CN108697467A - 用于机器人外科手术系统的超声波器械 - Google Patents
用于机器人外科手术系统的超声波器械 Download PDFInfo
- Publication number
- CN108697467A CN108697467A CN201780014342.0A CN201780014342A CN108697467A CN 108697467 A CN108697467 A CN 108697467A CN 201780014342 A CN201780014342 A CN 201780014342A CN 108697467 A CN108697467 A CN 108697467A
- Authority
- CN
- China
- Prior art keywords
- shell
- supersonic generator
- instrument
- surgical
- waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013519 translation Methods 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 230000004044 response Effects 0.000 claims description 5
- 230000000295 complement effect Effects 0.000 claims description 4
- 238000001727 in vivo Methods 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims 1
- 238000003384 imaging method Methods 0.000 description 12
- 238000012545 processing Methods 0.000 description 6
- 238000001356 surgical procedure Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002432 robotic surgery Methods 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B17/320092—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00477—Coupling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00681—Aspects not otherwise provided for
- A61B2017/00734—Aspects not otherwise provided for battery operated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B17/320092—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
- A61B2017/320093—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw additional movable means performing cutting operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B17/320092—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
- A61B2017/320094—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw additional movable means performing clamping operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/302—Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Mechanical Engineering (AREA)
- Dentistry (AREA)
- Robotics (AREA)
- Surgical Instruments (AREA)
Abstract
一种超声波外科手术器械,包含壳体、超声波发生器、波导组合件以及保持器。所述壳体限定了腔并且被配置成安装到外科手术机器人的连杆。所述超声波发生器包含定位在所述腔内的部分。所述波导组合件耦合到所述超声波发生器并且包含定位在所述腔内的部分。所述保持器定位在近侧连接器上方并且与所述壳体接合,以将所述超声波发生器的所述部分和所述近侧连接器的所述部分固定在所述腔内。
Description
相关申请的交叉引用
本申请要求于2016年3月4日提交的美国临时专利申请号62/303,658的权益和优先权,所述申请的全部公开通过引用并入本文。
背景技术
1.技术领域
本公开涉及机器人外科手术系统,并且更具体地说,涉及与机器人外科手术系统一起使用的超声波器械。
2.相关技术讨论
如远程操作系统等机器人外科手术系统用于执行微创外科手术。微创外科手术提供许多优于传统开放外科手术技术的益处,包含疼痛较轻、住院时间较短、恢复正常活动较快、疤痕最小、减少的恢复时间以及对组织损伤较小。
机器人外科手术系统可以具有多个机器人臂,所述多个机器人臂响应于通过外科医生观察由外科手术部位的图像捕获装置捕获的图像进行的输入装置的移动而移动附接的器械或工具,如图像捕获装置、缝合器、电外科手术器械、超声波器械等。在外科手术期间,器械中的每一个通过患者体内形成的一个或多个自然开口或切口插入并前进到外科手术部位以操纵组织。开口位于患者身体周围,使得外科手术器械可以用于协作地执行外科手术并且图像捕获装置可以观察外科手术部位。
当超声波器械被附接到机器人臂时,需要超声波能量源来驱动超声波器械的波导。这可能要求超声波发生器连接到超声波器械。
发明内容
本公开通常涉及包含具有超声波发生器的超声波外科手术器械的机器人外科手术系统。超声波器械可以通过器械驱动单元或从与超声波器械相关联的外科手术机器人的连杆汲取电能。替代性地,超声波器械可以包含用于向超声波发生器供应电能的电池。
在本公开的方面中,一种与外科手术机器人一起使用的超声波外科手术器械包含壳体、超声波发生器以及波导组合件。所述壳体被配置成安装到所述外科手术机器人的连杆并且限定了腔。所述超声波发生器至少部分地安置在所述壳体的所述腔内。所述波导组合件耦合到所述超声波发生器并且至少部分地安置在所述壳体的所述腔内。
