CN108704649B - 一种非贵金属基电解水析氧反应电催化剂及其制备方法 - Google Patents

一种非贵金属基电解水析氧反应电催化剂及其制备方法 Download PDF

Info

Publication number
CN108704649B
CN108704649B CN201810642549.9A CN201810642549A CN108704649B CN 108704649 B CN108704649 B CN 108704649B CN 201810642549 A CN201810642549 A CN 201810642549A CN 108704649 B CN108704649 B CN 108704649B
Authority
CN
China
Prior art keywords
iron
nickel
noble metal
water
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810642549.9A
Other languages
English (en)
Other versions
CN108704649A (zh
Inventor
周尧
陈健德
李君涛
孙世刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201810642549.9A priority Critical patent/CN108704649B/zh
Publication of CN108704649A publication Critical patent/CN108704649A/zh
Application granted granted Critical
Publication of CN108704649B publication Critical patent/CN108704649B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于电化学催化材料领域,具体涉及一种非贵金属基电解水析氧反应电催化剂,所述电催化剂为镍铁层状双氢氧化物上,负载了羟基氧化铁纳米团簇。本发明解决现有技术中操作复杂、步骤繁多、催化活性不高和能源转化效率不高等问题。通过固体铁源缓慢释放铁离子,控制反应的动力学过程,与溶解在水中的镍离子共同参与形成负载了FeOOH纳米团簇的复合材料。

