b电容开始给第一谐振电感充电,Iq+ID=Ii+Id。其中Iq表示流过S1的电流;当Iq=Ii+Id时,流过第二功率开关续流二极管的电流自动断流;
S3,此阶段,第一辅助开关Sr1导通,第一谐振电感、第一谐振电容、第一功率开关、第一辅助开关构成谐振电路;当Iq<0时,这时候关断S1可以实现第一功率开关的零电流开关,当第一谐振电容放电完全时,关断第一辅助开关,可以实现第一辅助开关的零电流开关;
通过改变第二阶段和第三阶段之间的时间间隔来改变输出电压。
CN201810552743.8A 2018-05-31 2018-05-31 基于zcs pwm双向dc-dc cuk变换器、变换系统和方法 Expired - Fee Related CN108712070B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810552743.8A CN108712070B (zh) 2018-05-31 2018-05-31 基于zcs pwm双向dc-dc cuk变换器、变换系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810552743.8A CN108712070B (zh) 2018-05-31 2018-05-31 基于zcs pwm双向dc-dc cuk变换器、变换系统和方法

Publications (2)

Publication Number Publication Date
CN108712070A true CN108712070A (zh) 2018-10-26
CN108712070B CN108712070B (zh) 2019-09-10

Family

ID=63870286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810552743.8A Expired - Fee Related CN108712070B (zh) 2018-05-31 2018-05-31 基于zcs pwm双向dc-dc cuk变换器、变换系统和方法

Country Status (1)

Country Link
CN (1) CN108712070B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165886A (zh) * 2019-05-30 2019-08-23 重庆大学 基于zct pwm双向dc-dc cuk变换器、变换系统和方法
CN112615541A (zh) * 2020-12-25 2021-04-06 重庆大学 基于零电流pwm双向dc-dc cuk变换器总线式储能元件均衡电路、系统及方法
CN113890384A (zh) * 2021-10-14 2022-01-04 厦门大学 一种单相Cuk变频AC-AC变换器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1352486A (zh) * 2001-11-13 2002-06-05 浙江大学 最小电压型有源钳位直流-直流变换器
CN101159422A (zh) * 2007-10-16 2008-04-09 李平 具有近似恒功率牵引电机特性的永磁直流电机驱动控制系统
CN103944240A (zh) * 2014-05-09 2014-07-23 重庆大学 总线式电池组均衡电路及其控制方法
CN105609887A (zh) * 2016-01-08 2016-05-25 南京航空航天大学 基于串联电池组的分层式均衡电路系统及混合控制方法
CN107017775A (zh) * 2017-04-17 2017-08-04 重庆大学 基于总线式均衡网络的磁场耦合均衡电路
CN107910892A (zh) * 2017-11-15 2018-04-13 国家电网公司 一种应用于智能型分布式能源网络的能源路由器装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1352486A (zh) * 2001-11-13 2002-06-05 浙江大学 最小电压型有源钳位直流-直流变换器
CN101159422A (zh) * 2007-10-16 2008-04-09 李平 具有近似恒功率牵引电机特性的永磁直流电机驱动控制系统
CN103944240A (zh) * 2014-05-09 2014-07-23 重庆大学 总线式电池组均衡电路及其控制方法
CN105609887A (zh) * 2016-01-08 2016-05-25 南京航空航天大学 基于串联电池组的分层式均衡电路系统及混合控制方法
CN107017775A (zh) * 2017-04-17 2017-08-04 重庆大学 基于总线式均衡网络的磁场耦合均衡电路
CN107910892A (zh) * 2017-11-15 2018-04-13 国家电网公司 一种应用于智能型分布式能源网络的能源路由器装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165886A (zh) * 2019-05-30 2019-08-23 重庆大学 基于zct pwm双向dc-dc cuk变换器、变换系统和方法
CN112615541A (zh) * 2020-12-25 2021-04-06 重庆大学 基于零电流pwm双向dc-dc cuk变换器总线式储能元件均衡电路、系统及方法
CN112615541B (zh) * 2020-12-25 2024-03-22 重庆大学 基于零电流pwm双向dc-dc cuk变换器总线式储能元件均衡电路、系统及方法
CN113890384A (zh) * 2021-10-14 2022-01-04 厦门大学 一种单相Cuk变频AC-AC变换器

Also Published As

Publication number Publication date
CN108712070B (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
CN101686015B (zh) 具有主动箝位电路的正-反激变换器
CN100555827C (zh) 开关电源
CN107769573B (zh) 双边lcc网络的wpt系统恒流恒压输出可调的参数设置方法
CN103190064B (zh) 用于控制串联谐振dc/dc转换器的方法
CN101188380B (zh) 用于控制转换器的电路和方法
CN113258774B (zh) 一种零电压关断零电流开通高增益Boost变换器
CN108712070B (zh) 基于zcs pwm双向dc-dc cuk变换器、变换系统和方法
CN106208698B (zh) 设有软开关的四开关Buck-Boost变换器电路及其控制方法
CN110190752B (zh) 一种双向clllc-dcx谐振变换器及其控制方法
CN109450260A (zh) 一种电容串接式交错并联反激电路
CN105162319A (zh) 零电压开关准谐振高增益直流升压变换器
CN110719035A (zh) 单级dab-llc混合型双向dc-dc变换器的拓扑结构
CN108736704B (zh) 基于准谐振双向dc-dc cuk变换器的总线式储能元件均衡电路、系统及方法
CN110391736A (zh) Buck变换器的控制电路
CN101355305B (zh) 多功能有源箝位变结构型双管正反激直流变流器
CN111786553A (zh) 一种高效双向四管buck-boost变换器
CN1956304B (zh) 一种二极管反向恢复电流的抑制方法及其电路
CN110165886A (zh) 基于zct pwm双向dc-dc cuk变换器、变换系统和方法
CN110061624A (zh) 采用脉宽调制控制的软开关谐振buck变换器
CN114123763A (zh) 一种低纹波软开关Cuk变换器电路及调制方法
CN104113208B (zh) 一种包括无损缓冲电路的交错并联Boost变换器
CN101924481B (zh) 一种pfc整流电路
CN110535340A (zh) 一种变结构的宽输入降压电路及装置
CN113285596B (zh) 一种升降压直流变换器及其控制方法
CN112715000A (zh) 电源单元和使用该电源单元的电源系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190910