在方面中,所述外科手术器械包含安置在所述腔内的电池。所述电池可以被配置成向所述超声波发生器供应电能。
在一些方面中,所述波导组合件包含近侧连接器以及从所述近侧连接器延伸的波导。所述外科手术器械可以包含保持器,所述保持器定位在所述近侧连接器上方并且与所述壳体接合以将所述超声波发生器和所述近侧连接器固定在所述腔内。所述保持器可以包含与所述壳体螺纹(或以其它方式)接合的螺钉(或其它紧固构件),以将所述保持器固定到所述壳体。所述保持器可以包含触点,所述触点电耦合到所述超声波发生器的互补触点,以在所述超声波发生器与所述外科手术机器人之间提供信号通信。
在某些方面中,所述波导组合件包含近侧连接器以及从所述近侧连接器延伸的波导。所述波导可以包含在所述波导远侧部分处的叶片。所述波导组合件还可以包含内管和夹紧构件,所述内管安置在所述波导上方并且所述夹紧构件枢转地支撑在所述内管的远侧部分处。所述叶片可以相对于所述壳体绕所述纵轴可旋转地固定。所述超声波发生器可以包含耦合到所述波导的喇叭。所述喇叭可以被配置成超声地驱动所述波导。
在具体的方面中,所述外科手术器械可以包含驱动杆,所述驱动杆安置在所述壳体内,所述驱动杆被配置成在打开位置与夹紧位置之间转变所述夹紧构件,在所述打开位置中,所述夹紧构件与所述叶片间隔开,并且在所述夹紧位置中,所述夹紧构件接近所述叶片。所述驱动杆可以包含远侧接合特征,所述远侧接合特征与所述近侧连接器接合以响应于所述驱动杆的平移而在所述打开位置与所述夹紧位置之间转变所述夹紧构件。所述驱动杆的平移可以使与所述夹紧构件接合的外管平移以在所述打开位置与所述夹紧位置之间转变所述夹紧构件。所述外科手术器械可以包含导螺杆,所述导螺杆与所述驱动杆接合并且被配置成与器械驱动单元接合。所述驱动杆被配置成响应于所述导螺杆的旋转而在所述壳体内平移。
在本公开的另一个方面中,外科手术机器人包含连杆和超声波外科手术器械。所述连杆具有第一端部分和第二端部分。所述第二端部分能够相对于所述第一端部分移动并且限定了器械轴线。所述超声波外科手术器械被安装到所述连杆的所述第二端部分并且能够沿着所述器械轴线平移。所述超声波外科手术器械包含壳体、超声波发生器以及波导组合件。所述壳体安装到所述第二端部分并且限定了腔。所述超声波发生器定位在所述壳体的所述腔内。所述波导组合件耦合到所述超声波发生器并且定位在所述腔内。
在方面中,所述超声波外科手术器械能够绕所述器械轴线旋转。所述第二端部分可以包含平行于并且可绕所述器械轴线旋转的轨道。所述外科手术机器人可以包含可滑动地安置在所述轨道上并且耦合到所述壳体的器械驱动单元。
在一些方面中,所述连杆的所述第一端部分与所述超声波发生器电连通,并且被配置成向所述超声波发生器提供电能,所述超声波发生器被配置成转换所述电能以超声地驱动所述波导。所述连杆的所述第一端部分可以通过所述器械驱动单元与所述超声波发生器电连通。
在本公开的另一个方面中,一种组装超声波外科手术器械的方法包含:使用安置在波导组合件与超声波发生器之间的保持器将所述超声波发生器耦合到所述波导组合件;将所述超声波发生器的一部分和所述波导组合件的一部分定位在所述壳体内;以及将所述壳体与所述保持器接合以将所述保持器、所述超声波发生器以及波导组合件固定到所述壳体。当所述超声波发生器被定位在所述壳体内,所述超声波发生器通过所述壳体与能量源电连通。
在方面中,所述方法包含将电池定位在所述壳体内。所述电池可以通过所述壳体与超声波发生器电连通,以向所述超声波发生器供应能量。将所述电池定位在所述壳体内可以发生于将所述超声波发生器的所述一部分和所述波导组合件的所述部分定位在所述壳体内之前。
进一步,在一致性程度上,本文描述的方面的任何方面可以与本文描述的其它方面的任何或所有结合使用。
附图说明
下文参照结合在本说明书中并且构成本说明书的一部分的附图对本公开的各个方面进行说明,其中:
图1是根据本公开的机器人外科手术系统的用户界面和机器人系统的示意图;
图2是图1的包含附接到臂的工具轨道的外科手术器械的机器人外科手术系统的机器人系统的臂的透视图;
图3是图2的从臂的工具轨道脱离的外科手术器械的透视图;
图4是图3的外科手术器械的分解视图,其中零件被分离开;
图5是图3的外科手术器械的壳体的俯视横截面视图;
图6是图3的外科手术器械的一部分的放大透视图;
图7是图1的机器人系统的另一个臂的透视图;
图8是图1的机器人系统的又另一个臂的透视图;并且
图9是图1的机器人系统的又另一个臂的透视图。
具体实施方式
现在参照附图对本公开的实施例进行详细的说明,在附图中,相同的附图标记指代若干视图中的每个视图中的完全相同或对应的元件。如本文所使用的,术语“临床医生”指医生、护士或任何其它护理提供者并且可以包含辅助人员。贯穿本说明书,术语“近侧”指装置或其部件的离患者最远的部分,并且术语“远侧”指装置或其部件的离患者最近的部分。
本公开通常涉及与机器人系统一起使用的超声波外科手术器械。超声波外科手术器械包含超声波发生器和波导组合件,所述超声波发生器和所述波导组合件中的每一个至少部分地安置在壳体内。壳体被配置成将超声波发生器电耦合到能量源。能量源可以是安置在壳体内或连杆内的电池。替代性地,能量源可以远离连杆,并且通过连杆与壳体电连通。通过壳体将超声波发生器电耦合到能量源可以减少超声波外科手术器械的外围附接。
可以设想,超声波发生器可以与超声波外科手术器械一起使用以便与机器人系统和手持式超声波外科手术系统一起使用。优于每个系统要求单独的超声波发生器,对机器人系统和手持式系统使用同样的超声波发生器可以降低成本。
参照图1,根据本公开的机器人外科手术系统1通常被示出为机器人系统10、处理单元30以及用户界面40。机器人系统10通常包含连杆或臂12和机器人基部18。臂12可移动地支撑,并且每个臂具有支撑工具或外科手术器械100的端部14,所述工具或外科手术器械被配置成作用于组织。此外,臂12的端部14可以包含用于对外科手术部位进行成像的成像装置16。用户界面40通过处理单元30与机器人基部18通信。
用户界面40包含显示装置44,所述显示装置被配置成显示三维图像。显示装置44显示外科手术部位的三维图像,所述三维图像可以包含由定位在臂12的端部14上的成像装置16捕获的数据和/或包含由绕外科手术室定位的成像装置(例如,定位在外科手术部位内的成像装置、邻近患者定位的成像装置、或定位在成像连杆或臂52的远端处的成像装置56)捕获的数据。成像装置(例如,成像装置16、56)可以捕获视觉图像、红外图像、超声图像、X射线图像、热图像和/或外科手术部位的任何其它已知的实时图像。成像装置将捕获的成像数据传送到处理单元30,其根据成像数据实时地创建外科手术部位的三维图像,并且将三维图像传送到显示装置44以供显示。