Description

一种非贵金属基电解水析氧反应电催化剂及其制备方法
技术领域
本发明属于电化学催化材料领域,具体涉及一种非贵金属基电解水析氧反应电催化剂。
背景技术
随着化石能源的不断消耗,以及环境问题的不断增加,传统的化石能源已经不能完全满足巨大的能源需求及绿色发展的要求。电化学水分解制氢被广泛认为是可持续清洁能源转化和存储的非常具有前景的技术。然而,电化学水分解过程中阳极发生的氧析出反应(OER)是动力学迟滞过程,具有较大的析氧过电位,极大限制了水分解效率。目前,基于贵金属的催化剂如氧化铱(IrO2)和氧化钌(RuO2)等具有较高的电化学活性以加速该过程,从而提高了氧析出反应的效率,但是较高的价格以及低的储量使其不能大规模使用。因此,已经有很多研究致力于探索高活性高稳定性的基于廉价铁系过渡金属化合物的析氧反应电催化剂,例如过渡金属氧化物、氢氧化物、羟基氧化物、磷化物、氮化物和硼化物、镍-铁(Ni-Fe)或钴-铁(Co-Fe)层状双氢氧化物(LDH)等。
相关铁系过渡金属化合物用于OER电催化机理的研究表明,低价态铁系元素化合物如氧化物或氢氧化物等的金属位点在电化学催化过程中,常被进一步转化为其相应羟基氧化物形式如羟基氧化镍(CoOOH)和羟基氧化镍(NiOOH)等,并且这些羟基氧化物是OER电催化的真正活性位点。已有报道证实,羟基氧化铁对电解水析氧反应具有优良催化活性。但是,由于其极差的导电性,很少单独用于电催化反应,需要与其他材料进行复合,并进行尺寸纳米化以提高其催化活性。
另一方面,由于特有的表面效应和量子尺寸效应,超细纳米团簇表现出与相应的块状材料显著不同的化学和物理性质。特别的,超细纳米团簇具有极大的比表面积,其表面原子因高度不饱和而具有极高活性,在催化反应中有着非常广阔的前景。但是,超细纳米团簇因其活泼性极其不稳定,非常容易发生团聚,进而失去其尺寸优势。因此,超细纳米团簇一般难以单独存在,其化学制备过程亦不容易实现,目前国内外尚未有关于合成稳定铁系过渡金属化合物超细纳米团簇的报道。
合成稳定存在的负载型铁系金属元素化合物的超细纳米团簇将有望极大地增强其OER电催化性能,提高能源转化效率,为实现大规模电解水制氢提供重要材料支持。
发明内容
本发明的目的是提出一种非贵金属基电解水氧析出反应电催化剂,其为负载型羟基氧化铁纳米团簇;本发明还提供负载型羟基氧化铁纳米团簇的制备方法。
一种非贵金属基电解水氧析出反应电催化剂,为镍铁层状双氢氧化物上,负载了羟基氧化铁纳米团簇;
所述羟基氧化铁纳米团簇的粒径为0.5-5纳米
所述镍元素百分比含量为5%-20%,铁元素百分比含量1%-5%。
所述镍铁层状双氢氧化物的层间阴离子为碳酸根和氟离子。
负载的羟基氧化铁纳米团簇均匀分散在LDH纳米片表面,团簇直径分布在0.5-5纳米。
所述非贵金属基电解水氧析出反应催化剂的制备方法如下:
将镍盐、尿素和氟化铵溶解于水中,将固体铁源加入到上述溶液中,分散,在80℃-200℃下密闭加热,冷却后,将得到的产物分离出来并清洗,随后进行干燥。
所述固体铁源包括不锈钢纳米粉末、四氧化三铁纳米粉末、304不锈钢纳米粉末、氧化铁纳米粉末等,优选不锈钢316L纳米粉末;
所述镍盐为硝酸镍、硫酸镍、氯化镍等;
所述分散为超声分散后再机械搅拌;
在一个实施例中,所述分散之后将得到的悬浮液转移到密封体系中,在120-150℃下加热若干小时以上,如5小时以上,优先10小时以上,更优选15小时以上。
在一个实施例中,所述非贵金属基电解水氧析出反应电催化剂制备如下步骤:
FeOOH/LDH的制备:先将0.5毫摩尔六水合氯化镍、10毫摩尔尿素和5毫摩尔氟化铵溶解于60毫升去离子水中;将100毫克316L不锈钢纳米粉末用水和乙醇清洗,干燥后加入到上述溶液中,超声分散和机械搅拌10分钟;将得到的悬浮液转移到80毫升特氟龙内衬中,放入不锈钢高压釜内,在120℃下加热15小时,然后冷却至室温;将得到的产物用磁铁分离并用去离子水清洗,几乎无磁性的产物为负载型高分散羟基氧化铁纳米团簇,重复三次,随后在60℃干燥箱中干燥。
所述非贵金属基电解水氧析出反应电催化剂电化学性能测试如下步骤:
1)、通过将5毫克负载型高分散羟基氧化铁纳米团簇和2毫克乙炔黑粉末分散在含有500微升去离子水,470微升乙醇和30微升5%萘酚的混合溶液中来制备催化剂墨水;
2)、然后将10微升催化剂浆滴在抛光且干净的玻碳电极上并在室温下干燥过夜;
3)、在Hg/HgO电极作为参比电极和石墨电极作为对电极的三电极装置中评估电化学测量,使用玻璃碳盘电极(直径5毫米)作为工作电极;
4)、电势参考可逆氢电极(RHE):ERHE=EHg/HgO+0.098+0.059×pH(1M KOH溶液)。根据以下等式计算过电势(η):η=ERHE-1.23V。在10mV s-1的扫描速率下在饱和的1M KOH溶液中记录线性扫描伏安法(LSV)以获得极化曲线。所有电极电势数据都进行了80%的电压降补偿。
本发明具有如下的优点与效果:本发明所述非贵金属基电解水氧析出反应电催化剂采用316L不锈钢纳米粉末作为固体铁源,有效进行了动力学控制,合成了多层次结构的花状LDH,并在其纳米片上负载了粒径为0.5-5纳米的FeOOH纳米团簇;所述电催化剂材料制备简单易行,适合大批量生产。所述电催化剂应用于碱性环境下氧析出反应能显著降低过电势(相对于没有进行负载FeOOH纳米颗粒的LDH催化剂),10mA cm-2的电流密度下过电位仅需174mV,塔菲尔斜率为27mV dec-1,是碱性环境下活性最高的氧析出反应电催化剂。同时,所制备的电催化剂在碱性电解液中具有优异的稳定性,在50mA cm-2的电流密度下稳定超过12个小时。高性能可归因于LDH载体的大表面积和FeOOH颗粒的小尺寸效应(0.5-5纳米),结合了Ni-Fe LDH和FeOOH超细纳米颗粒之间的协同作用。FeOOH超细纳米颗粒固定在稳定的LDHs载体上以防止它们团聚和衰变是FeOOH/LDH具有卓越的长期稳定性的缘由,使得该电化学水分解氧析出催化剂材料在能源转化,能源存储等领域具有广阔的前景。
附图说明
图1示本发明实施例1和比较例1制备的电催化剂在10mV s-1的扫描速率下在饱和的1M KOH溶液中记录线性扫描伏安法(LSV)获得极化曲线;
图2示本发明实施例1电催化剂在50mA cm-2的恒电流密度下保持12小时稳定性测试曲线,其中所有电极电势数据都进行了80%的iR补偿;
图3示发明实施例1和比较例1制备的电催化剂XRD衍射图谱;
图4示发明实施例1制备的电催化剂扫描电镜(SEM)测试结果;
图5示发明实施例1制备的电催化剂TEM测试结果;
图6示发明实施例1制备的电催化剂TEM较高放大倍数下FeOOH团簇图;
图7示本发明实施例1和比较例制备的电催化剂EDX测试比较图。
本发明上下文所提及纳米团簇粒径通过透射电子显微镜观察,通过粒径分布统计,来获得平均颗粒直径。
LDH表示层状双(金属)氢氧化物。
具体实施方式
以下所述是本发明实施例的优选实施方式,应当指出,在不脱离本发明实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明实施例的保护范围。
实施例1
(1)FeOOH/LDH的制备:先将0.5毫摩尔六水合氯化镍、10毫摩尔尿素和5毫摩尔溶解于60毫升去离子水中;将100毫克316L不锈钢纳米粉末用水和乙醇清洗并干燥,取100毫克加入到上述溶液中,超声分散10分钟(超声仪器为超声波清洗仪KQ-100TDE)和用转速为100转每分钟机械搅拌10分钟;将得到的悬浮液转移到80毫升特氟龙内衬中,放入不锈钢高压釜内,在120℃下加热15小时,然后冷却至室温;将得到的产物用磁铁分离并用去离子水清洗,无法被磁铁吸附的产物为负载型高分散羟基氧化铁纳米团簇,重复三次,随后在60℃干燥箱中干燥。
实施例2
先将0.5毫摩尔六水合氯化镍、10毫摩尔尿素和5毫摩尔溶解于60毫升去离子水中;将316L不锈钢纳米粉末用水和乙醇清洗并干燥,取10毫克加入到上述溶液中,超声分散10分钟(超声仪器为超声波清洗仪KQ-100TDE)和用转速为100转每分钟机械搅拌10分钟;将得到的悬浮液转移到80毫升特氟龙内衬中,放入不锈钢高压釜内,在120℃下加热15小时,然后冷却至室温;将得到的产物用磁铁分离并用去离子水清洗,无法被磁铁吸附的产物为负载型高分散羟基氧化铁纳米团簇,重复三次,随后在60℃干燥箱中干燥。
实施例3