用户界面40还包含在允许临床医生操纵机器人系统10(例如,移动臂12、臂12的端部14和/或外科手术器械100)的控制臂43上支撑的输入手柄42。输入手柄42中的每一个与处理单元30通信以将控制信号传送到所述处理单元并且从所述处理单元接收反馈信号。另外地或替代性地,输入手柄42中的每一个可以包含输入装置(未示出),所述输入装置允许外科医生操纵(例如,夹紧、握紧、启动、打开、关闭、旋转、推进、切开等)在臂12的端部14处支撑的外科手术器械100。
为了详细地讨论机器人外科手术系统1的构造和操作,可以参考美国专利号8,828,023,所述专利的全部内容通过引用并入本文。
如上简洁所述,外科手术机器人10的臂12被配置成支撑外科手术器械100。参照图2,根据本公开,示出了外科手术机器人10的臂12的透视图,其中工具轨道20支撑超声波器械100。工具轨道20包含器械驱动单元(IDU)24。工具轨道20限定了穿过IDU 24的中心的纵轴A-A。臂12的端部14被配置成绕纵轴A-A旋转工具轨道20和IDU 24。此外,IDU 24和/或超声波器械100能够沿着工具轨道20并且因此沿着纵轴A-A平移。
此外参考图3和图4,超声波器械100包含壳体110、波导组合件130、超声波发生器150以及保持器160。壳体110包含限定了大小合适的腔116的侧壁114,在所述腔内安置了致动组合件120、波导组合件130的近侧部分以及超声波发生器150的一部分。壳体110的近端112被配置成将超声波器械100可拆卸地耦合到IDU 24。例如,壳体110的近端112包含在IDU24的远端上形成的与相应的配合接口(未示出)对准的开口111,所述开口允许超声波器械100牢固地附接到臂12。
致动组合件120被配置成相对于波导组合件130的叶片135致动夹紧构件136。在这方面,致动组合件120包含从驱动杆124延伸的导螺杆122。导螺杆122可旋转地支撑在轴承123内,所述轴承被接纳并纵向固定在限定在壳体110的近端112中的凹部113内。驱动杆124包含近侧接合特征126,所述近侧接合特征与导螺杆122螺纹接合使得当超声波器械被安装到IDU 24时,导螺杆122的旋转影响驱动杆124平行于纵轴A-A的平移。驱动杆124还包含与波导组合件130的一部分接合的远侧接合特征128,如下所详述的。
波导组合件130将能量递送到叶片135以便处理组织,并且包含外管132、内管133、波导134、夹紧构件136以及近侧连接组合件140。当壳体110被支撑在工具轨道20上时(图2),外管132是绕纵轴A-A安置的细长构件。波导134被安置在内管133内并且包含从其远端部分延伸的叶片135。如以下进一步详细描述的,夹紧构件136枢转地支撑在内管133的远侧部分处,并且能够在打开位置与夹紧位置之间致动。在打开位置,夹紧构件136与叶片135间隔开。在夹紧位置,夹紧构件136接近叶片135以在其间夹紧组织。
近侧连接组合件140将波导组合件130耦合到壳体110,并且包含近侧连接器142、近似环144、安装环146以及旋转环148。近侧连接器142被安置在壳体的腔116内,并且与波导134相关联。具体地说,近侧连接器142与发生器150接合以在外管132内影响波导134的超声波平移。近似环144绕近侧连接器142安置,并且被驱动杆124的远侧接合特征128接合,从而响应于驱动杆124的平移而允许在打开位置与夹紧位置之间转变夹紧构件136。可以设想,外管132的平移可以在打开位置与夹紧位置之间转变夹紧构件136。当壳体被支撑在轨道22上时,安装环146被支撑在壳体110的远端118内以沿着纵轴A-A定位波导134。旋转环148是壳体110的远端118的远侧,并且能够绕纵轴A-A旋转以绕纵轴A-A旋转外管132、波导134以及夹紧构件136。替代性地,旋转环148可以相对于壳体110可旋转地固定。
参照图3到图6,如上简洁所述,发生器150基本上安置在壳体110的腔116内,并且将通过电接触环156接收的电能转换成机械超声波能。具体地说,发生器150包含喇叭或输出连接器152(图4),所述喇叭或输出连接器被配置成耦合到波导134以将机械超声波能递送到波导134从而沿着纵轴A-A平移波导134。包含在发生器150的近端中的扭矩旋钮154是能够旋转的以将波导134固定或耦合到喇叭152。
保持器160在腔116上方与壳体110的侧壁114可滑动地接合,以将近侧连接组合件140固定在壳体110内。保持器160可以包含与侧壁114中的紧固件开口115(一个已示出)相对应的将保持器160固定到壳体110的定位螺钉162(或任何类型的定位/耦合特征或紧固构件)。另外地或替代性地,保持器160可以包含选择性地与壳体110接合以将保持器160固定到壳体110的接合特征(未示出)。保持器160还可以包含触点164,所述触点与发生器150的触点158接合以将信号和/或电能沿着包含在壳体110上的路径传送到发生器150。
超声波器械100还可以包含向发生器150提供电能的电池170。如图6中所示出的,可以将电池170接纳在发生器150近侧的腔116内。当发生器150被接纳在壳体116内时,电池170还可以与扭矩旋钮154接合以阻止扭矩旋钮154的旋转,如下所详述的。
参照图4和图5,电池170包含将互补触点174接合在壳体110的腔116内的电触点172(图4)。壳体110可以包含将电池的电触点172与发生器150的电接触环156电耦合的电迹线176。
参照图4和图6,根据本公开描述组装超声波器械100的方法。首先参照图4,保持器160被定位在波导组合件130的近侧连接组合件140上方。其次,发生器150的喇叭152被穿引到波导组合件130的近端部分上,其中保持器160安置在近侧连接器142与发生器150的一部分之间。当波导组合件130的近端部分被穿引到喇叭152时,发生器150的扭矩旋钮154旋转以将波导组合件130固定到喇叭152。可以设想,在扭矩旋钮154旋转时,近侧连接器142被卷入喇叭152中。在近侧连接器142被固定到喇叭152时,发生器150的触点158可以与保持器160的触点164接合。
在波导组合件130固定到发生器150时,波导组合件130的发生器150和近侧连接组合件140被定位在壳体110的腔116内。在近侧连接组合件140被定位在腔116内时,近侧连接组合件140的安装环146被接纳在由壳体110的远端118限定的互补结构内,并且保持器160与壳体110的侧壁114接合。此外,在近侧连接组合件140被定位在腔116中时,近似环144接纳驱动杆124的远侧接合特征128。如图6中所示出的,当发生器150被定位在腔116内时,发生器150的一部分可以被暴露在壳体110的侧壁114上方,并且扭矩旋钮154被安置在腔116内。