先将0.5毫摩尔六水合氯化镍、10毫摩尔尿素和5毫摩尔溶解于60毫升去离子水中;将316L不锈钢纳米粉末用水和乙醇清洗并干燥,取300毫克加入到上述溶液中,超声分散10分钟(超声仪器为超声波清洗仪KQ-100TDE)和用转速为100转每分钟机械搅拌10分钟;将得到的悬浮液转移到80毫升特氟龙内衬中,放入不锈钢高压釜内,在120℃下加热15小时,然后冷却至室温;将得到的产物用磁铁分离并用去离子水清洗,无法被磁铁吸附的产物为负载型高分散羟基氧化铁纳米团簇,重复三次,随后在60℃干燥箱中干燥。
实施例4实施例1-3制备的电催化剂电化学性能测试
通过将5毫克催化剂和2毫克乙炔黑粉末分散在含有500微升去离子水,470微升乙醇和30微升5%萘酚的混合溶液中来制备催化剂墨水;然后将10微升催化剂浆滴在抛光且干净的玻碳电极上并在室温下干燥过夜;在Hg/HgO电极作为参比电极和石墨电极作为对电极的三电极装置中评估电化学测量,使用玻璃碳盘电极(直径5毫米)作为工作电极;电势参考可逆氢电极(RHE):ERHE=EHg/HgO+0.098+0.059×pH(1M KOH溶液)。根据以下等式计算过电势(η):η=ERHE-1.23V。在10mV s-1的扫描速率下在饱和的1M KOH溶液中记录线性扫描伏安法(LSV)以获得极化曲线,参见图1。稳定性测试在50mA cm-2的恒电流密度下保持12小时,参见图2。所有电极电势数据都进行了80%的iR补偿。
(3)称取一定量步骤(1)中制备的催化剂测试XRD,包含不锈钢颗粒的峰(43.6,44.6°,50.8,64.9°,74.7,82.2°)、镍铁LDH峰(11.3°,22.7°,33.5°,34.4°,38.7°,46.0°,60.0°,,61.2°)以及氢氧化镍杂质峰(19.2°,52.2°,70.5°,73.1°),参见图3。
(4)称取一定量步骤(1)中制备的催化剂测试SEM,参见图4。
(5)称取一定量步骤(1)中制备的催化剂测试TEM,参见图5,图6为较高放大倍数下FeOOH团簇。
(6)称取一定量步骤(1)中制备的催化剂测试EDX,参见图7。
比较例1
(1)先将0.5毫摩尔六水合氯化镍、0.18毫摩尔四水合氯化亚铁、10毫摩尔尿素和5毫摩尔溶解于60毫升去离子水中,超声分散和搅拌10分钟;将得到的悬浮液转移到80毫升特氟龙内衬中,放入不锈钢高压釜内,在120℃下加热15小时,然后冷却至室温;将得到的产物用离心分离并用去离子水清洗,重复三次,随后在60℃干燥箱中干燥。
(2)通过将5毫克催化剂和2毫克乙炔黑粉末分散在含有500微升去离子水,470微升乙醇和30微升5%萘酚的1毫升溶液中通过超声处理30分钟来制备催化剂墨水;然后将10微升催化剂浆滴在抛光且干净的玻碳电极上并在室温下干燥过夜;在10mVs-1的扫描速率下在饱和的1M氢氧化钾溶液中记录线性扫描伏安法(LSV)以获得极化曲线,结果参见图1,可知比较例2制备的催化剂在电流密度为10mA cm-2的过电位是267mV。所有电极电势数据都进行了80%的电压降补偿。
(3)称取一定量步骤(1)中制备的催化剂测试XRD,包含镍铁LDH峰以及氢氧化镍峰,参见图3。
(7)称取一定量步骤(1)中制备的催化剂测试EDX,参见图7。
实施例2FeOOH/LDH的制备
先将0.5毫摩尔硫酸镍、10毫摩尔尿素和5毫摩尔溶解于60毫升去离子水中;将100毫克316L不锈钢纳米粉末用水和乙醇清洗并干燥,取100毫克加入到上述溶液中,超声分散10分钟和机械搅拌10分钟;将得到的悬浮液转移到80毫升特氟龙内衬中,放入不锈钢高压釜内,在120℃下加热15小时,然后冷却至室温;将得到的产物用磁铁分离并用去离子水清洗,无法被磁铁吸附的产物为负载型高分散羟基氧化铁纳米团簇,重复三次,随后在60℃干燥箱中干燥。
实施例3FeOOH/LDH的制备
先将0.5毫摩尔六水合氯化镍、10毫摩尔尿素和5毫摩尔溶解于60毫升去离子水中;将100毫克四氧化三铁纳米粉末用水和乙醇清洗并干燥,取100毫克加入到上述溶液中,超声分散10分钟和机械搅拌10分钟;将得到的悬浮液转移到80毫升特氟龙内衬中,放入不锈钢高压釜内,在150℃下加热20小时,然后冷却至室温;将得到的产物用磁铁分离并用去离子水清洗,无法被磁铁吸附的产物为负载型高分散羟基氧化铁纳米团簇,重复三次,随后在60℃干燥箱中干燥。

Claims (5)

1.一种非贵金属基电解水氧析出反应电催化剂,其特征在于,所述电催化剂为镍铁层状双氢氧化物上负载了羟基氧化铁纳米团簇,所述羟基氧化铁纳米团簇的粒径为0.5-5纳米,所述镍元素百分比含量为5%-20%,铁元素百分比含量1%-5%,所述负载的羟基氧化铁纳米团簇均匀分散在LDH纳米片表面。
2.权利要求1所述非贵金属基电解水氧析出反应电催化剂的制备方法如下:
将镍盐、尿素和氟化铵溶解于水中,将固体铁源加入到上述溶液中,分散,在80℃-200℃下密闭加热,冷却后,将得到的产物分离出来并清洗,随后进行干燥,其特征在于所述固体铁源为316L不锈钢纳米粉末。
3.权利要求2所述非贵金属基电解水氧析出反应电催化剂的制备方法,所述镍盐为硝酸镍、硫酸镍、氯化镍。
4.权利要求2所述非贵金属基电解水氧析出反应电催化剂的制备方法,所述分散为超声分散后再机械搅拌;所述分散之后将得到的悬浮液转移到密封体系中,在120-150℃下加热10小时以上。
5. 权利要求2所述非贵金属基电解水氧析出反应电催化剂的制备方法,其具体步骤如下:将0.5毫摩尔六水合氯化镍、10毫摩尔尿素和5毫摩尔氟化铵溶解于60毫升去离子水中;将100毫克316L不锈钢纳米粉末用水和乙醇清洗 ,干燥后加入到上述溶液中,超声分散和机械搅拌10分钟;将得到的悬浮液转移到80毫升特氟龙内衬中,放入不锈钢高压釜内,在120℃下加热15小时,然后冷却至室温;将得到的产物用磁铁分离并用去离子水清洗,几乎无磁性的产物为负载型高分散羟基氧化铁纳米团簇,重复三次,随后在60℃干燥箱中干燥。
CN201810642549.9A 2018-06-21 2018-06-21 一种非贵金属基电解水析氧反应电催化剂及其制备方法 Active CN108704649B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810642549.9A CN108704649B (zh) 2018-06-21 2018-06-21 一种非贵金属基电解水析氧反应电催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810642549.9A CN108704649B (zh) 2018-06-21 2018-06-21 一种非贵金属基电解水析氧反应电催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN108704649A CN108704649A (zh) 2018-10-26
CN108704649B true CN108704649B (zh) 2021-04-06

Family

ID=63871866

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810642549.9A Active CN108704649B (zh) 2018-06-21 2018-06-21 一种非贵金属基电解水析氧反应电催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN108704649B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109529895A (zh) * 2018-12-27 2019-03-29 南京工程学院 一种甲苯氧化合成苯甲醛的高稳定性催化剂及其制备方法
CN109701567A (zh) * 2018-12-28 2019-05-03 南京工程学院 一种甲苯氧化合成苯甲醛的高稳定性催化剂
CN109821549A (zh) * 2019-04-08 2019-05-31 陕西科技大学 一种钒掺杂羟基氧化铁电催化剂的制备方法
CN110760872A (zh) * 2019-06-17 2020-02-07 常州大学 一种金属硼化物修饰α-Fe2O3基光阳极的制备方法
CN110327930B (zh) * 2019-06-20 2022-02-18 武汉理工大学 低结晶分级羟基氧化镍纳米片阵列及其制备方法和应用
CN110965076A (zh) * 2019-12-06 2020-04-07 吉林大学 一种双功能三维分层核壳结构电解水电极的制备方法
CN112108160A (zh) * 2020-09-03 2020-12-22 华中科技大学 一种十二面体中空钴镍硒化物/羟基氧化铁复合催化剂的制备方法
CN112090426A (zh) * 2020-09-04 2020-12-18 天津理工大学 一种金属亚稳相电解水析氧催化剂及其制备方法和应用
CN112593256B (zh) * 2020-12-10 2021-08-20 吉林大学 一种核壳FeOOH@NiFe LDH电催化材料及制备方法
CN115092968A (zh) * 2022-06-08 2022-09-23 中国石油大学(华东) 一种羟基氧化铁催化剂的制备方法、产品及应用
CN115522223A (zh) * 2022-09-13 2022-12-27 华南理工大学 一种氟掺杂的非贵金属电催化剂及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107519875A (zh) * 2017-09-05 2017-12-29 济南大学 一种碳基材负载钴氧化物纳米复合材料的制备方法和应用
CN107620087A (zh) * 2016-07-15 2018-01-23 中国科学院大连化学物理研究所 一种羟基氧化铁‑镍铁水滑石一体化析氧电极及制备和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107620087A (zh) * 2016-07-15 2018-01-23 中国科学院大连化学物理研究所 一种羟基氧化铁‑镍铁水滑石一体化析氧电极及制备和应用
CN107519875A (zh) * 2017-09-05 2017-12-29 济南大学 一种碳基材负载钴氧化物纳米复合材料的制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Selected-Control Synthesis and the Phase Transition of Fe3O4 and a-FeOOH in Ethanol/Water Media;Baoping Jia等;《J. Am. Ceram. Soc.》;20061231;第89卷(第5期);第1739-1741页 *