在近侧连接组合件140和发生器150被定位在腔116内时,保持器160与壳体110的远端118接合,以将近侧连接组合件140和发生器150固定在腔116内。将壳体110的远端118与保持器160接合可以包含将螺钉162插入使通过保持器160并进入壳体110的远端118,以将保持器160固定到壳体110。
当超声波器械100包含电池170时,电池170于发生器150被定位在腔116内之前被定位在腔116内。在发生器150被定位在腔116内时,可以将发生器150的扭矩旋钮154接纳在电池170的凹部(未直接示出)内。替代性地,在发生器150被定位在腔116中之前,可以将电池170定位在扭矩旋钮154上方,使得电池170和发生器150被同时定位在腔116内。
当组装超声波器械100时,如上所详述的,可以将超声波器械100安装到工具轨道20上,并且耦合到IDU 24。然后,超声波器械100可以用于机器人外科手术。替代性地,可以对超声波器械100进行消毒并且密封以备在未来机器人外科手术期间使用。可以设想,可以以与以上详述的顺序不同的顺序执行以上详述的组装超声波器械100的步骤。
参照图7,机器人系统10可以包含能量源270,所述能量源与发生器150电连通以向发生器提供电能。可以将能量源270定位在机器人系统10的连杆12内或可以定位在支撑连杆12的基部11上。例如,可以将能量源270定位在机器人系统10的基部11上。能量源270可以包含电池和/或可以通过从能量源270延伸的电线272连接到如墙壁插座等外部能量源。
IDU 24可以与能量源270电连通,并且可以电耦合到壳体110的迹线176(图5),以将能量源270电耦合到发生器150。
参照图8,机器人系统10可以包含从与发生器150电连通的IDU 24延伸的电线272。电线272被配置成插入电能源以通过IDU 24向发生器150提供电能,如上所详述的。
参照图9,器械100可以包含电线272,所述电线从与迹线176(图5)连通的壳体110延伸以向发生器150提供电能。
虽然已经在附图中示出本公开的若干实施例,但是本公开并不旨在受其限制,因为本公开的范围旨在如领域将允许的一样广泛并且说明书同样以此方式阅读。以上实施例的任何组合还被设想并且处于所附权利要求的范围内。因此,以上说明不应该被解释为限制性的,而是仅作为具体实施例的例证。所属领域技术人员将设想在所附权利要求的范围内的其它修改。
Claims (21)
1.一种与外科手术机器人一起使用的超声波外科手术器械,所述超声波外科手术器械包括:
壳体,所述壳体被配置成安装到外科手术机器人的连杆并且限定了腔;
超声波发生器,所述超声波发生器至少部分地安置在所述壳体的所述腔内;以及
波导组合件,所述波导组合件耦合到所述超声波发生器并且至少部分地安置在所述壳体的所述腔内。
2.根据权利要求1所述的外科手术器械,进一步包括安置在所述腔内的电池,所述电池被配置成向所述超声波发生器供应电能。
3.根据权利要求1所述的外科手术器械,其中所述波导组合件包含近侧连接器以及从所述近侧连接器延伸的波导。
4.根据权利要求3所述的外科手术器械,进一步包括保持器,所述保持器定位在所述近侧连接器上方,并且与所述壳体接合以将所述超声波发生器和所述近侧连接器固定在所述腔内。
5.根据权利要求4所述的外科手术器械,其中所述保持器包含紧固构件,所述紧固构件与所述壳体接合以将所述保持器固定到所述壳体。
6.根据权利要求4所述的外科手术器械,其中所述保持器包含触点,所述触点电耦合到所述超声波发生器的互补触点以在所述超声波发生器与外科手术机器人之间提供信号通信。
7.根据权利要求3所述的外科手术器械,其中所述波导包含叶片,所述叶片位于所述波导的远侧部分处,并且其中所述波导组合件包含内管和夹紧构件,所述内管安置在所述波导上方并且所述夹紧构件枢转地支撑在所述内管的远侧部分处。
8.根据权利要求7所述的外科手术器械,其中所述超声波发生器包含耦合到所述波导的喇叭,所述喇叭被配置成超声地驱动所述波导。
9.根据权利要求7所述的外科手术器械,进一步包括驱动杆,所述驱动杆安置在所述壳体内以在打开位置与夹紧位置之间转变所述夹紧构件,在所述打开位置中,所述夹紧构件与所述叶片间隔开,并且在所述夹紧位置中,所述夹紧构件接近所述叶片。
10.根据权利要求9所述的外科手术器械,其中所述驱动杆包含远侧接合特征,所述远侧接合特征与所述近侧连接器接合以响应于所述驱动杆的平移而在所述打开位置与所述夹紧位置之间转变所述夹紧构件。
11.根据权利要求10所述的外科手术器械,其中所述驱动杆的平移使与所述夹紧构件接合的外管平移,以在所述打开位置与所述夹紧位置之间转变所述夹紧构件。
12.根据权利要求10所述的外科手术器械,进一步包括导螺杆,所述导螺杆与所述驱动杆接合并且被配置成与器械驱动单元接合,所述驱动杆被配置成响应于所述导螺杆的旋转而在所述壳体内平移。
13.一种外科手术机器人,包括:
连杆,所述连杆具有第一端部分和第二端部分,所述第二端部分能够相对于所述第一端部分移动并且限定了器械轴线;以及
超声波外科手术器械,所述超声波外科手术器械安装到所述连杆的所述第二端部分,所述超声波外科手术器械能够沿着所述器械轴线平移,所述超声波外科手术器械包含:
壳体,所述壳体安装到所述第二端部分并且限定了腔;
超声波发生器,所述超声波发生器定位在所述壳体的所述腔内;以及
波导组合件,所述波导组合件耦合到所述超声波发生器并且定位在所述腔内。
14.根据权利要求13所述的外科手术机器人,其中所述超声波外科手术器械能够绕所述器械轴线旋转。
15.根据权利要求13所述的外科手术机器人,其中所述第二端部分包含平行于并且能够绕所述器械轴线旋转的轨道。
16.根据权利要求15所述的外科手术机器人,进一步包括器械驱动单元,所述器械驱动单元可滑动地安置在所述轨道上并且耦合到所述壳体。
17.根据权利要求16所述的外科手术机器人,其中所述连杆的所述第一端部分与所述超声波发生器电连通并且被配置成向所述超声波发生器提供电能,所述超声波发生器被配置成转换所述电能以超声地驱动所述波导。
18.根据权利要求17所述的外科手术机器人,其中所述连杆的所述第一端部分通过所述器械驱动单元与所述超声波发生器电连通。
19.一种组装超声波器械的方法,所述方法包括:
使用安置在波导组合件与超声波发生器之间的保持器将所述超声波发生器耦合到所述波导组合件;
将所述超声波发生器的一部分和所述波导组合件的一部分定位在壳体内,所述超声波发生器与所述壳体电连通,所述壳体被配置成将所述超声波发生器电耦合到能量源;以及
将所述壳体与所述保持器接合以将所述保持器、所述超声波发生器以及所述波导组合件固定到所述壳体。
20.根据权利要求19所述的方法,进一步包括:将电池定位在所述壳体内,所述电池与所述壳体电连通并且被配置成向所述超声波发生器供应能量。
21.根据权利要求20所述的方法,其中将所述电池定位在所述壳体内发生于将所述超声波发生器的一部分和所述波导组合件的所述部分定位在所述壳体内之前。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662303658P | 2016-03-04 | 2016-03-04 | |
US62/303,658 | 2016-03-04 | ||
PCT/US2017/020380 WO2017151873A1 (en) | 2016-03-04 | 2017-03-02 | Ultrasonic instruments for robotic surgical systems |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108697467A true CN108697467A (zh) | 2018-10-23 |
CN108697467B CN108697467B (zh) | 2021-05-28 |
Family
ID=59744417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780014342.0A Expired - Fee Related CN108697467B (zh) | 2016-03-04 | 2017-03-02 | 用于机器人外科手术系统的超声波器械 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10893884B2 (zh) |
EP (1) | EP3422983B1 (zh) |
CN (1) | CN108697467B (zh) |
WO (1) | WO2017151873A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110575248A (zh) * | 2019-09-20 | 2019-12-17 | 哈尔滨工业大学 | 一种用于微创消融手术的机器人系统 |
Families Citing this family (144)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
US20140005640A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical end effector jaw and electrode configurations |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
US11026687B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Clip applier comprising clip advancing systems |
US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US10959744B2 (en) | 2017-10-30 | 2021-03-30 | Ethicon Llc | Surgical dissectors and manufacturing techniques |
US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
US20190201039A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Situational awareness of electrosurgical systems |
US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
US11056244B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
US20190201146A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Safety systems for smart powered surgical stapling |
US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US10898622B2 (en) | 2017-12-28 | 2021-01-26 | Ethicon Llc | Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device |
US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
US10695081B2 (en) | 2017-12-28 | 2020-06-30 | Ethicon Llc | Controlling a surgical instrument according to sensed closure parameters |
US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
US10944728B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
US11147607B2 (en) | 2017-12-28 | 2021-10-19 | Cilag Gmbh International | Bipolar combination device that automatically adjusts pressure based on energy modality |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11051876B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Surgical evacuation flow paths |
US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US10849697B2 (en) | 2017-12-28 | 2020-12-01 | Ethicon Llc | Cloud interface for coupled surgical devices |
US11612408B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Determining tissue composition via an ultrasonic system |
US20190201139A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Communication arrangements for robot-assisted surgical platforms |
US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US10892899B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
US10966791B2 (en) | 2017-12-28 | 2021-04-06 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
US11058498B2 (en) | 2017-12-28 | 2021-07-13 | Cilag Gmbh International | Cooperative surgical actions for robot-assisted surgical platforms |
US10932872B2 (en) | 2017-12-28 | 2021-03-02 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11672605B2 (en) | 2017-12-28 | 2023-06-13 | Cilag Gmbh International | Sterile field interactive control displays |
US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US10755813B2 (en) | 2017-12-28 | 2020-08-25 | Ethicon Llc | Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US10943454B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
US10987178B2 (en) | 2017-12-28 | 2021-04-27 | Ethicon Llc | Surgical hub control arrangements |
US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11399858B2 (en) | 2018-03-08 | 2022-08-02 | Cilag Gmbh International | Application of smart blade technology |
US11337746B2 (en) | 2018-03-08 | 2022-05-24 | Cilag Gmbh International | Smart blade and power pulsing |
JP2021514220A (ja) * | 2018-03-08 | 2021-06-10 | コヴィディエン リミテッド パートナーシップ | 手術ロボットシステム |
US11197668B2 (en) | 2018-03-28 | 2021-12-14 | Cilag Gmbh International | Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout |
US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
US11298129B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
US11751872B2 (en) | 2019-02-19 | 2023-09-12 | Cilag Gmbh International | Insertable deactivator element for surgical stapler lockouts |
USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
US11376082B2 (en) | 2019-06-27 | 2022-07-05 | Cilag Gmbh International | Robotic surgical system with local sensing of functional parameters based on measurements of multiple physical inputs |
US11612445B2 (en) | 2019-06-27 | 2023-03-28 | Cilag Gmbh International | Cooperative operation of robotic arms |
US11723729B2 (en) | 2019-06-27 | 2023-08-15 | Cilag Gmbh International | Robotic surgical assembly coupling safety mechanisms |
US11413102B2 (en) | 2019-06-27 | 2022-08-16 | Cilag Gmbh International | Multi-access port for surgical robotic systems |
US11607278B2 (en) | 2019-06-27 | 2023-03-21 | Cilag Gmbh International | Cooperative robotic surgical systems |
US11547468B2 (en) | 2019-06-27 | 2023-01-10 | Cilag Gmbh International | Robotic surgical system with safety and cooperative sensing control |
US11399906B2 (en) | 2019-06-27 | 2022-08-02 | Cilag Gmbh International | Robotic surgical system for controlling close operation of end-effectors |
US11376083B2 (en) | 2019-06-27 | 2022-07-05 | Cilag Gmbh International | Determining robotic surgical assembly coupling status |
US11369443B2 (en) | 2019-06-27 | 2022-06-28 | Cilag Gmbh International | Method of using a surgical modular robotic assembly |
US11766275B2 (en) | 2020-05-18 | 2023-09-26 | Covidien Lp | Articulating ultrasonic surgical instruments and systems |
GB2597795A (en) * | 2020-08-07 | 2022-02-09 | Creo Medical Ltd | Modular apparatus for robot-assisted electrosurgery |
US11931059B2 (en) * | 2020-10-22 | 2024-03-19 | Cilag Gmbh International | Surgical instrument with a carrier kart and various communication cable arrangements |
US12016587B2 (en) | 2020-10-22 | 2024-06-25 | Cilag Gmbh International | Carrier kart and jaw closure of an ultrasonic surgical instrument |
US12035935B2 (en) * | 2020-10-22 | 2024-07-16 | Cilag Gmbh International | Surgical instrument and carrier kart supporting ultrasonic transducer |
US11950798B2 (en) | 2020-10-22 | 2024-04-09 | Cilag Gmbh International | Surgical instrument with non-clamping sensor feedback |
WO2022084840A1 (en) * | 2020-10-22 | 2022-04-28 | Cilag Gmbh International | Ultrasonic surgical instrument with translating transducer, waveguide and blade |
US11806037B2 (en) | 2020-10-22 | 2023-11-07 | Cilag Gmbh International | Damping rings for an ultrasonic surgical instrument |
US11998228B2 (en) * | 2020-10-22 | 2024-06-04 | Cilag Gmbh International | Ultrasonic surgical instrument with a carrier kart and reusable stage |
US11974829B2 (en) | 2021-06-30 | 2024-05-07 | Cilag Gmbh International | Link-driven articulation device for a surgical device |
US11931026B2 (en) | 2021-06-30 | 2024-03-19 | Cilag Gmbh International | Staple cartridge replacement |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020177843A1 (en) * | 2001-04-19 | 2002-11-28 | Intuitive Surgical, Inc. | Robotic surgical tool with ultrasound cauterizing and cutting instrument |
CN101045015A (zh) * | 2006-03-29 | 2007-10-03 | 伊西康内外科公司 | 超声外科系统及方法 |
CN103027718A (zh) * | 2011-10-10 | 2013-04-10 | 伊西康内外科公司 | 具有限定流体内腔的超声波导的外科器械 |
US20140005668A1 (en) * | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical instruments with fluid management system |
US20140005681A1 (en) * | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with control mechanisms |
CN105050514A (zh) * | 2013-03-13 | 2015-11-11 | 伊西康内外科公司 | 具有关节运动端部执行器的机器人超声外科装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8398634B2 (en) | 2002-04-18 | 2013-03-19 | Intuitive Surgical Operations, Inc. | Wristed robotic surgical tool for pluggable end-effectors |
US7824401B2 (en) | 2004-10-08 | 2010-11-02 | Intuitive Surgical Operations, Inc. | Robotic tool with wristed monopolar electrosurgical end effectors |
US9017355B2 (en) * | 2007-12-03 | 2015-04-28 | Covidien Ag | Battery-powered hand-held ultrasonic surgical cautery cutting device |
DE102010043584A1 (de) | 2010-11-08 | 2012-05-10 | Kuka Laboratories Gmbh | Medizinscher Arbeitsplatz |
US8968285B2 (en) | 2011-12-06 | 2015-03-03 | Covidien Lp | Portable surgical instruments |
-
2017
- 2017-03-02 US US16/081,780 patent/US10893884B2/en active Active
- 2017-03-02 CN CN201780014342.0A patent/CN108697467B/zh not_active Expired - Fee Related
- 2017-03-02 EP EP17760783.5A patent/EP3422983B1/en active Active
- 2017-03-02 WO PCT/US2017/020380 patent/WO2017151873A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020177843A1 (en) * | 2001-04-19 | 2002-11-28 | Intuitive Surgical, Inc. | Robotic surgical tool with ultrasound cauterizing and cutting instrument |
CN101045015A (zh) * | 2006-03-29 | 2007-10-03 | 伊西康内外科公司 | 超声外科系统及方法 |
CN103027718A (zh) * | 2011-10-10 | 2013-04-10 | 伊西康内外科公司 | 具有限定流体内腔的超声波导的外科器械 |
US20140005668A1 (en) * | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical instruments with fluid management system |
US20140005681A1 (en) * | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with control mechanisms |
CN105050514A (zh) * | 2013-03-13 | 2015-11-11 | 伊西康内外科公司 | 具有关节运动端部执行器的机器人超声外科装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110575248A (zh) * | 2019-09-20 | 2019-12-17 | 哈尔滨工业大学 | 一种用于微创消融手术的机器人系统 |
Also Published As
Publication number | Publication date |
---|---|
EP3422983B1 (en) | 2021-09-22 |
EP3422983A4 (en) | 2019-10-16 |
US10893884B2 (en) | 2021-01-19 |
CN108697467B (zh) | 2021-05-28 |
US20190029712A1 (en) | 2019-01-31 |
EP3422983A1 (en) | 2019-01-09 |
WO2017151873A1 (en) | 2017-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108697467A (zh) | 用于机器人外科手术系统的超声波器械 | |
JP7264521B2 (ja) | ロボット外科的デバイス、システムおよび関連する方法 | |
US11918422B2 (en) | Systems and methods for communicating over a reduced number of conductors in a teleoperational system | |
JP7225247B2 (ja) | ロボット支援型外科用プラットホームのための感知構成 | |
CN103561667B (zh) | 机器人手术器械中的夹持力控制 | |
JP6174017B2 (ja) | 生体内血管シールエンドエフェクタおよび生体内ロボット装置 | |
CN103431913B (zh) | 微创外科机器人手术微器械 | |
JP2021509027A (ja) | ロボット補助付き外科用プラットフォームのための通信構成 | |
JP2016019766A (ja) | 多構成テレプレゼンスシステムおよびその方法 | |
CN109431601B (zh) | 一种内窥镜手术机器人组合系统及其使用方法 | |
US20130282173A1 (en) | Remotely Controlled Surgical Robots | |
WO2020139973A1 (en) | Medical instrument with articulable segment | |
CN109431604B (zh) | 一种用于单孔微创术式的柔性手术机器人及其使用方法 | |
EP2522270B1 (en) | Pivoted three-dimensional video endoscope | |
CN217138147U (zh) | 外科手术器械和手术机器人 | |
JPH07328024A (ja) | 医療用マニピュレータ装置 | |
CN109171978B (zh) | 主从式胃部手术机器人系统 | |
EP3787521A1 (en) | Intraluminal medical imaging interface devices and systems | |
US11944340B2 (en) | Suction and irrigation valve and method of priming same in a robotic surgical system | |
CN208710055U (zh) | 一种医学辅助操作装置 | |
JP2004135781A (ja) | 手術装置 | |
JP2021504041A (ja) | 平行移動位置に基づく器具の回転を含むロボット外科手術器具 | |
CN109431605A (zh) | 一种基于柔性手术臂的经皮穿刺机器人系统及其使用方法 | |
EP4087503B1 (en) | Ultrasonic surgical instrument with translating transducer, waveguide and blade | |
US11589948B2 (en) | Hooked surgery camera |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210528 |
|
CF01 | Termination of patent right due to non-payment of annual fee |