Also Published As

Publication number Publication date
CN108704649A (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
CN108704649B (zh) 一种非贵金属基电解水析氧反应电催化剂及其制备方法
Li et al. An extremely facile route to Co2P encased in N, P-codoped carbon layers: Highly efficient bifunctional electrocatalysts for ORR and OER
Xu et al. PBA-derived FeCo alloy with core-shell structure embedded in 2D N-doped ultrathin carbon sheets as a bifunctional catalyst for rechargeable Zn-air batteries
Wang et al. Hollow Co3O4-x nanoparticles decorated N-doped porous carbon prepared by one-step pyrolysis as an efficient ORR electrocatalyst for rechargeable Zn-air batteries
Zhang et al. In-situ construction of 3D hetero-structured sulfur-doped nanoflower-like FeNi LDH decorated with NiCo Prussian blue analogue cubes as efficient electrocatalysts for boosting oxygen evolution reaction
CN108855184B (zh) 一种高性能析氧CoO@Co-NC/C复合催化剂及其制备方法和应用
Yan et al. Amorphous aerogel of trimetallic FeCoNi alloy for highly efficient oxygen evolution
Sung et al. CeO2/Co (OH) 2 hybrid electrocatalysts for efficient hydrogen and oxygen evolution reaction
Yan et al. In-situ growth of Ni nanoparticle-encapsulated N-doped carbon nanotubes on carbon nanorods for efficient hydrogen evolution electrocatalysis
CN108970617B (zh) 一种负载型电解水析氧反应电催化剂及其制备方法
CN109569608B (zh) 一种CoFe2O4纳米片析氧催化剂的制备方法及用途
Shi et al. Micro-nanostructural designs of bifunctional electrocatalysts for metal-air batteries
Deng et al. One-dimensional nitrogen-doped carbon frameworks embedded with zinc-cobalt nanoparticles for efficient overall water splitting
Qiao et al. Mesoporous spinel NiFe oxide cubes as advanced electrocatalysts for oxygen evolution
Jia et al. Excellent electrocatalytic hydrogen evolution performance of hexagonal NiCoP porous nanosheets in alkaline solution
Liu et al. Co-CoO/ZnFe2O4 encapsulated in carbon nanowires derived from MOFs as electrocatalysts for hydrogen evolution
Chen et al. Spatial confinement of partially oxidized RuCo alloys in N-doped carbon frameworks for highly efficient oxygen evolution electrocatalysis under acidic conditions
Liu et al. One-step synthesis of N, P-codoped carbon nanosheets encapsulated CoP particles for highly efficient oxygen evolution reaction
Li et al. Construction of Ni2P-NiFe2O4 heterostructured nanosheets towards performance-enhanced water oxidation reaction
Mu et al. Dispersed FeOx nanoparticles decorated with Co2SiO4 hollow spheres for enhanced oxygen evolution reaction
Li et al. CoP@ NC electrocatalyst promotes hydrogen and oxygen productions for overall water splitting in alkaline media
Wang et al. Cu induced formation of dendritic CoFeCu ternary alloys on Ni foam for efficient oxygen evolution reaction
Huang et al. 3-Dimensional flower-like clusters of CoNiP nanofoils in-situ grown on randomly-dispersed rGO-Nanosheets with superior electrocatalysis for hydrogen evolution reactions
Hou et al. Nitrogen-rich biomass derived three-dimensional porous structure captures FeNi metal nanospheres: an effective electrocatalyst for oxygen evolution reaction
Zhang et al. Spatial construction of ultrasmall Pt-decorated 3D spinel oxide-modified N-doped graphene nanoarchitectures as high-efficiency methanol oxidation electrocatalysts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant