CN108694271A - 燃气涡轮机调配优化系统及方法及非暂态计算机可读介质 - Google Patents
燃气涡轮机调配优化系统及方法及非暂态计算机可读介质 Download PDFInfo
- Publication number
- CN108694271A CN108694271A CN201810289901.5A CN201810289901A CN108694271A CN 108694271 A CN108694271 A CN 108694271A CN 201810289901 A CN201810289901 A CN 201810289901A CN 108694271 A CN108694271 A CN 108694271A
- Authority
- CN
- China
- Prior art keywords
- life
- price
- assets
- value
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000567 combustion gas Substances 0.000 title claims abstract description 117
- 238000005457 optimization Methods 0.000 title claims abstract description 106
- 238000000034 method Methods 0.000 title claims abstract description 76
- 230000005611 electricity Effects 0.000 claims description 129
- 239000000446 fuel Substances 0.000 claims description 99
- 238000012423 maintenance Methods 0.000 claims description 29
- 230000006870 function Effects 0.000 claims description 23
- 230000007613 environmental effect Effects 0.000 claims description 21
- 230000004044 response Effects 0.000 claims description 11
- 238000010248 power generation Methods 0.000 claims description 2
- 230000005055 memory storage Effects 0.000 claims 1
- 238000013439 planning Methods 0.000 description 30
- 238000010586 diagram Methods 0.000 description 27
- 238000003860 storage Methods 0.000 description 26
- 230000007774 longterm Effects 0.000 description 25
- 238000005259 measurement Methods 0.000 description 19
- 238000012545 processing Methods 0.000 description 19
- 238000004458 analytical method Methods 0.000 description 16
- 230000006399 behavior Effects 0.000 description 15
- 239000007789 gas Substances 0.000 description 13
- 230000002354 daily effect Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 238000002485 combustion reaction Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000000670 limiting effect Effects 0.000 description 6
- 238000007620 mathematical function Methods 0.000 description 6
- 238000012384 transportation and delivery Methods 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 4
- 238000013500 data storage Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 210000004209 hair Anatomy 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 230000003679 aging effect Effects 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- 230000008713 feedback mechanism Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000012804 iterative process Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000003827 upregulation Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241001269238 Data Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241001522296 Erithacus rubecula Species 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 235000006508 Nelumbo nucifera Nutrition 0.000 description 1
- 240000002853 Nelumbo nucifera Species 0.000 description 1
- 235000006510 Nelumbo pentapetala Nutrition 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 230000008376 long-term health Effects 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012502 risk assessment Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/28—Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/01—Purpose of the control system
- F05D2270/07—Purpose of the control system to improve fuel economy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/01—Purpose of the control system
- F05D2270/20—Purpose of the control system to optimize the performance of a machine
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/26—Pc applications
- G05B2219/2639—Energy management, use maximum of cheap power, keep peak load low
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Theoretical Computer Science (AREA)
- Mechanical Engineering (AREA)
- Geometry (AREA)
- Evolutionary Computation (AREA)
- Computer Hardware Design (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开一种燃气涡轮机调配优化系统及方法及非暂态计算机可读介质。所述调配优化系统利用环境和市场预测数据以及资产性能和零部件寿命模型为燃气涡轮机或其他发电装置资产生成既满足零部件寿命约束又使利润大体最大化的建议操作时间表。所述系统生成操作曲线,所述操作曲线使维护间隔或其他操作范围内的最佳峰值动火操作机会与最佳冷部分负载机会达到平衡。在所述资产的实时操作期间,所述优化系统可以基于实际市场、环境和操作数据来更新所述操作时间表。所述系统提供信息,所述信息可帮助操作员确定以最佳盈利而不违反目标寿命约束的方式对所述资产进行冷部分负载或峰值动火操作的适当条件。
Description
技术领域
本说明书中公开的主题大体上涉及动力装置操作,并且更确切地说,涉及发电装置资产的长期、日前和实时操作规划,且涉及燃气涡轮机调配优化系统(dispatchoptimization system)及方法及非暂态计算机可读介质。
背景技术
许多动力装置采用燃气涡轮机作为动力源,以满足用户整体电力需求的至少一部分。为确保长期健康操作,装置设施所有者通常定期对他们的装置资产进行维护或和检修。燃气涡轮机的维护间隔(Maintenance intervals)通常以因数化动火小时数(factoredfired hours)来定义,因此,如果一组燃气涡轮机自上一次维护作业以来已经运行了预定因数化动火小时数(例如,32,000个因数化动火小时),则安排对该组燃气涡轮机行维护。维护间隔通常基于燃气涡轮机的预期零部件寿命消耗来定义。
在高峰需求期间,装置操作员有时会使燃气涡轮机以高于其基本容量(basecapacity)的峰值动火(peak-fire)操作。高于其基本容量的峰值动火燃气涡轮机在需要时可产生额外功率输出(或电力输出),但代价是零部件寿命消耗更快。如果燃气涡轮机经常在维护间隔(或维护寿命)内峰值动火,则零部件寿命消耗增加可能导致维护间隔缩短。因此,需要停下维护计划,并且可能产生额外的客户检修协议费用。考虑到由于对燃气涡轮机进行更频繁检修而产生的这些额外维护成本,可能导致装置资产所有者以比必要程度更保守的频率采用峰值动火,因而可能导致错失收入机会。
燃气涡轮机的上述操作缺陷仅旨在对现有技术中的一些问题进行概述,并不意图穷举。阅读以下详细说明之后,将更显然地了解现有技术中的其他问题以及本说明书中所述多个非限制性实施例中的一部分实施例的相应益处。
发明内容
下文提供本公开主题的简要概述,以提供对多个实施例的一些方面的基本理解。本概述不是对多个实施例的广泛概述。它既不旨在确定各个实施例的关键或重要要素,也不旨在描绘各个实施例的范围。它的唯一目的是以精简形式提供本发明的一些概念,作为下文提供的更详细描述的前序。
一个或多个实施例提供一种方法,所述包括:通过包括至少一个处理器的系统接收一个或多个发电资产的操作曲线(operating profile)数据,所述操作曲线数据限定在寿命周期的相应时间单元中的一个或多个操作变量的值;基于所述一个或多个发电资产的所述操作曲线数据以及零部件寿命模型数据,通过所述系统并且针对与第一操作模式相对应的所述寿命周期的所述相应时间单元(time units)中的第一子集,确定相对于所述目标寿命零部件寿命贷记量(an amount of parts-life credited relative to the targetlife),所述第一操作模式相对于目标寿命生成零部件寿命贷记(parts-life credit);基于所述操作曲线数据和所述零部件寿命模型数据(parts-life model data),通过所述系统并且针对与第二操作模式相对应的所述寿命周期的所述相应时间单元中的第二子集确定相对于所述目标寿命零部件寿命消耗量,第二操作模式相对于所述目标寿命消耗所述零部件寿命贷记;通过所述系统,基于所述零部件寿命贷记量与所述零部件寿命消耗量之间的净值确定在所述寿命周期中的当前时间的零部件寿命库存量;通过所述系统将所述零部件寿命库存量(amount of banked parts-life)转换成能够由所述第二操作模式在所述寿命周期中生成、而不违反(without violating)所述目标寿命的可用功率输出量;以及通过所述系统将所述可用功率输出量呈现在界面显示上。
所述的方法进一步包括:通过所述系统确定寿命价格值(price of life value),所述寿命价格值表示所述一个或多个发电资产的每单位零部件寿命库存的成本,其中所述寿命价格值是非矢量值(non-vector value)或矢量值(vector value)中的一者;通过所述系统,基于所述寿命价格值确定出售所述可用电力输出将产生利润的最低电价(minimumelectricity price);以及通过所述系统将所述最低电价呈现在所述界面显示器或其他界面显示器上。
所述的方法进一步包括:通过所述系统,基于所述最低电价和预测电价数据确定所述寿命周期中建议采用所述第二操作模式的一个或多个时间单元;以及通过所述系统将建议采用所述第二操作模式的所述一个或多个时间单元呈现在所述界面显示器或其他界面显示器上。
所述的方法进一步包括通过所述系统在所述界面显示器或其他界面显示器上绘制所述可用电力输出量随时间推移的累计值。
所述的方法进一步包括:通过所述系统确定寿命价格值,所述寿命价格值表示所述一个或多个发电资产的每单位零部件寿命库存的成本;通过所述系统,基于所述寿命价格值、预测电价数据、预测燃料价格数据、对所述一个或多个发电资产的燃料消耗进行建模的性能模型数据以及对所述一个或多个发电资产的零部件寿命消耗进行建模的零部件寿命模型数据,识别所述寿命周期中建议采用所述第一操作模式的一个或多个时间单元;以及通过所述系统将建议采用所述第一操作模式的所述一个或多个时间单元呈现在所述界面显示器或其他界面显示器上。
其中,识别建议采用所述第一操作模式的所述一个或多个时间单元包括针对所述寿命周期的相应时间单元,确定最大化或大体上最大化以下项的所述一个或多个发电资产的操作温度T:电价*MW–燃料价格*FuelUsed(MW,T,Amb)–λ*FHH_消耗(MW,T,Amb);其中电价是所述时间单元的预测的或实际的电力价格,MW是所述时间单元的预测的或实际的电力输出值,燃料价格是所述时间单元的预测的或实际的燃料价格,Amb是所述时间单元的一个或多个环境条件的一个或多个值,FuelUsed(MW,T,Amb)是所述时间单元的预测燃料消耗量,是MW、T和Amb的函数,λ是所述寿命价格值,以及FHH_消耗(MW,T,Amb)是所述时间单元的预测零部件寿命产生量或消耗量,是MW、T和Amb的函数。
所述的方法进一步包括通过所述系统,依据针对所述相应时间单元确定的所述操作温度T的值来控制所述一个或多个发电资产的操作。
所述的方法进一步包括:通过所述系统,基于所述一个或多个装置资产在所述寿命周期的过去时间单元的历史操作数据、所述寿命周期的剩余时间单元的预测电价数据和燃气成本数据,以及所述寿命周期的所述剩余时间单元的预测环境数据来定期更新所述寿命价格值,以得到更新的寿命价格值;以及通过所述系统并且针对所述相应时间单元,基于所述更新的寿命价格值在所述寿命周期的一天中多次更新所述操作温度T。
其中,接收所述操作曲线数据包括:通过所述系统选择寿命价格值,所述寿命价格值表示所述一个或多个发电资产的每单位零部件寿命库存的成本;通过所述系统并且针对所述寿命周期的相应时间单元,基于所述寿命价格值确定使利润值最大化或大体最大化的所述一个或多个操作变量(operating variables)的临时值(provisional values),其中所述一个或多个操作变量包括电力输出或操作温度中的至少一者;通过系统,基于所述一个或多个操作变量的所述临时值确定在所述一个或多个发电资产的所述寿命周期中的预计零部件寿命消耗量(predicted amount of consumed parts-life);以及响应于确定所述预计零部件寿命消耗量不违反所述目标寿命,通过所述系统基于所述一个或多个操作变量的所述临时值产生所述操作曲线数据。
此外,一个或多个实施例中提供了一种系统,包括存储可执行部件(executablecomponent)的存储器以及处理器,所述处理器操作性地连接到所述存储器,所述处理器执行所述可执行部件。所述可执行部件包括:曲线生成部件(profile generationcomponent),所述曲线生成部件配置成产生一个或多个发电资产的操作曲线数据,其中操作曲线数据包括维护间隔的相应时间单元的所述一个或多个操作变量的值;零部件寿命度量部件(parts-life metric component),所述零部件寿命度量部件配置成:基于所述一个或多个发电资产的所述操作曲线数据和零部件寿命模型数据,针对与相对于目标寿命生成零部件寿命贷记的第一操作模式相对应的所述维护间隔的所述相应时间单元中的第一子集,确定由所述第一操作模式产生的零部件寿命贷记数,其中所述零部件寿命贷记数表示消耗所述零部件寿命贷记数的第二操作模式能够在所述维护间隔内消耗、而不违反相对于目标寿命的约束的零部件寿命量;基于所述操作数据和所述零部件寿命模型数据,针对与所述第二操作模型相对应的所述维护间隔的所述相应时间单元中的第二子集,确定由所述第二操作模式生成的零部件寿命借记(parts-life debit)数,其中所述零部件寿命借记数表示要通过所述第一操作模式在所述维护间隔期间补偿以免违反相对于所述目标寿命的所述约束的零部件寿命量;基于所述零部件寿命贷记数与所述零部件寿命借记数之间的差额,确定所述维护间隔的当前时间的零部件寿命库存量;以及将所述零部件寿命库存量转换成在所述维护间隔期间可用于所述第二操作模式而不违反相对于所述目标寿命的所述约束的功率输出库存量(amount of banked power output);以及用户界面部件,所述用户界面部件配置成在界面显示器上呈现可用于所述第二操作模式的所述功率输出库存量。
其中:所述曲线生成部件进一步配置成确定寿命价格值,所述寿命价格值表示所述一个或多个发电资产的每单位所述零部件寿命库存的成本,其中所述寿命价格值是非矢量值或矢量值中的一者;所述零部件寿命度量部件进一步配置成确定出售所述电力输出库存将产生利润的最低电价或电价范围,并且所述用户界面部件进一步配置成将所述最低电价或电价范围呈现在所述界面显示器或其他界面显示器上。
其中:所述曲线生成部件进一步配置成基于所述最低电价和预计电价数据识别所述维护间隔中建议采用所述第二操作模式的一个或多个时间单元,以及所述用户界面部件进一步配置成在所述界面显示器或其他界面显示器上呈现一个或多个图形指示,所述一个或多个图形指示识别建议采用所述第二操作模式的所述一个或多个时间单元。
其中,所述曲线生成部件进一步配置成:确定寿命价格值,所述寿命价格值表示所述一个或多个发电资产的每单位所述零部件寿命库存的成本,并且基于所述寿命价格值、预测电价数据、预测燃料价格数据、对所述一个或多个发电资产的燃料消耗进行建模的性能模型数据以及对所述一个或多个发电资产的零部件寿命消耗进行建模的零部件寿命模型数据,识别所述维护间隔中建议采用所述第一操作模式的一个或多个时间单元,并且所述用户界面部件进一步配置成在所述界面显示器或其他界面显示器上呈现一个或多个图形指示,所述一个或多个图形指示识别建议采用所述第一操作模式的所述一个或多个时间单元。
其中,所述曲线生成部件配置成识别建议采用所述第一操作模式的所述一个或多个时间单元,通过针对所述维护间隔的相应时间单元识别使以下项最大化或大体上最大化的所述一个或多个发电资产的操作温度T而进行所述一个或多个时间单元的识别:电价*MW–燃料价格*FuelUsed(MW,T,Amb)–λ*FHH_消耗(MW,T,Amb);其中电价是所述时间单元的预测的或实际的电力价格,MW是所述时间单元的预测的或实际的电力输出值,燃料价格是所述时间单元的预测的或实际的燃料价格,Amb是随时间推移的一个或多个环境条件的一个或多个值,FuelUsed(MW,T,Amb)是所述时间单元的预测燃料消耗量,是MW、T和Amb的函数,λ是所述寿命价格值,以及FHH_消耗(MW,T,Amb)是所述时间单元的预测零部件寿命产生量或消耗量,是MW、T和Amb的函数。
所述的系统进一步包括控制界面部件,所述控制界面部件配置成依据针对所述相应时间单元确定的所述操作温度T的值来控制所述一个或多个发电资产的操作。
其中所述曲线生成部件进一步配置成:基于所述一个或多个装置资产在所述维护间隔的过去时间单元的历史操作数据、所述维护间隔的剩余时间单元的预计电价数据,以及所述维护间隔的所述剩余时间单元的预计环境数据来定期更新所述寿命价格值,以得到更新的寿命价格值,并且针对所述相应时间单元,基于所述更新的寿命价格值在所述维护间隔的一天中多次更新所述操作温度T。
其中所述曲线生成部件配置成:选择寿命价格值,所述寿命价格值表示所述一个或多个发电资产的每单位零部件寿命库存的成本;针对所述寿命周期的相应时间单元,基于所述寿命价格值确定使利润值最大化或大体最大化的所述一个或多个操作变量的临时值,其中所述一个或多个操作变量包括电力输出或操作温度中的至少一者;基于所述一个或多个操作变量的所述临时值确定在所述一个或多个发电资产的所述维护间隔中的预计零部件寿命消耗量;并且响应于确定所述预计零部件寿命消耗量不违反相对于所述目标寿命的约束,基于所述一个或多个操作变量的所述临时值产生所述操作曲线数据。
此外,根据一个或多个实施例,提供一种非暂态计算机可读介质,所述非暂态计算机可读介质上存储有指令,所述指令响应于执行操作使安全继电器装置(safety relaydevice)执行操作,所述操作包括:接收一个或多个发电资产的操作曲线数据,所述操作曲线数据限定维护间隔的相应时间单元的一个或多个操作变量的值;基于所述一个或多个发电资产的所述操作曲线数据以及零部件寿命模型数据,针对与相对于目标寿命将零部件寿命贷记的第一操作模式相对应的所述维护周期的所述相应时间单元中的第一子集,确定相对于所述目标寿命零部件寿命贷记量;基于所述操作曲线数据和所述零部件寿命模型数据,针对与相对于所述目标寿命消耗所述零部件寿命的第二操作模式相对应的所述维护周期的所述相应时间单元中的第二子集,确定相对于所述目标寿命的零部件寿命消耗量;基于所述零部件寿命贷记量与所述零部件寿命消耗量之间的净值,确定在所述维护间隔期的当前时间的零部件寿命库存量;根据所述零部件寿命库存量确定所述第二操作模式能够在所述维护间隔期的剩余时间内生成、而不违反所述目标寿命的可用功率输出量;以及将所述可用功率输出量呈现在界面显示器上。
其中所述操作进一步包括:确定寿命价格值,所述寿命价格值表示所述一个或多个发电资产的每单位所述零部件寿命库存的成本,其中所述寿命价格值是非矢量值或矢量值中的一者;基于所述寿命价格值确定出售所述可用电力输出将产生利润的最低电价或电价范围;以及在所述界面显示器或其他界面显示器上显示所述最低电价或所述电价范围。
其中所述操作进一步包括:基于所述最低电价和预测电价数据确定所述维护间隔中建议采用所述第二操作模式的一个或多个时间单元;以及在所述界面显示或其他界面显示上显示建议采用所述第一操作模式的所述一个或多个时间单元。
要实现上述和相关目的,本公开主题另外包括下文中更充分描述的一个或多个特征。以下说明和附图详细阐述了本发明主题的某些说明性方面。但是,这些方面仅表示本发明主题的原理的各种使用方式中的一小部分。结合附图考虑时,可从以下详细说明中显而易见地了解到本公开主题的其他方面、优点和新颖特征。还应理解,所述详细说明可以包括除了在本发明内容部分中所述之外的附加或替代实施例。
附图说明
图1是包括两个燃气涡轮机的示例性2x1联合循环装置的方框图。
图2是联合循环装置的稳态效率模型的示例图。
图3是示出资产寿命与燃料效率之间的这种折衷的概括图。
图4是用于燃气涡轮机或其他装置资产的示例调配优化系统的方框图。
图5是曲线图,示出针对示例性操作情景,某个燃气涡轮机或者一组燃气涡轮机的零部件寿命随总维护间隔中的相应时间的变化。
图6是调配优化系统的示例性概览显示。
图7是方框图,示出调配优化系统的曲线生成部件在长期规划操作期间的示例性数据输入和输出。
图8示出用于预存储模型数据值的示例性表格格式。
图9示出三类条件下的示例性预测数据曲线图,这三类条件分别是预测市场条件、预测环境条件以及预测负载或电力需求。
图10是计算方框图,示出由曲线生成部件对预测数据和模型数据执行的迭代分析,以产生实质优化的操作曲线。
图11是操作曲线的示例性显示格式。
图12是示例图,示出在维护间隔的持续时间内由操作曲线限定的建议操作温度,以及相同维护间隔内的预期每小时电价。
图13是可以由用户界面部件基于长期分析的结果产生的示例性图形显示。
图14是可以由用户界面部件产生的示例性图形显示。
图15是方框图,示出调配优化系统的曲线生成部件在日前和实时规划和执行期间的示例性数据输入和输出。
图16是呈现由调配优化系统产生的日前容量信息的示例性显示屏幕。
图17是示例性显示屏幕,用户可通过所述示例性显示屏幕输入日前结清报价以及下一个操作日的操作信息。
图18是示例性日前规划显示屏幕。
图19是可以由调配优化系统的用户界面部件产生的示例性实时执行显示屏幕。
图20是可以由调配优化系统的用户界面部件产生的示例性实时监测显示屏幕。
图21是用于产生装置资产的利润最大化操作时间表或曲线的示例性方法的流程图。
图22是用于确定相对于一个或多个发电装置资产的目标寿命的零部件寿命贷记和亏空额的示例性方法的流程图。
图23是用于确定以可盈利方式使发电装置资产进行峰值动火操作的适当期间的示例性方法的流程图。
图24是用于确定能够以经济有效方式使发电装置资产进行冷部分负载操作的适当期间的示例性方法的流程图。
图25是示例性计算环境。
图26是示例性联网环境。
具体实施方式
现在参考附图来描述本发明,其中附图中采用类似参考数字来表示类似元件。在以下说明中,出于说明目的列举了各种具体细节,以便帮助您透彻理解本发明。但是显而易见的是,可以在没有这些具体细节的情况下实践本发明。在其他情况下,以方框图形式示出公知的结构和装置,以便于描述本发明。
本说明书和附图中所用术语“对象”、“模块”、“接口”、“部件”、“系统”、“平台”、“发动机”、“选择器”、“管理器”、“单元”、“存储器”、“网络”、“发电机”等旨在指与计算机相关的实体,或者与具有特定功能的操作机器或设备相关,或者属于其一部分的实体;所述实体可以是硬件、硬件和固件组合、固件、硬件和软件组合、软件或执行中的软件。此外,通过前述术语标识的实体在本说明书中统称为“功能元件”。例如,部件可以是但不限于在处理器上运行的进程、处理器、对象、可执行态、执行线程、程序和/或计算机。例如,部件可以是在服务器上运行的应用程序和服务器。一个或多个部件可以驻留在进程和/或执行线程内,并且部件可以位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可以从其上存储有各种数据结构的各种计算机可读存储介质执行。这些部件可以经由本地和/或远程进程进行通信,例如根据具有一个或多个数据包的信号(例如,来自一个部件的数据,所述一个部件经由信号在本地系统、分布式系统中以及/或者跨网络例如互联网与另一个部件交互)。例如,部件可以是具有特定功能的设备,所述特定功能由通过电气或电子电路操作的机械零部件提供,所述电气或电气电路由软件或者通过处理器执行的固件应用程序提供,其中所述处理器可以位于所述设备的内部或外部,并且执行所述软件或固件应用程序的至少一部分。再如,部件可以是没有机械零部件、通过电子部件提供特定功能的设备,所述电子部件之中可以包括处理器,用于执行至少部分地赋予电子部件的功能的软件或固件。接口可以包括输入/输出(I/O)部件以及关联的处理器、应用程序或API(应用程序接口)部件。尽管上文提出的示例是针对部件的,但是示例性特征或方面也适用于对象、模块、接口、系统、平台、发动机、选择器、管理器、单元、存储器、网络等。
发电装置资产(Power-generating plant assets)例如燃气涡轮机需要进行定期维护,以确保安全、可靠和高效操作。许多装置资产所有者与所述装置资产的制造商之间签有对所述资产执行定期维护的合同。在某些情况下,客户服务协议(CSA)规定了基于使用情况的维护方案,制造商依此保证定期维护范围内的给定资产的操作持续时间。在所述合同下,所述资产所有者可向制造商支付资产维护费用(例如,基于使用情况的费用),并且所述制造商执行定期检查、在必要情况下提供维修和零部件更换,并且执行所需的其他检修功能,以确保装置资产在约定持续时间(或资产寿命)内的正常运作。由于所述维修和更换的成本以及检查频率取决于资产的操作历史,因此制造商和所有者可以约定一个系统,用于在确定应当执行维护的时间时,确定操作对资产使用寿命的影响。
考虑操作对资产的影响的一种方法是跟踪称为因数化动火小时数(factoredfired hours;FFH)的零部件寿命度量(parts-life metric)。根据所述方法,在应用于燃气涡轮机的一个示例中,燃气涡轮机最高以其基本容量(即,燃气涡轮机的额定容量或基本负载)每操作(或“动火”)一小时,燃气涡轮机将增加(accrued)一个FFH。示例性燃气涡轮机可以包括设计成运行32,000FFH的部件。如果燃气涡轮机最高以其基本容量操作,则每个实际操作小时将转换成一个FFH。
燃气涡轮机还可以在峰值动火模式(peak-fire mode)下操作,此时,动火温度(或操作温度)升高到设计值以上,以产生比基本负载操作(base-load operation)时高的兆瓦(MW)输出。但是,峰值动火也会加速零部件寿命消耗。为反映零部件寿命在峰值动火期间消耗更快,每小时实际峰值动火操作的FFH数变为大于一(例如,峰值动火操作1小时=2.2FFH)。所述简化FFH模型仅为示例性;在某些情况下,燃气涡轮机操作与FHH消耗之间的实际函数关系可能基于对物理性质、风险分析或其他因素的详细评估。
根据所述FFH方法,如果燃气涡轮机最高以其基本负载操作,它将在32,000个实际操作小时中消耗32,000FFH的零部件寿命(或维护间隔);而如果燃气涡轮机在其维护间隔内的至少一部分时间内以峰值动火模式操作,它将在不足32,000个实际操作小时中消耗其零部件寿命,从而缩短了维护间隔。
装置操作员可采用一些基于模型的调控,通过在其他期间对燃气涡轮机实行冷部分负载(CPL)来补偿由于峰值动火期间所引起的零部件寿命增加。使燃气涡轮机以CPL模式下运行时的燃料效率低于默认操作,但是可以有利地延长资产的零部件寿命(依据因数化(factored)动火小时或其他零部件寿命度量),从而至少部分地补偿峰值动火过程中消耗的额外零部件寿命。因此,需要在燃料效率与零部件寿命之间进行折衷。
图1是包括两个燃气涡轮机1041和1042、热回收蒸汽发生器106和蒸汽涡轮机108的示例性2x1联合循环装置102的方框图。图2是联合循环装置102的稳态效率模型的示例曲线图202。曲线图202针对热负载操作(线204)和冷部分负载操作(线206)这两者,绘制了燃气涡轮机操作温度(在本示例中用排气温度表示)与装置功率输出的曲线图。在最低装置功率输出与基本容量(非峰值动火操作)之间,热负载操作将致使联合循环操作的燃料效率最高,因此在此情景中,它是基本操作的优选操作模式,其中在热负载操作下,燃气涡轮机在较高温度下发电,如线204所示。如果功率输出保持在装置102的装置基本容量以下并且燃气涡轮机在热负载模式下操作,则限定燃气涡轮机的维护间隔(或寿命周期)的FFH等于实际操作小时数。
峰值动火(或过度动火(over-firing))期间,装置102产生高于基本容量的功率(最高达到装置的最大容量),因而产生额外兆瓦,但是以零部件的更快老化(零部件寿命消耗)为代价。一些系统可调整所述资产的维护间隔,从而通过调整产生FFH度量的装置资产的实际累计操作小时数来考虑到所述零部件寿命的加速消耗,其中所述FFH度量用于确定下一次对所述资产执行维护的时间(例如,当所述因数化动火小时数达到32,000小时时)。由于峰值动火会以更快速率消耗零部件寿命,因此FFH在峰值动火期间的消耗比在低于基本容量的热负载操作时快。如果未在维护间隔内补偿这些消耗的FFH,则总维护间隔(或操作限度)将缩短,导致必需更频繁地进行维护并且计划的停机日期存在不确定性。
要补偿峰值动火期间消耗的FFH,装置102可以在选定非峰值期间内以冷部分负载(CPL)模式操作(用线206表示)。在CPL操作中,燃气涡轮机以相对于热负载较低的温度的操作。尽管CPL操作的燃料效率低于热负载,但是使燃气涡轮机以CPL模式运行可减缓零部件老化并且延长涡轮机的维护寿命。图3是示出资产寿命与燃料效率之间的这种折衷的概括图302图302中的点304表示热负载操作(非峰值),并且点306表示CPL操作。如此图所示,当操作温度较高时,操作效率较高、零部件寿命较短(并且维护间隔相对较短),而较低操作温度可以延长零部件寿命,但以燃料效率为代价。
因此,尽管峰值动火将以相对于正常热负载操作更快地“消耗”因数化动火小时数,但是CPL操作可以“产生”因数化动火小时数,从而补偿在峰值动火期间消耗的额外FFH(尽管以燃料效率为代价)。通常,CPL操作将产生FFH贷记,而峰值动火将消耗或用尽这些FFH贷记(尽管本说明书中所述的示例假定以FFH来限定维护间隔,但是应了解,在一些系统中,可以以不同的零部件寿命度量来限定维护间隔)。
不同成本可能导致这些操作性折衷。与过度使燃气涡轮机以CPL模式运行关联的较低燃料效率可能会增加燃料成本,而过度峰值动火可能会由于缩短维护间隔并且导致必需更频繁地对装置资产进行检修而提高维护成本(例如,客户服务维护成本)。装置操作员可通过装置资产操作固有的灵活性在指定时刻进行各种操作选择,从最高燃料效率(默认操作)到最大限度降低零部件寿命消耗(CPL操作)。本说明书中所述系统和方法的实施例利用这种灵活性来在CPL操作期间“节省”零部件寿命,并且在峰值动火期间“消耗”所节省的零部件寿命,以超过其他时间的基本容量的额外功率(MW)(从而补偿峰值动火消耗的有害影响)。
理想情况下,如果可以确定燃气涡轮机跨维护间隔的欠动火与过度动火之间的最佳平衡,则可以大体上最大化与发电相关的利润。但是,找到大体最优平衡变得困难,一部分是因为由于需要考虑到大量可变因素,包括每小时燃料成本、电费和预期电力需求或载荷,所有这些因素均跨维护间隔随时间变化。造成操作小时数不确定和减少的不利影响(例如,与维护计划相关的不确定性)可能会使所有者没有信心使其资产进行峰值动火。结果,发电装置资产的利用低于其价值潜力,致使由于错失峰值动火的机会而产生潜在利润损失。
要解决这些和其他问题,本发明的一个或多个实施例提供系统和方法,用于通过使最有利的峰值动火机会与最有利的CPL机会之间达到最佳平衡来大体上最大化通过CPL补偿的峰值动火所产生的未开发价值。为此,调配优化系统可以利用预测信息和资产性能模型数据来确定产生的零部件寿命贷记(例如,FFH贷记)、产生零部件寿命贷记的最佳时间或条件以及通过峰值动火消耗所产生的零部件寿命并且产生收入的最佳时间或条件。在一些实施例中,所述调配优化系统产生一个或多个燃气涡轮机(或其他发电资产)的操作曲线,其平衡零部件寿命贷记跨预定维护间隔的产生和消耗,使得维护间隔不缩短并且不会产生额外的维护成本(例如,额外的客户服务协议费用)。所述调配优化系统还确定产生零部件寿命贷记(通过冷部分负载)和消耗零部件寿命贷记(通过峰值动火)的最佳时间,从而大体上最大化给定能量价格、燃料成本和需求的预测利润。
所述调配优化系统还产生并呈现可帮助装置操作员或管理者做出长期、日前和当日资产运营决策的信息。例如,在一些实施例中,所述调配优化系统可以在给定当前和预测环境和市场条件的情况下传达所用零部件寿命的值和质量。在一个示例性情景中,所述调配优化系统可以基于预测条件以及资产性能和零部件寿命模型来确定寿命值的长期价格,并且将所述长期最佳寿命价格转换成关于操作温度抑制的可行建议(随当前操作和环境条件变化)。
在各种实施例中,可以在自动或手动资产控制策略中利用(leveraged)由所述优化系统产生的长期和实时操作曲线。例如,可以将所述系统产生的操作曲线导出到装置资产控制系统,所述装置资产控制系统依据所述曲线自动调节所述装置资产的操作。或者,可以以图形或基于文本的格式来呈现操作曲线信息,进而可以将其用作在维护间隔中操作燃气涡轮机的准则。
尽管本说明书中所述的示例涉及使用冷部分负载操作作为库存或贷记零部件寿命的方式,并且使用峰值动火操作作为消耗经过CPL补偿的零部件寿命的方式,但是应该理解,本说明书中所述的系统和方法可以针对库存和消耗零部件寿命的其他操作模式执行分析。例如,一些实施例并不确定CPL操作与峰值动火操作之间的可盈利折衷或者除了确定所述折衷之外,而是可以配置成确定燃气涡轮机中的高低冷却流量之间的可盈利折衷,或者蒸汽涡轮机中的高低蒸汽入口温度之间的可盈利折衷。通常,本说明书中所述的实施例可以配置成在给定零部件寿命约束的情况下,确定在一定时间限度中所述装置的“更严苛”操作与所述资产的“更温和”操作之间的最优化折衷。
如图2中所示,燃气涡轮机的联合循环操作的物理性质(或者特定其他发电装置资产)提供了一定的操作灵活性。确切地说,可以通过使燃气涡轮机以较高温度运行(燃料效率较高并且对寿命具有额定影响)或者使燃气涡轮机以较低温度运行(燃料效率较低并且对寿命影响较低)来产生相同的联合循环兆瓦输出。可以在基本负载以下实现这种灵活性(也称为部分负载)。通常,本说明书中所述的调配优化系统可帮助发电装置资产(例如,燃气涡轮机或其他发电资产)的所有者利用资产操作的这种灵活性,以便在允许峰值动火的同时抵消、管理并且控制对操作限度(或者维护间隔)的影响,从而释放潜在资产价值。通过改变冷部分负载(CPL)操作的范围,可以累计不同水平的零部件寿命贷记。之后,可以使用这些累计的零部件寿命贷记来抵消峰值动火期间所消耗的更多零部件寿命。本说明书中所述的调配优化系统确定最有利的CPL操作条件以及CPL操作的程度,以便最大化资产利用率,同时将操作限度保持在指定持续时间。
所述系统首先可以基于预测环境和市场条件产生所述装置资产的长期操作曲线。在维护间隔期间对资产进行实时操作时,所述系统可以基于实际环境和市场条件以及所述资产迄今为止在维护间隔内的实际操作历史来更新所述操作曲线。
图4是根据本发明一个或多个实施例的用于燃气涡轮机(或其他装置资产)的示例调配优化系统的方框图。本公开案中所述系统、设备或过程的各个方面可以构成实施于机器内的机器可执行部件,例如实施于与一个或多个机器相关联的一个或多个计算机可读介质中。当由一个或多个机器例如一个或多个计算机、一个或多个计算装置、一个或多个自动化装置、一个或多个虚拟机等执行时,这些部件可以使机器执行所述的操作。
调配优化系统402可以包括预测部件404、曲线生成部件406、用户界面部件408、实时数据采集部件410、零部件寿命度量部件412、控制界面部件414、一个或多个处理器418和存储器420。在各种实施例中,预测部件404、曲线生成部件406、用户界面部件408、实时数据采集部件410、零部件寿命度量部件412、控制界面部件414、一个或多个处理器418和存储器420可以彼此以电气和/或通信方式连接,以执行调配优化系统402的一个或多个功能。在一些实施例中,部件404、406、408、410、412和414中的一个或多个部件可以包括存储在存储器420上并且由一个或多个处理器418执行的软件指令。调配优化系统402还可以与图4中未示出的其他硬件和/或软件部件交互。例如,一个或多个处理器418可与一个或多个外部用户界面装置交互,例如,键盘、鼠标、显示监测器、触摸屏或其他此类接口装置。
预测部件404可以配置成接收和/或生成用作一个或多个参数的预测数据,以产生发电装置资产(例如,一个或多个燃气涡轮机或其他此类资产)的大体上优化的操作曲线或调度。所述预测数据可以表示在产生所述操作曲线的维护间隔的持续时间内的预测条件。这些预测条件可以包括但不限于电力需求或负载、环境条件(例如,温度、压力、湿度等)、电价和/或燃气价格。在一些实施例中,所述预测数据可以格式化成每小时数据。但是,所述每小时数据的其他时间单元也在一个或多个实施例的范围内。通常,所述预测数据的时间基线将与操作曲线的时间基线匹配。此外,作为对时间序列数据的附加或替代,一些实施例可以配置成以统计学表示例如直方图或概率分布的形式,而不是时间序列数据来考虑市场条件和环境条件。
曲线生成部件406可以配置成在给定预测数据的情况下确定所述维护间隔的适当装置资产操作曲线,所述装置资产操作曲线大体上最大化利润并且维持所述装置资产的指定零部件寿命目标寿命。曲线生成部件406基于所述预测数据、正在评估的一个或多个装置资产的性能模型以及表示已贷记或消耗的零部件寿命的币值的所计算“寿命价格”值来产生所述操作曲线。如果系统以因数化动火小时数来衡量或测量零部件寿命,寿命价格以$/FFH为单位。如下文进一步详述,所述寿命价格估计可以减轻与确定优化操作曲线相关联的计算负担。在一些实施例中,所述操作曲线可以作为每小时操作时间表产生,所述每小时操作时间表限定发电装置资产在每小时维护间隔中的功率输出和操作温度中的一者或两者(尽管本说明书中所述的示例假定每小时的时间基线,但是操作曲线的其他时间基线也在一个或多个实施例的范围内)。曲线生成部件406还可以输出针对维护间隔确定的寿命价格估值。
用户界面部件408可以配置成接收用户输入并以任何适当格式(例如,视觉、音频、触觉等)向用户呈现输出。在一些实施例中,用户界面部件408可以配置成产生图形用户界面,所述图形用户界面可以呈现在与调配优化系统402以通信方式接合的客户端装置上,或者呈现在系统402的本地显示部件(例如显示监测器或屏幕)上。输入数据可以包括例如产生操作曲线时需要考虑的用户定义约束(例如,燃气涡轮机操作温度或功率输出的上限和下限、预期操作限度(desired operating horizon)的定义、不允许燃气涡轮机运行的天数的标识等)、更新的环境或市场预测数据、装置停车日期信息、资产维护日期信息或其他此类信息。输出数据可以包括,例如:装置资产操作曲线或调度的基于文本或图形呈现;当前寿命价格估值,所述当前寿命价格估值表示在给定当前和预期条件的情况下,节省额外零部件寿命的成本;建议的冷负载和峰值动火操作小时数;基于CPL与峰值动火操作之间净值的剩余零部件寿命估值;在给定预测条件和历史条件的情况下,从利润角度证明峰值动火操作的合理性的最低电价估值;在不违反目标寿命约束的情况下可以通过峰值动火操作产生的所库存兆瓦时(MWh)数;比较度量图;或其他此类输出。
实时数据采集部件410可配置成接收或采集用预测数据表示的环境、市场和资产操作条件的当前或历史值。如本说明书中进一步详述,优化系统402可以使用这些实时或历史值来更新装置资产在维护间隔或操作限度内的建议操作曲线,并且更新向用户呈现的零部件寿命和货币度量,从而引导装置资产实现可盈利并且平衡的操作。
零部件寿命度量部件412可以配置成产生与装置资产在维护间隔内的操作期间消耗或节省的零部件寿命相关的各种度量、CPL操作所节省的估计零部件寿命成本、CPL操作产生的可用于峰值动火操作的库存MWh、可以通过峰值动火操作有利地产生库存MWh的最低电价,或者其他此类度量。控制界面部件414可以配置成与装置资产控制系统接合并且交换数据。这可以包括例如将操作曲线信息(例如,每小时功率输出调度(hourly power outputschedule)、每小时操作温度等)输出到所述控制系统,并从所述控制系统接收实际实时和/或历史操作信息以用于更新计划度量和操作曲线。
一个或多个处理器418可以执行本说明书中参考所公开系统和/或方法所述的一个或多个功能。存储器420可以是存储计算机可执行指令和/或信息的计算机可读存储介质,用于执行本说明书中参考所公开系统和/或方法所述的功能。
尽管本说明书中参考燃气涡轮机描述了调配优化系统402的特征,但是应理解,调配优化系统402的实施例不限于用于燃气涡轮机,而是可以产生其他类型的发电资产的操作曲线或调度。
为说明装置资产跨维护间隔操作期间的零部件寿命库存和消耗,图5是曲线图(graph)502,示出针对示例性操作情景,某个燃气涡轮机或者一组燃气涡轮机的零部件寿命随总维护间隔中的相应时间的变化。垂直虚线508表示装置资产的目标寿命,或者当维护间隔期间内没有执行峰值动火或CPL操作时,安排下一次维护检修的时间。所述目标寿命可以以若干因数化动火小时数(例如,32,000个因数化动火小时)或另一个零部件寿命度量来限定。如果燃气涡轮机在整个维护间隔内仅以输出功率不超过基本容量的热负载模式操作(称为基线操作),则当实际操作小时数(或动火小时数)达到限定目标寿命的因数化动火小时数的预定数值时,达到目标寿命。
如上所述,当装置资产进行峰值动火操作时,相对于基线操作下调剩余的因数化动火小时数,以反映零部件寿命的更快消耗。曲线图502的负曲线506表示峰值动火期间,所述峰值动火期间致使相对于基线操作下调维护间隔持续时间(即,寿命负向变化)。在燃气涡轮机的冷部分负载期间,剩余FFH数上调,以反映相对于基线操作的较缓慢零部件寿命消耗。图502的正曲线504表示CPL操作,所述CPL操作致使相对于基线操作上调维护间隔持续时间(即,寿命正向变化)。
如图502所示,CPL操作产生FFH贷记(或者一般地说,零部件寿命贷记),而峰值动火操作将消耗或耗尽这些FFH贷记。如果在维护间隔内,“消耗的”FFH贷记与“产生的”FFH贷记平衡(“产生的”Δ寿命=“消耗的”Δ寿命),则所述维护间隔的净零部件寿命保持不变并且维护间隔不会缩短(即,目标寿命508将不会缩紧(pulled in))。根据维护间隔中的每个时间单元(例如小时)的能量需求、燃料价格和能源价格等因素,维护间隔中操作装置资产的总利润部分地随对装置进行峰值动火操作和冷部分负载操作的选定时间而变。
长期预测和规划阶段,本说明书中所述的调配优化系统402可以确定所述装置资产(例如,燃气涡轮机)的适当操作时间表(operating schedule),所述操作时间表确定在给定负载和环境条件预测以及装置资产的性能模型数据的情况下确定最有利的峰值动火操作机会,并且通过识别CPL操作的最有利机会来平衡这些峰值动火操作时间以使资产的目标寿命保持大体上不变,从而大体上最大化在维护间隔中的利润。
为了在尽管操作限度长的情况下以最小计算负担来解决所述优化问题,调配优化系统402基于寿命价格估值λ来产生所述操作曲线,所述寿命价格估值表示与额外寿命增量对应的额外利润增量。就此而言,调配优化系统402通过基于寿命价格估值λ(以$/FFH为单位)计算FFH贷记的成本来考虑所述FFH贷记的产生(通过CPL)和耗尽(通过峰值动火操作)。在一个示例性情景中,基于指定小时内的燃料成本可以确定,由于CPL操作的燃料效率降低,CPL操作每节省一个单位的零部件寿命将消耗$1的额外燃料。也可以确定,峰值动火操作每消耗一个单位的零部件寿命将产生一个兆瓦的额外功率。因此可以假定,只有当电价高于$1/MWh时,通过CPL操作节省寿命才是值得的,表明在峰值动火操作期间存在适当机会来消耗额外的零部件寿命。
在一些实施例中,寿命价格λ可以是给定装置资产的矢量。例如,给定装置资产可以包括多个级,其中每个级具有不同的目标寿命(或维护间隔)。在这种情况下,每个级可能有不同寿命价格值,其中所述资产的所有级的寿命价格值集合构成寿命价格矢量。
如果理想寿命价格估值已知,则所述问题可简化成确定在维护间隔的每个时间单元(或者对于统计数据,每个操作条件)下,使利润最大化的装置产出值(通常以MW为单位)和/或操作温度(例如排气温度、入口温度等),通常用下式表示:
利润=(电力收入)–(燃料燃烧成本)–(寿命成本) (1)
可以基于所述时间单元(time unit)的电价与所述时间单元所产生的功率输出(例如,MWh)的乘积来确定电力收入。可以基于所述时间单元的燃料成本与在所述时间单元期间消耗的燃料量的乘积来确定燃料燃烧成本(可以基于装置资产的性能模型数据确定,所述性能模型数据依据功率输出和/或操作温度中的一者或两者模拟资产的燃料消耗)。可以基于寿命价格估值λ与所消耗FFH数的乘积来确定寿命成本(可以基于装置资产的零部件寿命数据确定,所述零部件寿命数据依据功率输出和/或操作温度中的一者或两者模拟消耗的FFH)。
如下文进一步详述,调配优化系统402使用迭代分析技术来针对所述维护间隔中的每个时间单元(例如小时)确定所述装置资产的建议输出(MW)和/或操作温度(T),从而在满足目标寿命约束(即,不显著改变维护间隔的持续时间)的同时最大化所述维护间隔的利润。所述迭代技术包括内循环迭代和外循环迭代。所述内循环在给定寿命价格估值λ的情况下,依据方程式(1)确定最大化维护间隔中的每个时间单元的利润的操作曲线。之后,所述外循环确定所述操作曲线生成的目标零部件寿命是否与装置资产的实际目标零部件寿命(在所定义的容差内)大体相等。如果此目标零部件寿命约束不满足,则以适当方向调整寿命价格估值λ,并且使用经调整的寿命价格值重新执行内循环。重复执行这些迭代,直到找到满足所述资产的目标零部件寿命约束的利润最大化操作曲线(即,使维护间隔基本上等于具有所限定容差的目标维护间隔的操作曲线)。
图6是用于调配优化系统402的示例性概览显示602,所述示例性概览显示可以由用户界面部件408生成。概览显示602可以包括用于导航到系统402的其他显示的可选图形,这些可选图形根据长期计划604、日前计划606以及实时计划和操作608进行分类。可以通过与可经由长期图形604访问的长期显示进行交互来启动和查看长期规划序列,在所述长期规划序列期间,将产生未来维护间隔的优化操作曲线。
图7是方框图,示出调配优化系统402的曲线生成部件406在长期规划阶段的示例性数据输入和输出。如本说明书中进一步详述,后续的日前和实时规划和操作期间将使用类似的输入和输出,但是采用实际和/或历史环境、市场和操作数据来替代至少一些预测数据。
在本说明书中所述的示例中,假定所述装置资产是一组燃气涡轮机。但是,应了解,调配优化系统402的实施例执行的优化技术还适用于其他类型的发电装置资产。此外,尽管本说明书中所述的示例假定具有每小时时间基线的操作曲线,但是其他时间基线也在一个或多个实施例的范围内。此外,尽管以下示例中的零部件寿命度量假定为FFH,但是调配优化系统402的一些实施例可以配置成基于其他零部件寿命度量来确定操作曲线。
曲线生成部件406配置成执行一个或多个优化算法702,所述一个或多个优化算法执行上述内循环迭代和外循环迭代。为准确地计算燃气涡轮机的燃料燃烧成本和所消耗FFH(或者另一个零部件寿命度量)的成本,为调配优化系统402提供模型数据416,包括燃气涡轮机的一个或多个燃料消耗模型以及一个或多个零部件寿命模型。这些模型可以基于工程规范、历史操作数据或其他此类信息而对正在调研的特定燃气涡轮机进行定制。
示例性燃料消耗模型可以限定燃气涡轮机在给定时间单元(例如,一小时)消耗的预计燃料量与功率输出MW和操作温度T(可以是排气温度、入口温度或指示总操作温度的另一个温度),以及/或者环境条件AMB,例如环境温度、压力、湿度等之间的关系。所述性能模型可以存储在与调配优化系统402相关联的存储器420上,采用描述给定Amb的燃料消耗与MW和T组合之间关系的数学函数(例如,FuelUsed(MW,T,Amb))的形式,或者采用预先计算值的表格的形式,所述表格可由曲线生成部件406根据需要访问,以便获得不同操作情景下的燃料消耗估值。
示例性零部件寿命模型可以限定在给定时间单元消耗的预计数量的因数化动火小时数(或者其他零部件寿命度量)与功率输出MW和操作温度T,以及/或者环境条件Amb,例如环境温度、压力、湿度等之间的关系。与所述燃料消耗模型相似,所述零部件寿命模型可以存储在存储器420上,采用描述所消耗的FFH与给定Amb的MW和T组合之间关系的数学函数(例如,FHH_消耗(MW,T,Amb))的形式,或者采用预先计算值的表格的形式,所述表格可由曲线生成部件406根据需要访问,以便获得不同操作情景下的FFH消耗估值。
图8示出给定Amb的预存储模型数据值的示例性表格格式。表802是与性能模型(例如,FuelUsed(MW,T))相对应的示例性数据表,并且表804是与零部件寿命模型(例如,FFH_消耗(MW,T))相对应的示例性数据表。性能模型数据表802是功率输出MW(列812)和操作温度T(行814)的相应组合的燃料消耗值808的二维网格。对于模型数据以预先计算值的形式存储的实施例,性能模型数据值可以以与表格802中所示格式类似的格式(或另一种适当格式)存储在存储器420中,借此存储一系列[MW,T]对的预先计算数据值808(例如,逗号分隔数据或其他任何适当存储格式),所述预先计算数据值表示给定功率输出(MW)和操作温度(T)组合的燃料消耗量。在下文进一步详述的优化过程的迭代期间,曲线生成部件406可以访问表格702并且检索FuelUsed(MW,T)的预存储值,查找在考虑到给定小时内的当前迭代的情况下,与最接近地匹配测试值对的功率输出和操作温度值对相对应的值。预存储这些预先计算的值相对于以数学函数的形式存储模型数据而言可以减轻计算负载,因为在数学函数的情况,所述数学函数必须在每次迭代中执行,以便计算给定[MW,T]对的燃料消耗量。
零部件寿命模型数据表格804可以以相似格式存储。确切地说,零部件寿命周期模型数据表格包括值810的网格(grid),它表示对于一系列MW和T值,在一个或多个燃气涡轮机在操作温度T下输出功率量MW的一个时间单元(例如一小时)中所消耗的FFH数。在操作期间,曲线生成部件406可以访问表格704以检索优化序列的当前迭代中所考虑的给定[MW,T]对所消耗的FFH数。
数据值808和810可以以任何适当MW和T值粒度(degree of granularity)进行存储。所述粒度可以取决于例如运行所述调配优化系统的计算环境的约束,借此,具有足够大数据存储容量的环境可以以更高粒度存储数据值808和810(因此预先计算值的数量更大)。在图8所示的示例性表格802和804中,数据值808和810以10MW和10°F的粒度存储。但是,其他适当粒度也在一个或多个实施例的范围内。如果曲线生成部件406所考虑的MW和T值落在表格802和804中示出的MW和/或T的可用值之间,则曲线生成部件406可以选择表格802和表格804中示出最接近所考虑MW和T值的MW和T值(例如,通过将所考虑的值舍入到表格中的最接近值),并且选择于这些最接近MW和T值相对应的燃料消耗和FFH值。或者,在一些实施例中,如果所考虑的实际MW和T值落在表格802和804中所示的值之间,那么曲线生成部件406可以配置成内插在表格值808与810之间。
尽管图8将燃料消耗值和FFH值图示成仅为功率输出和操作温度的函数,但是一些实施例可以将燃料消耗和FFH消耗建模成其他因素的函数。在所述实施例中,根据用于计算燃料消耗和FFH的变量的数量,预先计算的数据值可以以更高阶表格的形式存储。此外,虽然在本示例中假定确定性模型,但是在一些实施例中,可以采用随机模型(stochasticmodels)来对给定装置资产的性能和零部件寿命进行建模。
现在返回图7,现在将描述提供给所述系统的预测数据710。当针对操作间隔(例如,维护间隔)产生一个或多个燃气涡轮机(或其他装置资产)的操作曲线时,采用预测数据710来提供正在规划的操作间隔的操作和条件额定预测。预测数据710可以包括基于时间的信息(例如,每小时数据),所述基于时间的信息描述在决定何时对燃气涡轮机进行峰值动火操作以及何时使燃气涡轮机以CPL模式操作时起作用的预期环境条件和/或市场因素,其中预测数据710包括与正在规划的操作间隔相对应的时间范围。图9示出三类条件下的示例性预测数据曲线图,这三类条件分别是预测市场条件(曲线图902)、预测环境条件(曲线图904)以及预测负载或电力需求(曲线图906)。预测市场条件可以包括例如预测每小时电价和预测每小时燃气价格(或者正在调研的装置资产所燃烧的其他类型燃料的每小时价格)。预测环境条件可以包括例如预测每小时温度、压力和/或湿度。预测数据610的时间范围包括构成正在规划的维护间隔的小时数(例如,在本示例中为32,000FFF持续时间)。尽管预测数据610描述成具有基于每小时的时间基线,但是可以使用其他时间基线而不脱离本说明书中所述的一个或多个实施例的范围。通常,预测数据610的时间基线将与用于装置操作的时间基线相匹配(例如,参与日前电力市场的发电装置的每小时数据)。
现在返回图7,在一些实施例中,可以由用户(例如,经由用户界面部件408)将预测数据710中的一些或全部输入到所述调配优化系统402中。或者,预测部件404可以配置成从外部预测信息源检索预测数据710中的一些或全部预测数据,所述外部预测信息源包括但不限于天气预报网站、电力和/或燃气市场网站或其他此类来源。在又一示例中,预测部件404可以配置成基于对提供给预测部件404的相关数据集的分析来生成预测数据710中的一些或全部。例如,在一些实施例中,预测部件404可以配置成执行负载预测算法,所述负载预测算法基于维护间隔的预测天气或环境条件产生所述维护间隔的预期每小时电力需求。在此类实施例中,可以向预测部件404提供环境条件信息,例如预期每小时温度、预期每小时压力和/或预期每小时湿度,并且基于所述环境条件信息来生成预期每小时电力需求。预测部件404可以执行任何适当预测算法,以基于给定的每小时环境数据集来生成每小时预测电力负载。
曲线生成部件406将预测数据710的至少一个子集与表示燃气涡轮机的资产性能和零部件寿命的模型数据416相组合以形成优化问题,所述优化问题的目的是在维持一个或多个指定零部件寿命目标和其他可操作性条件的同时,使利润最大化。在本示例中,所述问题的变量是装置输出MW和操作温度T,所述操作温度T可以是排气温度、入口温度或表示总操作温度的另一因素。所述装置输出变量MW与燃气涡轮机进行峰值动火操作以获得额外收入的能力相关联,并且所述操作温度T设定了CPL操作的水平。
所述曲线生成部件406解决所述优化问题以产生操作曲线706(也称为操作时间表),所述操作曲线限定确定成在不显著改变资产目标寿命(也就是说,不显著改变维护周期的持续时间)的情况下使利润最大化的建议每小时操作参数,在本示例中,所述建议每小时操作参数为功率输出MW和操作温度T。操作曲线706识别维护间隔内的适当峰值动火操作机会以及以CPL模式操作的适当时期,以补偿在峰值动火操作期间消耗的额外FFH。通过这种方式,系统402产生操作曲线706,作为相关准则来大体上最大化装置资产的利用率,而不缩短维护间隔或以其他方式增加顾客服务协议费用。
曲线生成部件406还产生与操作曲线706并行导出的最佳寿命价格估值λ*708,如下文进一步详述。系统402随后将在实时规划和操作期间使用所述寿命价格值,以在给定实时和历史条件的情况下确定最佳峰值动火操作机会,从而产生并以意图引导最佳资产操作的有意义方式并且出于本说明书中所述的其他目的向用户呈现寿命成本信息。用作确定最大可盈利操作时间表的一个因素的寿命价格值也可以减轻解决长期操作限度中的最大化问题时的计算负担。
图10是计算方框图,示出由曲线生成部件406对预测数据710和模型数据416执行的迭代分析,以产生实质优化的操作曲线706。如下文进一步详述,类似的迭代分析可以既用于长期规划,也用于实时规划和操作。通常,所述曲线生成部件406使用两层迭代方法来解决优化问题,其中迭代处理包括内循环1002和外循环1004。通过内循环迭代和外循环迭代解决的问题可以定义成在受目标零部件寿命约束的情况下,最大化维护间隔内产生的利润。从数学方面来看,所述问题可以表示成:
最大化:
约束(Subject to):
其中TM.I.是维护间隔的持续时间,并且操作温度T的范围受涡轮机的操作温度范围限制。温度T受到涡轮机(即,Tmin≤T≤Tmax)。尽管本说明书中所述的示例性分析假定以FFH定义的零部件寿命度量,但是应理解,也可以使用其他零部件寿命度量而不脱离本公开的一个或多个实施例的范围。此外,尽管本说明书中所述的示例假定基于时间的操作曲线和预测数据,但是曲线生成部件406的一些实施例也可以执行基于统计的分析,产生基于条件的操作曲线而不是基于时间的曲线。
在大维护间隔(例如,32,000个小时)内对多次迭代执行此优化可产生大优化问题。为减轻与解决优化问题相关联的计算负担,曲线生成部件406使用寿命价格度量λ来计算FFH产生或消耗的成本并且将所述成本因数化成利润计算,从而考虑到FFH贷记的产生(通过CPL操作)和耗尽(通过峰值动火操作)。
通常,在给定寿命价格估值λ的情况下,内循环1002找到某个功率输出MW和操作温度T的每小时调度,使其确定成最大化或大体上最大化维护持续时间中的利润(例如,通过最大化等式(1))。这可以包括确定某个MW和T的每小时调度,使其以最大化整个维护持续时间的利润的方式平衡峰值动火操作持续时间(消耗FFH贷记)与CPL持续时间(产生FFH贷记)。
由于给定小时的利润取决于该小时的电价和燃料成本,因此曲线生成部件406使用包括在预测数据710中的预测市场信息以及模型数据416所提供的资产性能模型,其中所述预测市场信息是电价和燃气价格。例如,以上方程式(1)中提供的利润可以重写成:
利润=ElecPrice(t)*MW(t)–FuelPrice(t)*FuelUsed(MW(t),T(t))–λ*FFH_消耗(MW(t),T(t)) (2)
其中ElecPrice(t)是随时间变化的预测电价,FuelPrice(t)是随时间变化的预测燃料价格(例如在燃气涡轮机的情况下为燃气价格),这两者均来自每小时预测数据710。请注意,方程式(2)提供的利润考虑到了所消耗的寿命成本(FFH),它表示成寿命价格λ与在相关时间单元(例如,小时)中在操作温度T下产生功率输出MW所消耗的FFH数的乘积。
如上所述,可以基于模型数据416获得每次内部循环迭代的FuelUsed(MW(t),T(t))和FFH_消耗*(MW(t),T(t))值,其中包括性能模型数据FuelUsed(MW,T)和零部件寿命模型数据FFH_消耗(MW,T)。所述模型数据可以以相应数学函数或者预先计算值阵列(如图8所示)的形式存储。以预先计算值的形式存储模型数据可以通过将内循环优化精简成实质上首先数学运算、然后进行比较来显著改进迭代的执行时间,从而无需在连续外部循环迭代上评估数学函数。
在将预测数据710提供给调配优化系统402之后,用户可以启动长期操作曲线生成序列,所述长期操作曲线生成序列产生给定维护间隔(所述维护间隔在预测数据710的时间范围内)的长期建议操作曲线。在一些实施例中,用户界面部件408可以产生界面显示,用户可以通过所述界面显示输入一个或多个额外约束(例如,经由用户界面部件408),然后再启动所述曲线生成序列之前。这些用户定义的约束可以包括例如操作温度或功率输出的上限和下限、对预期操作限度的修改(即,对维护间隔的目标持续时间的修改)、燃气涡轮机不允许运行的日期的指定(例如,基于装置停车(shut-down)或规划的燃气涡轮机停机调度时间表)或其他此类限制。此外,在某些情景下,可以将维护间隔中的每个小时的预测负载或电力需求用作优化问题的约束。例如,在一些实施例中,用户还可以使用用户界面部件408来指定维护间隔中的给定小时的功率输出不得超过该小时的预测负载,或者不超过预测负载加上指定容差加法器(tolerance adder)。另外,可以将与客户可用的其他选项,例如管道燃烧器、蒸发冷却器、冷冻器等相对应的其他操作变量添加到所述调配优化系统。
起初,对于内循环1002的第一组迭代,使用初始寿命价格估值λ0 1006。通过使用所述初始寿命价格估值,曲线生成部件406确定某个MW和T的初始每小时调度(initialhourly schedule),所述初始每小时调度确定成针对正在规划的维护间隔中的每个小时,最大化方程式(2)提供的利润(尽管本说明书中所述的示例假定每小时时间基线,但是其他时间单元也在一个或多个实施例的范围内)。也就是说,曲线生成部件406针对每个时间单元t=0到TM.I.确定(其中TM.I.是维护间隔中的时间单元数,例如32,000个动火小时),最大化或大体上最大化每个小时的方程(2)的功率输出MW(t)和操作温度T(t)值。在所述内循环处理期间,曲线生成部件406可参考预测数据710来确定给定时间单元(例如一小时)t的预测电价ElecPrice(t)和燃料价格FuelPrice(t)。所述曲线生成部件还可以参考模型数据416来确定指定功率输出MW和操作温度T组合的预期燃料消耗量FuelUsed(MW(t),T(t))和预期FFH消耗量FFH_消耗(MW(t),T(t))。曲线生成部件406可以对于每个小时执行所述内循环的多次迭代,以便在给定预期电价、预期燃料价格(例如,燃气价格)和预期寿命价格(以及MW和T的任何预定上限和下限)的情况下收敛使利润最大化的MW和T值。
第一次执行内循环1002所产生的MW和T每小时调度表示临时操作时间表,还需要验证所述操作时间表是否满足目标寿命约束。在所述内循环处理已经确定所述MW和T的临时每小时操作时间表使所述维护间隔(内循环1002的第一次执行)的利润最大化之后,曲线生成部件406执行外循环1004来确定所述临时操作时间表是否满足目标寿命约束。如上所述,所述目标寿命约束可以描述成
通常,曲线生成部件406试图确定所述维护间隔的某个利润最大化每小时操作曲线,它既实现利润最大化,同时又将所消耗的FFH总数保持在所述维护间隔的目标寿命(例如,32,000个动火小时)处或以下。也就是说,所述操作曲线所定义的在峰值动火小时中消耗的额外FFH寿命量应大体上等于(在预定容差内)所述操作曲线所定义的在CPL小时中贷记的额外FFH寿命量。这样可确保维护间隔不会缩短并且不会产生相关的额外维护成本,同时在给定预测条件下优化装置资产在所述维护间隔内的利用率。
为此,一旦内循环处理已经产生了临时操作曲线,则曲线生成部件406执行所述迭代处理的外循环1004,所述外循环确定依据所述临时操作曲线操作资产所消耗的FFH总数并且确定所消耗的FFH数是否满足目标寿命约束。一般来说,在维护间隔内消耗的FFH的总和应等于或小于目标寿命(例如,32,000FFH)。在一些实施例中,曲线生成部件406可以基于零部件寿命模型数据和所述操作曲线的预定MW和T值来确定在所述维护间隔内零部件寿命消耗量,因此所述约束可以由下式给出:
由曲线生成部件406执行的迭代处理的外循环1004将燃气涡轮机的目标寿命与当依据所述临时操作曲线操作燃气涡轮机时,将在维护间隔的持续时间内消耗的FFH总量进行比较。如果发现所消耗的FFH总数大于目标寿命(在预定容限窗之外),则假定第一次执行内循环期间低估了寿命价格λ0,并且曲线生成部件406将在下一次执行内循环时提高寿命价格估值λ1。或者,如果发现所消耗的FFH总数小于目标寿命(在预定容限窗之外),则假定第一次执行内循环期间高估了寿命价格λ0,并且曲线生成部件406将在下一次执行内循环时降低寿命价格估值λ1。曲线生成部件406然后使用更新的寿命价格值λ1来重新执行内循环处理,并且产生一个新的临时操作曲线,其中所述新的临时操作曲线包括使用相同预测数据710和更新的寿命价格值λ1基于方程式(2)计算的功率输出MW和操作温度T的更新每小时调度。所述曲线生成部件406以这种方式执行所述内循环和外循环处理的多次迭代,直到找到使内循环产生满足目标寿命约束的操作曲线的最佳寿命价格λ*;其中所述方式是计算新的临时操作曲线并且如果所计算的FFH消耗量不满足目标寿命约束,则调整寿命价格值λi(其中,i是迭代指数)。
通常,曲线生成部件406在所述外循环中对多个寿命价格值λi进行迭代,针对每个λi值对所述内循环进行求解,并且基于从所述内循环接收的响应已超出寿命价格值来终止所述外循环。在一些实施例中,所述外循环选择下一个寿命价格值λi的方式可以取决于过去的λi值以及相应的内循环响应。如果所述内循环对λi的当前值的响应不满足目标寿命约束,则所述外循环可以决定在下一次迭代中提高λi+1,并且继续执行此操作,直到所述内循环响应产生满足寿命目标的操作曲线。在另一个方向上,如果给定寿命价格值λi的内循环响应不违反寿命目标(例如,临时操作曲线消耗的估计FFH量小于目标寿命),则所述外循环可以在下一次迭代中提高λi+1以使估计的总FFH消耗量更接近目标寿命。如果当前临时操作曲线所消耗的FFH约等于目标寿命(在预定容差内),则所述内循环迭代和外循环迭代可以终止。
当由于已满足目标寿命而终止迭代时,用户界面部件408可以输出由内循环的最后一次迭代产生的操作曲线706,作为燃气涡轮机的建议操作曲线。系统402还输出产生所述操作曲线的假定最佳寿命价格值λ*。在一些实施例中,所得的操作曲线可以呈现为燃气涡轮机在维护间隔中的每一天中的建议功率输出和操作温度每小时调度。图11是操作曲线的示例性显示格式。如本示例中所示,每一天分成数小时(小时终点1、小时终点2等),每个小时指定由操作曲线706定义的建议装置输出和操作温度(在本示例中为排气温度)。
在一些实施例中,用户界面部件408可以输出优化操作曲线606以及所述曲线所基于的其他任何因素的一个或多个图形表示。图12是示例图,示出在维护间隔的持续时间内由操作曲线限定的建议操作温度(曲线图1204),以及相同维护间隔内的预期每小时电价(曲线图1202)。用户可以使用用户界面部件408来添加或移除图形显示中的变量(例如,燃料价格、预期电力需求)以与建议操作曲线进行比较。
图13是可以由用户界面部件408基于上述长期分析结果产生的示例性图形显示1302。图形显示1302是调配优化系统402的示例性长期规划显示,并呈现长期操作曲线的每日视图。功率柱状图1312表示基于操作曲线706限定的建议每小时功率输出确定的选定月份(2016年11月)的每日功率输出。图1312与分别表示平均每日温度、燃料成本和电价的环境温度柱状图1314、燃料成本柱状图1316和电价柱状图1318一起绘制。环境温度图1314、燃料成本图1316和电价图1318中的信息可以从预测数据710获得。用户可以使用每月选择器图形1306来选择要查看和/或优化的月份。用户可以使用停机日期输入字段1304来输入要使各个燃气涡轮机停机的日期,所述调配优化系统402在运行优化例程时可以考虑到这些日期(例如,基于预期可用的涡轮机数量限制指定日期的可能的功率输出)。用户可以通过停车输入区域1310来输入装置计划停车的开始和结束日期,优化系统402也将考虑所述开始和结束日期。在图示的示例中,所述停车定义成从11月1日开始到11月10日结束,这反映在功率输出图1312中。当定义了装置停车时,曲线生成部件406假定这些天将不存在功率输出或者不消耗零部件寿命,并且执行内循环迭代和外循环迭代处理时使用这些定义作为约束。“运行优化器”图形按钮1308启动(或重新启动)迭代过程,所述迭代过程基于可用预测数据、装置效率和零部件寿命模型,以及任何用户定义的操作约束(例如,装置停车或资产停机日期)产生维护间隔(或其他操作限度)的长期操作曲线。
图14是根据一个或多个实施例可以由用户界面部件408产生的另一个示例性图形显示1402。曲线图1406表示由操作曲线706定义的每小时操作温度,以操作温度偏离基线操作(称为Δ动火温度)的形式示出。低于特定Δ温度的温度表示库存FFH(或其他零部件寿命单位)的CPL操作,而高于基线(曲线图1406的零轴)的温度表示消耗FFH的峰值动火操作。在与曲线图1406相同的时间线上绘制的曲线图1404示出了由于据操作曲线706操作装置资产而在维护间隔内产生的预期利润增量。零部件寿命度量部件412可以使用预测燃料和电价数据以及操作曲线706针对每个小时限定的建议MW和T值,基于上述方程式(2)(或者包括作为因数的寿命价格的另一适当利润方程式)来以每小时累计值的形式计算利润增量。
在一些实施例中,曲线图1406中绘制的冷部分负载/峰值动火优化曲线可以进行颜色编码,以更清楚地传达CPL和峰值动火操作期间。例如,曲线中低于表示CPL操作的Δ温度的部分可以标为蓝色,而曲线中超过零Δ的部分可以标为红色,该部分表示峰值动火操作。
应认识到,用户界面部件408呈现维护间隔的长期操作曲线的方式并不限于本说明书中所示的示例。相反,与每小时或每日建议操作时间表相关的信息、预测环境和市场信息、零部件寿命节省和利用以及利润计算可以以任何适当格式并以任何组合的方式呈现,而不脱离本发明的一个或多个实施例的范围。
在一些实施例中,除了基于长期操作曲线706产生图形报告和准则之外,调配优化系统402的控制界面部件414可以将长期操作曲线导出到装置资产控制或调度系统,以便所述曲线所表示的操作时间表将自动编程到资产的控制系统中。
曲线生成部件406所产生的额定长期操作曲线706基于预测数据710所表示的预测环境和市场条件。但是,在发电装置资产在维护间隔内进行后续实时操作期间,实际环境条件、燃料成本和电价可能偏离预测数据710所表示的相应预测值。因此,尽管在开始对维护间隔进行规划之前可以将长期操作曲线706有益地用于长期规划中,但是调配优化系统402可以基于更新、实时的环境和市场信息,以及实际资产操作信息(实时和历史信息)来在维护间隔期间更新所述操作曲线。如下文进一步详述,可以将内循环和外循环的更新迭代与日前和实时(即,同一天或每小时)规划和操作一起执行。
图15是方框图,示出调配优化系统402的曲线生成部件406在日前和实时规划和执行期间的示例性数据输入和输出。装置资产在维护间隔内操作期间,可向调配优化系统402提供维护间隔其余部分中的至少一部分的更新预测数据710(例如,t=tk到tM.I.,其中tk是当前时间,tM.I.是维护间隔或操作限度的终点)。还可以向调配优化系统402提供维护间隔的当前时间以及上一个持续时间中的至少一个子集(例如,t=1到tk)的实时和历史数据1502。所述实时和历史数据1502可以包括例如从适当市场网站或其他市场数据来源获得的更新电价和燃料价格数据、从天气预报网站获得的更新环境数据、从资产控制系统获取的表示装置资产的实际过往操作的历史操作数据(例如维护间隔中的上一小时的历史每小时功率输出和操作温度),或者其他此类数据。实时和历史数据1502中的一部分或全部可以通过实时数据采集部件410从相应数据源获得。曲线生成部件406可以用所述更新的实时和历史数据1502来替换先前预测信息,并且重新执行上文结合图10所述的迭代分析以产生更新的操作曲线1506,从而促进日前规划或实时规划和执行。通过使用维护间隔中过去数小时的实际历史操作数据重新执行曲线生成序列,可更新操作计划以反映装置资产的实际历史操作,所述实际历史操作可能偏离先前产生的长期操作曲线所定义的预测操作。
曲线生成部件406还将基于实时和历史数据1502(以及更新的预测数据710)产生更新的寿命价格值1508,所述更新的寿命价格值可以以多种方式使用以便以各种有意义方式向用户呈现操作规划建议。如下所述,即使过往操作已偏离预测性能(例如,通过过度峰值动火操作或CPL操作),但是仍然将更新后的寿命价格值用作实时反馈机制以确保资产操作将收敛于目标寿命约束上,同时也在剩余的维护间隔内大体上最大化利润。在一些实施例中,在日前或实时规划期间,曲线生成部件406可以选择性地仅执行内循环,以使用更新的预测和实时数据与当前最佳寿命价格值λ*一起产生更新的操作曲线1506;或者同时执行内循环和外循环,以产生更新的操作曲线1506和更新的最佳寿命价格值λ*。
在一个示例性实施方案中,在维护间隔内操作期间,曲线生成部件406可以基于新预测数据710以及实时和历史数据1502每天仅运行一次内循环迭代和外循环迭代,以产生更新的最佳寿命价格值λ*1508和更新的操作曲线1506。新的寿命价格λ*和更新的操作曲线可用于产生下一个操作日的额定日前调度。当新一天开始时,曲线生成部件406可以更频繁地(例如,每小时或每几分钟)仅执行内循环,即使用更新的最佳寿命价格、更新的预测数据710和实时情况来产生更新的操作建议(例如,CPL和峰值动火建议数据)。
维护间隔期间针对日前和实时规划执行的内循环迭代和外循环迭代类似于长期规划阶段(维护间隔开始之前)执行的迭代序列,但是之前提供的预测数据适当地替换成实时和实际历史操作数据。当维护间隔期间针对日前和实时规划执行循环时,曲线生成部件406可以使用当前环境和市场数据以及更新的预测数据710来解决当前小时以及维护间隔的每个剩余小时(例如,时间t=tk到tM.I.)的内循环最大化。曲线生成部件406可以使用当前最佳寿命价格值λ*(即,在最近上一个内循环和外循环执行期间获得的最佳寿命价格值)作为初始寿命价格值1006(参见图10)。对于已过去的维修间隔部分(时间t=1到tk),曲线生成部件406可以基于实际历史操作数据(即,时间t=1到tk的实际每小时MW和T值)计算已经消耗的实际零部件寿命量(包括维护间隔期间迄今为止已经由于CPL操作库存的零部件寿命)。
如果仅执行内循环,则将为最大化维护间隔剩余小时内的利润而产生的更新操作曲线1506视作新操作曲线,并且迭代终止。当仅重新执行内循环时,假定先前获得的最佳寿命价格值λ*仍然准确,并且基于先前获得的最佳寿命价格值λ*产生更新的操作曲线1506。
如果还要执行外循环(通常频率低于仅执行内循环时;例如每天一次),则曲线生成部件406可以确定维护间隔中的已过去部分内所消耗的实际零部件寿命量与由于依据更新的操作曲线来执行资产而将在维护间隔的剩余部分中消耗的预期零部件寿命量之和。如上所述,曲线生成部件406可基于实际历史操作数据(即,对于时间t=1到tk的实际每小时MW和T值)计算已消耗的实际零部件寿命量,以及资产的零部件寿命模型数据。一旦确定了实际消耗的零部件寿命和预测零部件寿命消耗之和,曲线生成部件406可以依据外循环分析确定所述总和是否满足零部件寿命约束、根据需要调整最佳零部件λ*,并且重新执行所述内循环。与长期规划分析类似,内循环和外循环以这种方式进行迭代,直到实际消耗零部件寿命和预测消耗零部件寿命之和满足目标零部件寿命约束。一般来说,针对日前或实时规划在维护间隔期间产生更新操作曲线1506和更新的寿命价格1508的外循环约束可以用下式表示
其中MWact(t)和Tact(t)分别是装置资产在维护间隔中截至当前时间之前的部分(t=1到tk)的历史操作的实际功率输出和操作温度值,并且MW(t)和T(t)是更新操作曲线1506中限定的维护间隔中的每个剩余小时(t=tk到tM.I.)的未来MW和T值。FFH消耗(.)是包括在模型数据416中的装置/资产零部件寿命模型。在维护间隔内的操作期间以每天为频率(或以其他时间频率)重新执行内循环和外循环处理的迭代可基于实时条件和实际历史操作数据来细化建议的操作曲线,而不显著改变资产的操作限度。
调配优化系统402可以使用曲线生成部件产生的信息,包括更新的操作曲线1506和最佳寿命价格估值λ*来向装置操作员和管理者呈现有意义的信息,所述信息旨在引导用户实现装置资产的最佳可盈利操作。这可以包括,例如,以对所节省零部件寿命进行峰值动火操作是值得的MWh量报告在给定操作条件下节省的零部件寿命值,报告在耗尽由于之前CPL操作而贷记的所零部件寿命库存(例如,库存的FFH)之前可以执行峰值动火操作的估计小时数,以将贷记的峰值动火操作的MWh数报告在当前时间点以CPL模式操作所节省的零部件寿命数量,针对燃烧燃料增量与所贷记的MWh之间关系,当前时间点以CPL模式操作的有利性,或者其他此类指标。这些度量可以由零部件寿命度量部件412基于可用数据(当前操作曲线、最佳寿命价格估值、当前和预测环境和市场数据、历史操作数据等)产生。
图16是呈现由调配优化系统402产生的日前容量信息的示例性显示屏幕1602。呈现在日前规划显示上的信息可作为准则,帮助装置管理者或下一日交易员确定在下一日对装置资产进行峰值动火操作是否有成本效益,并且确定出售额外产出的最低价格。日前容量显示屏幕1602(或类似显示屏幕)可以通过概览显示屏幕,例如图6中所示的显示602来调用。在所述示例中,可以由用户界面部件408产生的显示屏幕1602显示用于3×1联合循环装置的日前规划信息,所述3×1联合循环装置包括三个燃气涡轮机(燃气涡轮机1、2和3)、热回收蒸汽发生器和蒸汽涡轮机。显示屏幕1602将容量信息覆盖在代表3x1系统的图形上。对于每个燃气涡轮机,用户界面部件408显示下一日峰值容量1604、基线容量(baselinecapacity)1606和老化因素(degradation factor)1608。显示屏幕1602还针对每个燃气涡轮机显示下一日出售燃气涡轮机的峰值产出的建议最小峰值电价1610。零部件寿命度量部件412可以基于操作曲线中定义的长期数据、最佳寿命价格值λ*和预测市场数据来计算建议最小峰值电价。
图17是示例性显示屏幕1702,用户可通过所述示例性显示屏幕输入日前报价以及下一个操作日的操作信息。示例性显示屏幕1702包括装置产出柱状图1704,所述装置产出柱状图1704以图形方式示出装置在下一日的规划每小时产生。在一些情景下,所述规划产出可以从更新操作曲线1506中定义的建议每小时MW推导出。或者,规划产出值可由用户基于已知条件(例如,预期可用燃气涡轮机容量、维护调度、预期需求等)输入。显示屏幕1702还包括电价柱状图1706,用于指示下一日的结算每小时电价。这些价格可以由系统402从预测数据710中获得,或者可以由用户输入,作为已经批准的每小时最低价格。
在本示例中,用户可以使用文件选择区域1708来输入更新的环境条件数据、更新的电价数据、燃气涡轮机状态数据(例如,可用或不可用)或下一日(或之后)的更新功率输出限制中的一者或多者。尽管图示示例图示成能够手动提供所述更新信息,但是在一些实施例中中,实时数据采集部件410可以从相关来源(例如,天气预报网站、电力市场网站、维护数据库等)自动获取所述信息中的至少一部分。显示屏幕1702还包括字段(field)1710,用户可以使用所述字段输入下一日的更新预期燃料价格(例如,以$/MBTU为单位)。用户可以使用“提交(Submit)”按钮1712来启动基于用户提供的更新信息的优化序列的另一次执行。在一些实施例中,响应于启动针对日前规划的优化序列将同时重新执行内循环和外循环,得到更新的操作曲线和更新的寿命价格值λ*这两者。当优化序列完成时,系统402可更新图1704和1706中所示的值,以反映下一日的新额定产出调度。系统402还可以允许用户根据需要通过与显示屏幕1702交互来修改MW或电价值中的一个或多个。一旦批准额定输出调度和定价,选定按钮1714可使系统使用所述额定值前进到日前规划显示屏幕。
图18是示例性日前规划显示屏幕1802。显示屏幕1802包括每小时输出曲线柱状图1804,所述每小时输出曲线柱状图表示更新操作曲线1506(包括用户经由显示屏幕1702输入的对曲线或相关约束的任何修改)所定义的每小时MW输出。所述每小时输出数据与分别表示峰值负载MW预测和基本负载MW预测的线1808和1810一起绘制。可以对每小时的柱状图进行颜色编码,以便于轻松地确定作为通过使装置资产以CPL操作而节省零部件寿命的良好候选时间的小时(也称为可变温度控制,或VTC)。例如,使用浅色阴影柱的对应的小时(例如,柱1812)表示资产将在部分负载下运行的小时,因此是CPL操作的候选。使用中间色阴影柱的小时(例如,柱1814)表示资产预期将在基本负载下运行的小时,因此不是CPL操作的候选。使用深色阴影柱的小时(例如,柱1816)表示资产可有益地进行峰值动火操作以在基本负载之上运行,从而产生一个或多个额外MWh供出售的小时,但前提是与峰值动火操作相关联的额外零部件寿命成本已经在维修间隔中的其他时间通过CPL操作得到补偿。
显示屏幕1802还包括每小时燃料成本柱状图1806,所述每小时燃料成本柱状图填充有(populated)从预测数据710获得的燃料成本数据(以$/MBtu为单位)。在图示的示例中,为补偿峰值动火操作所消耗的额外零部件寿命,例如在小时终点(Hour Ending)15处,资产可以在当天中标记为CPL操作候选时间(VTC)的一个或多个其他小时中以CPL模式操作。由于CPL操作的燃料效率较低,CPL操作在给定小时内节省的零部件寿命量、所贷记的同等峰值动火MWh具有相关成本(例如,燃料价格[$/MBtu]×额外CPL燃料[MBtu]),所述成本至少部分是该小时的燃料成本的函数。在图示的示例中,在当天不同候选小时中以CPL操作的有利性在图1806中图示成这些小时的上述CPL燃料成本与相应峰值动火MWh贷记之间的比率,所述相应峰值动火MWh贷记是以$/MWh为单位的数量。因此,基于优化序列所产生的信息,调配优化系统402可以自动地在符合CPL条件的小时中选择最佳时间,在所述最佳时间中以CPL模式操作,从而产生可在峰值动火小时中消耗的零部件寿命库存(例如,FFH)。由于优化系统402计算值得节省零部件寿命的最大值$/MWh,因此所述系统可以选择一个或多个小时,在所述小时中,燃料成本等于或低于所述零部件寿命成本,并将这些小时标记为用于CPL操作。或者,在一些实施例中,以CPL模式操作的小时以及这些小时中CPL操作的程度可以留待用户基于各种指导度量来决定。
显示屏幕1802的MWh存储区域1818中示出了24小时日前期间中所积累的总MWh节省量。在本示例中,柱1820表示由于在随后的24小时内进行CPL操作而预计将库存的MWh总量。该值表示所库存(或贷记)的峰值MWh数,它可以在维护间隔期间产生,而不会由于在24小时期间内进行CPL操作所节省的零部件寿命而违反目标寿命约束。
柱1822表示24小时内每节省一个MWh所需的平均燃料成本。柱1824表示建议电价($/MWh),所述所述建议电价下对装置资产进行峰值动火操作,以部署所库存的MWh。所述建议价格基于通过CPL操作所库存的额外MWh而产生的燃料成本。建议峰值价格1824与平均燃料成本1822之间的差值表示由于以指定峰值电价部署(deploying)所库存的MWh而产生的利润增量。在一些实施例中,系统402可以至少部分地基于确定哪些小时与等于或大于柱1824所表示的建议最小峰值电价相关联来确定或识别资产可以可盈利地产生MWh的适当峰值动火小时。在所述实施例中,用户界面部件408可以在日前每小时曲线图1804上标识建议峰值动火小时,方法是对与这些小时相关联的柱进行颜色编码。
在多个实施例中,调配优化系统402可以配置成响应于CPL操作或峰值动火操作决策执行自动或建议操作。例如,在一些情景下,一旦确定了适当CPL操作小时,调配优化系统402的控制界面部件414就可以自动地指示装置资产控制系统来在所选小时内以CPL模式操作。替代地,系统402可以仅通过显示屏幕1802(或另一个显示屏幕)向用户显示建议CPL操作小时,以便用户根据他们自己的判断来手动设置建议的CPL操作。类似地,当优化系统402已经确定了对资产进行峰值动火操作以消耗所库存MWh的适当小时时,系统402可以自动配置资产控制系统来执行建议的峰值动火操作或者将所述建议传达给用户。用户还可以配置调配优化系统402以实现自动和建议式控制的组合。例如,用户可以决定对系统402进行配置,以使CPL操作决定由控制界面部件414自动执行,而峰值动火操作决定仅为建议性的,需要用户手动设置峰值动火操作。
显示屏幕1802上所示的日前计划表示下一日的额定操作装置。装置人员可以使用所述日前信息作为当天操作的额定起点,并且根据实际实时条件和最近计算的寿命价格值λ*进行细化,所述最近计算的寿命价格值表示零部件寿命与利润之间的敏感性。
优化系统402可以产生实时规划和执行屏幕,用户可以使用所述实时规划和执行屏幕来在执行计划期间监测所述装置资产,并且如果需要,则相对于所述日前计划来修改操作。图19是可以由调配优化系统402的用户界面部件408产生的示例性实时执行显示屏幕1902。显示屏幕1902旨在于装置资产的当天操作期间使用,并且可以适于由装置操作员使用。
在本示例中,显示屏幕1902包括VTC状态区域1906,所述VTC状态区域1906确定三个燃气涡轮机(GT 1、GT 2和GT 3)的部分负载和VTC状态。VTC状态区域1906的第一列表示燃气涡轮机的调配优化启用状态。当该列中的指示符为绿色时,相应燃气涡轮机的CPL操作在优化系统402的控制下运行,以使优化系统402基于当前实时条件和预定最佳寿命价格值λ*来控制装置资产以CPL模式操作的小时(通过曲线生成部件406最近执行的内循环迭代和外循环迭代计算)。在一些实施例中,操作员可以通过与优化系统402的适当显示屏幕交互或者通过装置资产控制系统的外部控制来根据需要手动启用和禁用CPL操作的优化器控制。
VTC状态区域1906的最后一列分别显示了相对于三个燃气涡轮机的额定操作温度(例如,图2的热负载路径)的当前Δ温度。如该列中的字段所示,燃气涡轮机1当前以额定操作温度运行、Δ温度为零,燃气涡轮机2当前以比额定操作温度低74.4℉的温度运行,并且燃气涡轮机3当前以比额定操作温度低38.2°F的温度运行。每个涡轮机的适当Δ温度(也称为VTC偏移)可以由零部件寿命度量部件412基于优化的操作曲线1506来计算。所述VTC偏移(即,Δ温度所提供的CPL操作程度)是以下项的函数:相应燃气涡轮机上的当前负载和相应燃气涡轮机的当前操作温度(例如,在本示例中为排气温度),以及来自之前由系统402获得的日前数据中的当前小时的电价和燃料价格,以及寿命价格值λ*。例如,对于燃气涡轮机2,优化系统402已确定以-74.4°F的Δ温度进行CPL操作可在给定当前燃料价格和电价以及所确定的寿命价格λ*(表示零部件寿命与利润之间的最佳折衷的估计度量)的情况下,在当前小时中实现所节省零部件寿命与利润之间的最佳折衷。
为了在实时操作期间对装置资产进行闭环控制,调配优化系统402可以基于当前寿命价格值和当前环境和操作条件来确定最佳CPL操作程度,并且自动地依据所述计算出的最佳CPL操作程度来设置Δ温度。在示例方法中,零部件寿命度量部件412可以使用在日前规划阶段确定的最佳寿命价格值λ*来基于当前条件,通过确定最大化方程式(2)(或类似利润关系)规定的利润的操作温度T来计算CPL操作程度(或类似的利润关系),其中所述方程式中使用的其他所有变量(例如,MW输出)均为当前值。在另一种方法中,规划阶段的输出可视作对不同条件或持续时间(例如,每天、每小时等)的零部件寿命节省的分配。然后可以在任何给定时刻抑制工作温度T,直到当前零部件寿命节省程度接近针对当前条件或瞬间所决定的适当分配“桶”分配的程度(或与其一致)。
VTC状态区域1906中的第二列表示相应燃气涡轮机的当前部分负载状态。由于燃气涡轮机1当前以零Δ温度运行,因此燃气涡轮机1的部分负载状态指示符表明所述燃气涡轮机当前不处于冷部分负载模式。燃气涡轮机2和3目前以CPL模式运行(由相应负Δ温度给出)。
VTC状态区域1906中的第三列表示相应燃气涡轮机的VTC状态。所述指示符表明相应燃气涡轮机目前是否依据VTC对CPL操作进行控制。
应用于每个燃气涡轮机的实时可变温度控制(VTC)偏移也在显示屏幕1902的图1904上以图形方式显示。垂直线1908表示当前操作小时,并且三条限度1910分别表示三个燃气涡轮机相对于基线温度的Δ温度(与VTC状态区域1906的最后一列中提供的值相对应)。
在实时(同一天)操作中,寿命价格值λ*的价格可以假定为全天相同。因此,如上所述,优化系统402可以每天仅重新执行一次内循环迭代和外循环迭代,以便在给定维护间隔剩余部分中的实际历史操作和预测条件的情况下,获得更新的每日寿命价格估值λ*1508。这样可以调整寿命价格λ*,以反映在维护间隔内装置资产的操作已经开始之后,预期每日零部件寿命产生或消耗相对于长期预测(基于预测信息)的任何偏差。例如,在维护间隔内操作第五天之后,调配优化系统402可以使用第一天操作的实际历史运行数据(例如,每小时实际MW和T值),以及维护间隔剩余小时中的预测环境和市场数据重新执行内循环迭代和外循环迭代(如上文相对于图15所示)。所述重新执行将产生一个新的寿命价格值λ*,如果在前五天操作中产生或消耗的实际零部件寿命量偏离这些天的预期零部件寿命量,则所述新的寿命价格值可能与长期规划阶段计算的原始寿命价格值不同。
一旦新的一天开始,调配优化系统402可以按小时或以任何预期频率,仅以每小时为频率(或者以任何预期频率;例如,以与维护间隔的时间基线相匹配的频率)使用更新的寿命价格值λ*以及当前实时电价、负载和环境条件来重新执行内循环。这些内循环执行的结果(例如,由产生的操作曲线定义的每小时MW和T值)可以用作每小时CPL操作决定的基础。通过这种方式,即使装置资产在所述间隔中以偏离长期预期的方式操作,所述寿命价格值λ*也用作实时反馈机制,以保持装置资产始终适当满足目标零部件寿命约束。例如,如果装置资产在维护间隔中的前几天进行峰值动火操作并且超出原始长期操作曲线所定义的建议峰值动火操作期间,则每日外循环执行将逐日提高寿命价格值λ*,以便随后执行的内循环将产生CPL和峰值动火操作推荐值以补偿所述意外超出的峰值动火操作,并使操作符合目标寿命。
图20是可以由调配优化系统402的用户界面部件408产生的示例性实时监测显示屏幕2002。显示屏幕2002显示三个燃气涡轮机在最近90分钟内的当前和历史累计信息。
显示屏幕2002的左侧包括峰值库存差额区域2010,所述峰值库存差额区域2010显示三个燃气涡轮机的库存MWh的当前或即时累计差额。每个燃气涡轮机的库存MWh值可以由零部件寿命度量部件412基于由于CPL操作和峰值动火操作而保存或消耗的零部件寿命净值来计算。例如,在图20中所示的示例中,燃气涡轮机1具有-16.7MWh的可用峰值动火功率,因为燃气涡轮机1在维护间隔中过度峰值动火操作,而没有通过CPL操作完全补偿所消耗的零部件寿命。将此操作产生的零部件寿命亏空量转换成MWh值(-16.7MWh),所述MWh值表示在维护间隔结束之前必须通过CPL操作补偿的MWh量,以确保满足资产的目标寿命。相反,燃气涡轮机2已经通过CPL操作零部件寿命库存量比峰值动火操作所零部件寿命消耗量多,因此具有11.8MWh的正峰值MWh库存。此值表示所库存的零部件寿命转换成可用于峰值动火操作的MWh。
显示屏幕2002还包括位于峰值库存差额区域2010右侧的峰值库存差额图2004。峰值库存差额图2004中绘制了三个燃气涡轮机在最近90分钟期间内各自随时间变化的历史库存MW差额。可以在图2004上选择并拖动垂直滑动条2016,并且重叠窗口2018可以呈现与对应于滑动条2016的时间点相关联的数值。
显示屏幕2002还包括累计峰值动火MWh区域2012,所述累计峰值动火MWh区域2012显示由峰值动火操作产生的额外MWh的累计净值。理想情况下,所述累计峰值动火MWh将通过消耗CPL操作所库存的库存MWh来产生,或者将在维护间隔内通过未来CPL操作所产生的库存MWh来进行补偿。在图示的示例中,燃气涡轮机1已经通过峰值动火操作产生17.0MWh的额外功率输出,而燃气涡轮机2和3尚未在当前维护间隔中将其所库存的任何MWh(分别为11.8MWh和10.4MWh)用于峰值动火操作。位于区域2012右侧的累计峰值动火图2006中绘制了三个燃气涡轮机在最近90分钟期间内随时间产生的累计额外MWh数量。通常,所述额外峰值动火MWh的售价代表通过将库存MWh用于峰值动火操作而获得的总收入(利润的正部分)。
为获得呈现在显示屏幕2002上的库存MWh值,所述优化系统402(例如,零部件寿命度量部件412)可以首先计算在从当前维护间隔的起点直到当前时间的期间内,通过CPL操作产生的额外FFH数量以及通过峰值动火操作消耗的FFH数量。这些FFH值可以例如基于资产的零部件寿命模型数据以及资产的每小时历史操作数据(例如,迄今为止,维护间隔中每个小时的实际装置输出MW和操作温度)推导出。优化系统402然后可以基于所产生FFH值与所消耗的FFH值之间的差值来确定FFH贷记或亏空额(credit or deficit)净值,并且将所述净FFH数量转换成对应的MWh值。所述转换可以基于相应资产的峰值动火容量以及给定燃气涡轮机可以为每个FFH产生的峰值动火MWh来确定,这些值分别通过所述资产的性能模型和零部件寿命模型确定。所述转换技术仅为示例性的,并且用于将零部件寿命度量(例如,FFH)转换成对应峰值动火MWh值的任何适当计算均在本发明一个或多个实施例的范围内。
显示屏幕2002的累计MBTU区域2014显示由于CPL操作而为每个燃气涡轮机消耗的瞬时累计额外燃料(以千英制热单位或MBTU为单位),以产生用于峰值动火操作的库存MWh。在图示的示例中,燃气涡轮机1尚未以CPL模式操作,因此没有由于CPL操作而消耗额外燃料(因此,由于峰值动火输出为17.0MWh,燃气涡轮机1具有负峰值库存差额)。燃气涡轮机2和3迄今为止已经在当前维护间隔内由于CPL操作而消耗了19.4和11.0MBTU的额外燃料(致使区域2010中显示的库存峰值MWh分别为11.8和10.4MWh,所述库存峰值MWh尚未通过峰值动火操作消耗)。位于区域2014右侧的累计MBTU图2008中绘制了三个燃气涡轮机在最近90分钟期间内通过CPL操作消耗的累计额外燃料量。如图2008所示,燃气涡轮机2和3当前正以CPL模式操作,致使这两个资产的燃料消耗量增加(图2008)并且库存MWh数量增加(图2004)。通常,所消耗燃料的价格表示与节省在峰值动火期间部署的MWh相关联的成本(负利润部分)。
由于过去CPL操作消耗的累计额外燃料量可以由系统402(例如,零部件寿命度量部件412)基于零部件寿命模型数据和历史每小时操作数据(例如,维护间隔中每个前一小时的实际功率输出MW和操作温度T)进行计算。替代地,呈现在显示屏幕2002上的燃料消耗量可以基于资产的实际测得燃料消耗。
呈现在监测显示屏幕2002上的信息将调配优化系统402所跟踪的零部件寿命度量转换成装置管理者或操作员可能视作可用的条件;即,可用于峰值动火的MWh指示(或者相反,由于过度峰值动火操作而必须补偿MWh的指示)以及消耗的燃料量,以产生用于峰值动火操作的库存MWh。因此,显示屏幕2002上的信息可以快速地告知操作员有多少可用的库存MWh(上一CPL操作所产生的),以及何时将出现以可盈利方式对资产进行峰值动火操作的机会(例如,当电价高足够高到证明峰值动火操作的合理性时,这可以通过日前规划屏幕上的峰值价格指示符1824确定)。
应认识到,上述示例性显示屏幕中所示的度量不意图用于限制,并且多个实施例中,调配优化系统402可以产生其他适当度量和显示格式。例如,对于一些发电系统,由于非线性、对环境条件的依赖性或者其他因素,在不同操作或环境条件下节约相同量的零部件寿命可能具有不同相关成本(例如,不同燃料消耗量等)。为考虑到所述寿命节省成本的差异性,可将当前环境条件下计算出的CPL操作的额外成本除以在峰值MWh中节省的相关零部件量,以产生$/MWh值。若所述$/MWh值较小,则意味着可以以较低成本库存额外的MWh;因此,所述值可以用作确定适当CPL机会的指导。还可以用所述$/MWh值加上峰值动火时的加热速率边际成本,以产生峰值操作的净边际成本。与图20中所示的其他示例性度量相同,可以随着时间推移来跟踪并且累计所述$/MWh CPL成本和峰值动火操作的净边际成本。
在另一个示例中,系统402可以通过依据峰值MWh(或峰值容量下的动火操作小时数)产生增量成本来指导选择适当的峰值动火期间,并且将所述增量成本与所选的一系列电价一起绘制于水平轴线上,使最高电价与最低CPL成本增量一致(即,第二曲线在第一曲线上方)。在所述实施例中,用户可以使用所述系统输入阈值(例如,依据风险偏好),作为间接指示用户想要在维护间隔内库存的峰值MWh量的两个曲线之间的最小间隔,以及要对这些MWh进行调配的最低价格。如果向调配优化系统402提供实时电价数据(例如,来自电力市场网站或另一来源),则系统402可以响应于确定当前电价等于或大于所述最低价格而自动启动对峰值动火操作的控制。
在峰值动火引导的手动控制(即,仅建议性)示例中,所述系统可以呈现峰值MWh库存的当前每单元(per-unit)成本(和/或在时间限度内的预期(projection)),以帮助用户决定是否对其资产执行峰值动火操作。如果电价预测可用,则可以基于在操作限度内库存的预期总MWh贷记来推荐建议进行峰值动火操作的最低电价。
在上述示例中,假定作为迭代分析的约束条件的目标寿命是恒定值。但是在一些实施例中,曲线生成部件406可配置成通过将目标寿命本身用作另一个变量来解决最大化问题(除了功率输出MW和操作温度T之外)。在所述实施例中,用户可以使用用户界面部件408来定义相对于基线目标寿命的最大可接受偏差量(可以基于与设备制造商或其他维护提供商的客户服务协议)。用户定义的偏差是用户认为可接受的最大目标寿命变化。或者,用户可以定义目标寿命的上限和下限,指示调配优化系统402将建议曲线的目标寿命维持在所述上限与下限之间。当曲线生成部件406执行上述迭代分析时,它不会在估计FHH大致等于固定目标寿命时终止迭代分析,而是继续执行内循环和外循环处理的迭代,直到找到使目标寿命在用户定义的目标寿命参数内的利润最大化操作曲线为止。在一些实施例中,曲线生成部件406可以产生多个操作曲线,所述多个操作曲线具有在用户限定的可接受目标寿命范围内的相应不同目标寿命,并且从所述多个曲线中选择产生最高利润的曲线,从而允许目标寿命与功率输出和操作温度一起作为变量。
在一些实施例中,可通过并行执行计算操作而进一步减轻与执行内循环处理的多次迭代相关联的计算负担。例如,对于包括32,000个小时的维护间隔,曲线生成部件406可以将所述维护间隔划分成大体相等的多个部分(例如,32个1000小时部分或维护间隔的其他适当分段)并且使用并行处理对这些部件大体上同时地执行每小时利润最大化处理。所述利润最大化处理可以以这种方式并行执行,因为所述内循环包括不相交的优化问题(也就是说,维护间隔中给定小时的最大化问题的解决方案不取决于针对其他小时发现的最大化解决方案)。
在另一个示例性处理情景中,可以使用预测数据710来运行优化问题的不同实例以考虑数据的可变性。作为所述方法的一个示例,可以进行内循环处理和外循环处理,以使优化中仅考虑预测间隔中的CPL机会。之后,所述外循环的每次迭代可以与特定的最佳峰值动火操作能力相对应。这可以产生随峰值动火小时数或MWHr而变的增量成本曲线。
本说明书中所述的调配优化系统402的实施例可以用作装置资产操作长期规划的工具,方法是确定被确定成在维护间隔内大体上最大化由一个或多个装置资产产生的利润的最佳峰值动火和CPL操作机会。在维护间隔内进行实时操作期间,系统402可以利用实时条件和历史操作数据来动态地改进长期计划并且呈现能够引导实现资产的可盈利操作的有意义信息,从而协助进行资产的日前和实时规划和操作。通过这种方式,所述系统可以帮助装置管理者和操作员充分利用其装置资产的全部价值潜力,同时满足目标寿命要求。由调配优化系统402实现的技术使得能够以相对较低的计算开销来计算这些大体上优化的操作曲线和度量,尽管要运行优化问题的操作限度很长。
图21-24示出根据本申请的一个或多个实施例的方法。尽管出于简化说明的目的而将本说明书中所示的一个或多个方法图示和描述成一系列动作,但是应理解和认识到,本发明不受动作顺序的限制,因为某些动作可以根据本发明不同顺序发生和/或与本说明书中所图示和描述的其他动作同时发生。例如,所属领域中的技术人员将理解和了解,方法可以替代地表示成一系列相互关联的状态或事件,例如在状态图中。此外,执行依据本发明的方法时可能并非需要执行所有图示的动作。此外,当通过不同实体来执行方法的不同部分时,交互图可以表示根据本发明的方法。此外,所公开的示例性方法中的两个或更多个方法可以彼此组合地实施,以实现本说明书中所述的一个或多个特征或优点。
图21示出用于生成装置资产的利润最大化操作时间表或曲线的示例性方法2100。首先在2102中设定初始寿命价格值λ,其中所述寿命价格λ表示由装置资产(例如,一个或多个燃气涡轮机或其他发电装置资产)的操作所消耗的零部件寿命的货币价值。在2104中,基于预测电价、预测燃料价格、装置资产的性能模型数据以及装置资产的零部件寿命模型数据,依据功率输出和/或操作温度(和/或其他操作变量)确定针对维护间隔中的每个时间单元,使下式给出的利润值大体最大化的装置资产的每小时操作时间表:
[电力收入]–[燃料成本]–λ*[零部件寿命消耗量]
对于要同时按照装置输出MW和操作温度T找到所述操作时间表的情景,可通过上述方程式(2)确定要对每个时间单元最大化的利润。但是,如果要按照其他变量来找出所述操作时间表,则可以使用根据所述其他变量所定义的其他适当利润计算公式。在所有情况下,所述利润计算均考虑了零部件寿命消耗的成本(寿命价格值λ与计算得出的零部件寿命消耗量乘积作为操作变量的函数)。步骤2104可以视作是整个迭代问题求解过程的内循环,它可能需要多次迭代来找到维护间隔的每个时间单元的最大利润,具体取决于操作时间表中所限定的操作变量数(例如,功率输出MW、操作温度T等)。
在2106中确定由于根据步骤2104中获得的操作时间表来运行装置资产而零部件寿命消耗量。可以例如基于装置资产的零部件寿命模型数据来确定将消耗的零部件寿命,所述装置资产的所述零部件寿命模型数据限定随功率输出MW和/或操作温度T(或其他操作变量)而变的所述资产所消耗的估计零部件寿命量。
在2108中确定步骤2106处计算得出的零部件寿命消耗量是否等于资产的目标寿命(在定义的容差内)。如果所述零部件寿命量不等于目标寿命2108(步骤2108为“否”),则所述方法将进行到步骤2112,在所述步骤中,确定在步骤2106中确定的零部件寿命量是否小于所述目标寿命。如果零部件寿命量小于目标寿命(步骤2112为“是”),则所述方法将进行到步骤2114,在所述步骤中,提高所述寿命价格值λ。或者,如果所述零部件寿命量不小于目标寿命(步骤2112为“否”),则所述方法将进行到步骤2116,在所述步骤中,提高所述寿命价格值λ。分别在步骤2114或2116中降低或提高寿命价格值λ之后,所述方法将返回到步骤2104,并且使用更新的寿命价格值λ来确定另一个操作时间表。步骤2106、2108、2112、2114和2116可视作整个迭代调度确定过程中的外循环。
重复步骤2104、2106、2108、2112、2114和2116,直到步骤1208中确定零部件寿命量等于目标寿命(在限定容差内)。如果零部件寿命量等于目标寿命(步骤2108为“是”),则所述方法将进行到步骤2110,在所述步骤中,输出步骤2104中确定的最近操作时间表。在一些实施例中,所述操作时间表可以以报告的形式输出或者以用户能够查看的格式呈现。或者,在一些实施例中,所述操作时间表可以输出到装置资产控制系统,以便根据所述调度来控制所述资产的操作。
图22示出用于确定相对于一个或多个发电装置资产的目标寿命的零部件寿命贷记和亏空额的示例性方法2200。首先在2202中,确定寿命价格值,所述寿命价格值表示装置资产在维护间隔内操作所消耗的零部件寿命的货币价值。在2204中接收装置资产的每小时操作时间表或曲线。所述操作时间表限定所述装置资产在维护间隔的至少一部分中的至少每小时功率输出和每小时操作温度。在一些实施例中,可以使用上述方法2100推导出步骤2202中获得的寿命价格值和步骤2204中获得的每小时操作时间表(例如,通过曲线生成部件406执行的内循环和外循环处理的迭代)。或者,所述操作时间表可以是由用户提供的用户定义调度。
在2206中确定所述装置资产由于根据步骤2204中获得的操作时间表来运行所述资产而零部件寿命消耗量。例如,可以使用所述装置资产的零部件寿命模型数据以及所述操作时间表所限定的每小时功率输出和操作温度来确定所述零部件寿命量。在2208中,基于步骤2206中确定的估计零部件寿命量确定将相对于维护间隔的目标寿命为所述装置资产产生或借记的净零部件寿命量。例如,由于CPL操作使零部件寿命消耗比以基本负载操作时慢,因此所述操作时间表所标识的CPL小时将产生零部件寿命贷记。相反,由于峰值动火操作使零部件寿命的消耗更快,因此所述操作时间表所确定的峰值动火小时所产生的零部件寿命将造成零部件寿命亏空额。所述零部件寿命贷记和亏空额的净值得出由于依据所述操作时间表操作而贷记或借记的净零部件寿命量。
在2210中确定步骤2208确定的净零部件寿命量是否大于0,这表明净零部件寿命贷记额(或库存)。如果净零部件寿命量大于0(步骤2210为“是”),则所述方法将进行到步骤2212,在所述步骤中,基于零部件寿命和性能模型将所述净零部件寿命量转换成在峰值动火操作期间可产生、而不违反所述维护间隔的所述目标寿命的库存MWh数。或者,如果净零部件寿命量不大于0(步骤2210为“否”),则所述方法将进行到步骤2214,在所述步骤中,基于零部件寿命和性能模型将所述净零部件寿命量转换成要经由冷部分负载操作补偿以免违反所述维护间隔的所述目标寿命的MWh数。在一些实施例中,可以在操作期间基于实际操作数据(例如,实际每小时功率输出值MWh和操作温度值T)以及更新的预测市场和/或环境数据来更新所述净零部件寿命量。所述运行中的净零部件寿命量也可以绘制成随时间变化的曲线图,以显示可用于峰值动火操作的MWh数,或者为满足当前维护间隔的目标寿命约束而必须通过CPL操作补偿的MWh数。
图23示出用于确定以可盈利方式使发电装置资产进行峰值动火操作的适当期间的示例性方法2300。首先在2302中确定寿命价格值,所述寿命价格值表示装置资产在维护间隔内操作所消耗的零部件寿命的货币价值。在一些实施例中,可以使用上述方法2100推导出所述寿命价格值(例如,通过曲线生成部件406执行的内循环和外循环处理的迭代)。在2304中接收装置资产的每小时操作时间表或曲线。所述操作时间表限定所述装置资产在维护间隔的至少一部分中的至少每小时功率输出和每小时操作温度,所述维护间隔的至少一部分包括日前或当天。在一些实施例中,可以使用上述方法2100(例如,通过曲线生成部件406执行的内循环处理的迭代)基于步骤2302中确定的寿命价格值来推导出步骤2302中获得的每小时操作时间表。或者,所述操作时间表可以是由用户提供的用户定义调度。
在2306中,在所述装置资产在所述维护间隔内操作期间,基于当前燃料价格和电价、装置资产的实际操作数据(例如,在所述维护间隔中过去的数小时内的历史每小时功率输出值和操作温度值)、维护间隔中剩余小时的预测燃料价格和电价以及步骤2302中确定的寿命价格更新操作时间表中与当天相对应的部分。例如,上述内循环处理(例如,方法2100中的步骤2104)可以使用当天的当前和历史数据来重新执行以代替所述维护间隔中过去几小时的预测数据,并且更新所述维护间隔中剩余小时的预测数据。
在一些实施例中,可以经由步骤2302定期更新所述寿命价格值,并且可以经由步骤2306但以高于所述寿命价格值的更新频率来类似地定期更新所述操作时间表。例如,所述寿命价格值可以每天更新一次,而所述操作时间表可以每天更新或者当天内每几个小时更新一次,以反映来自更新的预测值或者所述装置资产操作偏离规划操作的值。
在2308中,基于步骤2302中获得的寿命价格值确定出售峰值动火MWh将产生利润的最低电价。在2310中,将维护间隔中使预测电价等于或大于步骤2308中确定的最低电价的一个或多个小时确定为建议的峰值活动时间。在2312中,在用户界面上呈现更新的操作时间表和建议的峰值动火时间。
图24示出用于确定能够以经济有效方式使发电装置资产进行冷部分负载操作的适当期间的示例性方法2400。首先在2402中接收装置资产的每小时操作时间表,所述每小时操作时间表定义所述装置资产在维护间隔内的至少每小时功率输出和每小时操作温度。在2404中确定寿命价格值λ*,其中所述寿命价格值表示由于根据步骤2402中接收的操作时间表来操作所述装置资产而消耗的零部件寿命的货币价值。在一个或多个实施例中,可以基于预测电价和燃料价格、资产性能模型数据和资产零部件寿命模型数据,使用方法2100(例如,由曲线生成部件406执行)来确定所述操作时间表和所述寿命价格值λ*。
在2406中,对于所述维护间隔中当天的相应小时,确定使下式最大化或大体最大化的操作温度值:
[电力收入]–[燃料成本]–λ*[零部件寿命消耗量]
其中电力收入、燃料成本或零部件寿命消耗量中的至少一个是使用更新后的电价和燃料价格以及装置资产在当天中过去几个小时内产生的实际功率输出值计算的。
在2408中,基于步骤2406中获得的操作温度值,将当日中的一个或多个相应小时确定成建议的冷部分负载操作时间。例如,可将步骤2406获得的操作温度低于基线(例如,热负载)温度的小时确定成适当的冷部分负载小时。在一些实施例中,也可以将所述建议的冷部分负载操作小时与预测燃料价格信息相关联,以便确定与一个或多个最低燃料价格相对应的建议冷部分负载小时的子集。可将所述建议小时的子集标记成最适合冷部分复杂你操作的小时。在2410中,将所述建议冷部分负载操作时间呈现在用户界面上。在一些实施例中,可根据所述建议的冷部分负载小时自动控制所述装置资产的操作,以便根据步骤2408的结果自动调节所述装置资产的操作温度。
为提供本公开主题的各个方面的背景,图25和图26以及以下讨论旨在提供可实现本公开主题的各个方面的适当环境的一般性简要描述。
参见图25,用于实现前述主题的各个方面的示例性环境2510包括计算机2512。计算机2512包括处理单元2514、系统存储器2516和系统总线2518。系统总线2518将系统部件连接到处理单元2514,所述系统部件包括但不限于系统存储器2516。处理单元2514可以是各种可用处理器中的任何一种。处理单元2514也可以采用多核微处理器和其他多处理器体系结构。
系统总线2518可以是包括存储器总线或存储器控制器、外围总线或外部总线和/或使用各种可用总线体系结构的局部总线的若干类型的总线结构中的任何一种,包括但不限于8位总线、工业标准体系结构(ISA)、微通道架构(MSA)、扩展ISA(EISA)、智能驱动电子设备(IDE)、VESA局部总线(VLB)、外围部件互连件(PCI)、通用串行总线(USB)、高级图形端口(AGP)、个人计算机存储卡国际协会总线(PCMCIA)和小型计算机系统接口(SCSI)。
系统存储器2516包括易失性存储器2520和非易失性存储器2522。基本输入/输出系统(BIOS)存储在非易失性存储器2522中,所述基本输入/输出系统包含在计算机2512内的元件之间传送信息的基本例程,例如在启动期间。作为说明而非限制,非易失性存储器2522可以包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除PROM(EEPROM)或闪存。易失性存储器2520包括用作外部高速缓冲存储器的随机存取存储器(RAM)。作为说明而非限制,RAM可采用许多形式,例如同步RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双倍数据速率SDRAM(DDR SDRAM)、增强型SDRAM(ESDRAM)、同步链路动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接Rambus RAM(DRRAM)。
计算机2512还包括可拆除/不可拆除、易失性/非易失性计算机存储介质。图25例示了磁盘存储器2524。磁盘存储器2524包括但不限于诸如磁盘驱动器、软盘驱动器、磁带驱动器、Jaz驱动器、Zip驱动器、LS-100驱动器、闪存卡或记忆棒等装置。另外,磁盘存储器2524可以包括单独的存储介质或者与其他存储介质相结合的存储介质,包括但不限于光盘驱动器例如光盘ROM设备(CD-ROM)、CD可记录驱动器(CD-R Drive)、CD可擦写驱动器(CD-RW驱动器)或数字多功能光盘ROM驱动器(DVD-ROM)。为便于磁盘存储器2524连接到系统总线2518,通常使用可拆除或不可超出的接口,例如接口2526。
应理解,图25描述了充当用户与适当操作环境2510中所述的基本计算机资源之间的媒介的软件。所述软件包括操作系统2528。可以存储在磁盘存储器2524上的操作系统2528用于控制和分配计算机2512的资源。系统应用程序2530使用操作系统2528通过程序模块2532和程序数据2534来管理资源,其中所述程序模块和程序数据存储在系统存储器2516中或存储在磁盘存储器2524上。应理解,本发明的一个或多个实施例可以采用各种操作系统或操作系统组合来实施。
用户通过输入装置2536将命令或信息输入到计算机2512中。输入装置2536包括但不限于指向装置,例如鼠标、轨迹球、触控笔、触摸板、键盘、麦克风、操纵杆、游戏板、圆盘式卫星天线、扫描仪、TV调谐卡、数码相机、数字摄像机、网络摄像头等。这些和其他输入装置经由接口端口2538通过系统总线2518连接到处理单元2514。接口端口2538包括例如串行端口、并行端口、游戏端口和通用串行总线(USB)。输出装置2540使用一些与输入装置2536相同类型的端口。因此,例如,可以使用USB端口向计算机2512提供输入,并且将来自计算机2512的信息输出到输出装置2540。提供输出适配器2542以说明存在一些输出装置2540,例如监测器、扬声器和打印机,以及需要特殊适配器的其他输出装置2540。作为说明而非限制,输出适配器2542包括提供输出装置2540与系统总线2518之间的连接方式的视频和声卡。应注意,其他装置和/或装置系统既提供输入能力,又提供输出能力,例如远程计算机2544。
计算机2512可以使用与一个或多个远程计算机,例如远程计算机2544的逻辑连接而在联网环境中操作。远程计算机2544可以是个人计算机、服务器、路由器、网络PC、工作站、基于微处理器的器具、对等体装置或其他公共网络节点等,并且通常包括相对于计算机2512所述的元件中的许多或全部元件。为简洁起见,仅示出具有远程计算机2544的存储装置2546。远程计算机2544通过网络接口2548逻辑地连接到计算机2512,然后通过通信连接2550物理地连接。网络接口2548包括通信网络,例如局域网(LAN)和广域网(WAN)。LAN(局域网)技术包括光纤分布式数据接口(FDDI)、铜线分布式数据接口(CDDI)、以太网/IEEE802.3、令牌环/IEEE 802.5等。WAN技术包括但不限于点对点链路、电路切换网络例如综合业务数字网络(ISDN)及其变体、分组交换网络和数字用户线路(DSL)。
通信连接2550是指用于将网络接口2548连接到系统总线2518的硬件/软件。尽管出于简明性的目的而将通信连接2550图示为位于计算机2512的内部,但是它也可以位于计算机2512的外部。连接到网络接口2548所需的硬件/软件仅出于示例性目的包括内部和外部技术,例如调制解调器,包括普通电话级调制解调器、电缆调制解调器和DSL调制解调器、ISDN适配器和以太网卡。
图26是本公开主题可以与之交互的示例性计算环境2600的示意性方框图。示例性计算环境2600包括一个或多个客户端2602。客户端2602可以是硬件和/或软件(例如,线程、进程、计算装置)。示例性计算环境2600还包括一个或多个服务器2604。服务器2604还可以是硬件和/或软件(例如,线程、进程、计算装置)。例如,服务器2604可以容纳线程以通过采用本说明书中所述的一个或多个实施例来执行转换。客户端2602与服务器2604之间的一种可能通信可以是适于在两个或更多个计算机进程之间传输的数据包的形式。示例性计算环境2600包括可以用于促进客户端2602于服务器2604之间的通信的通信框架2606。一个或多个客户端2602可操作地连接到一个或多个客户端数据存储器2608,所述客户端数据存储器可以用于存储客户端2602本地的信息。类似地,服务器2604可操作地连接到一个或多个服务器数据存储器2610,所述服务器数据存储器可以用于存储服务器2604本地的信息。
以上对本发明的图示实施例的描述,包括摘要中所述的实施例,并不意图彻底穷举或者将所公开的实施例限于所公开的准确形式。尽管本说明书出于说明目的而描述了具体实施例和示例,但是相关领域的技术人员应认识到,可能存在位于所述实施例和示例范围内的各种修改。
就这点而言,尽已经结合各种实施例和对应附图在适用的情况下对本公开主题进行描述,但是应理解,可以使用其他类似实施例,或者可以对所描述的实施例进行修改和附加以执行本公开主题的相同、相似、替代或替换功能,而不背离本公开主题。因此,本公开主题不应限于本说明书中所述的任何单个实施例,而是应根据所附权利要求书的宽度和范围进行解释。
另外,术语“或”旨在表示包含性“或”,而不是排他性“或”。也就是说,除非另作规定,或者从上下文中能够清楚确定,否则“X使用A或B”意在表示任何自然的包含性排列。也就是说,如果X使用A;X雇用B;或者X同时使用A和B,则在上述任何情况下都满足“X使用A或B”。而且,除非另作规定,或从上下文中能够清楚地断定是指单数形式,否则本说明书和附图中所用的冠词“一”和“一个”通常应解释成表示“一个或多个”。
上文描述内容中说明本公开主题的系统和方法示例。当然,本文不可能对每一种部件或方法组合进行描述。所述领域中的普通技术人员可以认识到,要求权利保护的主题可能存在许多进一步组合和排列。此外,具体实施例方式、权利要求书、附件和附图中所用的术语“包含”、“具有”、“拥有”等旨在以与术语“包括”在权利要求书中用作过渡词时的解释类似的方式视作包含性的。
Claims (10)
1.一种调配优化方法,包括:
通过包括至少一个处理器的系统接收一个或多个发电资产的操作曲线数据,所述操作曲线数据限定寿命周期的相应时间单元的一个或多个操作变量的值;
通过所述系统并且针对所述寿命周期相应时间单元中与第一操作模式相对应的第一子集,基于所述一个或多个发电资产的所述操作曲线数据和零部件寿命模型数据确定相对于所述目标寿命的零部件寿命贷记量,所述第一操作模式生成相对于目标寿命的零部件寿命贷记;
通过所述系统并且针对所述寿命周期的所述相应时间单元中与第二操作模式相对应的第二子集,基于所述操作曲线数据和所述零部件寿命模型数据确定相对于所述目标寿命的零部件寿命消耗量,所述第二操作模式消耗相对于所述目标寿命的所述零部件寿命贷记;
通过所述系统,基于所述零部件寿命贷记量与所述零部件寿命消耗量之间的净值确定所述寿命周期当前时间的零部件寿命库存量;
通过所述系统将所述零部件寿命库存量转换成能够由所述第二操作模式在所述寿命周期中生成、而不违反所述目标寿命的可用电力输出量;以及
通过所述系统将所述可用功率输出量呈现在界面显示器上。
2.根据权利要求1所述的方法,进一步包括:
通过所述系统确定寿命价格值,所述寿命价格值表示所述一个或多个发电资产的每单位零部件寿命库存的成本,其中所述寿命价格值是非矢量值或矢量值中的一者;
通过所述系统,基于所述寿命价格值确定出售所述可用电力输出将产生利润的最低电价;以及
通过所述系统将所述最低电价呈现在所述界面显示器或其他界面显示器上。
3.根据权利要求2所述的方法,进一步包括:
通过所述系统,基于所述最低电价和预测电价数据确定所述寿命周期中建议采用所述第二操作模式的一个或多个时间单元;以及
通过所述系统将建议采用所述第二操作模式的所述一个或多个时间单元呈现在所述界面显示器或其他界面显示器上。
4.根据权利要求1所述的方法,进一步包括通过所述系统在所述界面显示器或其他界面显示器上绘制所述可用功率输出量随时间推移的累计值。
5.根据权利要求1所述的方法,进一步包括:
通过所述系统确定寿命价格值,所述寿命价格值表示所述一个或多个发电资产的每单位零部件寿命库存的成本;
通过所述系统,基于所述寿命价格值、预测电价数据、预测燃料价格数据、对所述一个或多个发电资产的燃料消耗进行建模的性能模型数据以及对所述一个或多个发电资产的零部件寿命消耗进行建模的零部件寿命模型数据,识别所述寿命周期中建议采用所述第一操作模式的一个或多个时间单元;以及
通过所述系统将建议采用所述第一操作模式的所述一个或多个时间单元呈现在所述界面显示器或其他界面显示器上。
6.根据权利要求5所述的方法,其中识别建议采用所述第一操作模式的所述一个或多个时间单元包括针对所述寿命周期的相应时间单元,确定最大化或大体上最大化以下项的所述一个或多个发电资产的操作温度T:
电价*MW–燃料价格*FuelUsed(MW,T,Amb)–λ*FHH_消耗(MW,T,Amb);
其中
电价是所述时间单元的预测的或实际的电力价格,
MW是所述时间单元的预测的或实际的功率输出值,
燃料价格是所述时间单元的预测的或实际的燃料价格,
Amb是所述时间单元的一个或多个环境条件的一个或多个值,
FuelUsed(MW,T,Amb)是所述时间单元的预测燃料消耗量,是MW、T和Amb的函数,
λ是所述寿命价格值,以及
FHH_消耗(MW,T,Amb)是所述时间单元的预测零部件寿命产生量或消耗量,是MW、T和Amb的函数。
7.根据权利要求6所述的方法,进一步包括通过所述系统,依据针对所述相应时间单元确定的所述操作温度T的值来控制所述一个或多个发电资产的操作。
8.根据权利要求6所述的方法,进一步包括:
通过所述系统,基于所述一个或多个装置资产在所述寿命周期的过去时间单元的历史操作数据、所述寿命周期的剩余时间单元的预测电价数据和燃气成本数据,以及所述寿命周期的所述剩余时间单元的预测环境数据来定期更新所述寿命价格值,以得到更新的寿命价格值;以及
通过所述系统并且针对所述相应时间单元,基于所述更新的寿命价格值在所述寿命周期的一天中多次更新所述操作温度T。
9.一种调配优化系统,包括:
存储器,所述存储器存储可执行部件;
处理器,所述处理器操作性地连接到所述存储器,所述处理器执行所述可执行部件,所述可执行部件包括:
曲线生成部件,所述曲线生成部件配置成产生所述一个或多个发电资产的操作曲线数据,其中所述操作曲线数据包括在维护间隔的相应时间单元中的一个或多个操作变量的值;
零部件寿命度量部件,所述零部件寿命度量部件配置成:
针对所述维护间隔的所述相应时间单元中与第一操作模式相对应的第一子集,确定由所述第一操作模式产生的零部件寿命贷记量,所述第一操作模式基于所述一个或多个发电资产的所述操作曲线数据和零部件寿命模型数据生成相对于目标寿命的零部件寿命贷记,其中所述零部件寿命贷记表示由消耗所述零部件寿命贷记的第二操作模式在所述维护间隔期间消耗、而不违反相对于目标寿命的约束的零部件寿命量,
针对所述维护间隔的所述相应时间单元中与所述第二操作模式相对应的第二子集,基于所述操作曲线数据和所述零部件寿命模型数据,确定由所述第二操作模式生成的零部件寿命借记数,其中所述零部件寿命借记表示要由所述第一操作模式在所述维护间隔期间补偿以免违反相对于所述目标寿命的所述约束的零部件寿命额,
基于所述零部件寿命贷记量与所述零部件寿命借记数之间的差额确定所述维护间隔的当前时间的零部件寿命库存量,以及
将所述零部件寿命库存量转换成在所述维护间隔期间可用于所述第二操作模式、而不违反相对于所述目标寿命的所述约束的功率输出库存量;以及
用户界面部件,所述用户界面部件配置成将可用于所述第二操作模式的所述功率输出库存量呈现在界面显示器上。
10.一种非暂态计算机可读介质,所述非暂态计算机可读介质上存储有可执行指令,所述可执行指令响应于被执行而使包括至少一个处理器的系统执行操作,所述操作包括:
接收一个或多个发电资产的操作曲线数据,所述操作曲线数据限定维护间隔的相应时间单元的一个或多个操作变量的值;
针对所述维护间隔的所述相应时间单元中与第一操作模式相对应的第一子集,基于所述一个或多个发电资产的所述操作曲线数据和零部件寿命模型数据,确定相对于所述目标寿命的零部件寿命贷记量,所述第一操作模式贷记所述一个或多个发电资产相对于目标寿命的零部件寿命;
针对与相对于所述目标寿命消耗零部件寿命的第二操作模式相对应的所述维护间隔的所述相应时间单元的第二子集,基于所述操作曲线数据和所述零部件寿命模型数据,确定相对于所述目标寿命的零部件寿命消耗量;
基于所述零部件寿命贷记量与所述零部件寿命消耗量之间的净值确定所述维护间隔的当前时间的零部件寿命库存量;
依据所述零部件寿命库存量确定能够由所述第二操作模式在所述维护间隔的剩余期间生成、而不违反所述目标寿命的可用功率输出量;以及
将所述可用功率输出量显示在界面显示器上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/476124 | 2017-03-31 | ||
US15/476,124 US10452041B2 (en) | 2017-03-31 | 2017-03-31 | Gas turbine dispatch optimizer real-time command and operations |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108694271A true CN108694271A (zh) | 2018-10-23 |
CN108694271B CN108694271B (zh) | 2023-09-29 |
Family
ID=63524831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810289901.5A Active CN108694271B (zh) | 2017-03-31 | 2018-03-30 | 燃气涡轮机调配优化系统及方法及非暂态计算机可读介质 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10452041B2 (zh) |
JP (1) | JP7154794B2 (zh) |
CN (1) | CN108694271B (zh) |
DE (1) | DE102018106606A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111564873A (zh) * | 2020-05-29 | 2020-08-21 | 江苏方天电力技术有限公司 | 一种计及机组启停的集成气-电能源系统优化方法 |
CN113065733A (zh) * | 2020-12-15 | 2021-07-02 | 江苏苏星资产管理有限公司 | 一种基于人工智能的电气资产管理方法 |
CN117148798A (zh) * | 2023-09-01 | 2023-12-01 | 山东溯源安全科技有限公司 | 一种设备监控方法、装置、存储介质及电子设备 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3090944A1 (en) * | 2017-02-08 | 2018-08-16 | Upstream Data Inc. | Blockchain mine at oil or gas facility |
JP6788555B2 (ja) * | 2017-08-07 | 2020-11-25 | 株式会社東芝 | 情報処理システム、情報処理装置、及び情報処理方法 |
US11379935B2 (en) | 2017-08-25 | 2022-07-05 | Johnson Controls Tyco IP Holdings LLP | Central plant control system with equipment maintenance evaluation |
JP7359535B2 (ja) * | 2018-10-23 | 2023-10-11 | 三菱重工業株式会社 | 演算装置、システム、演算方法及びプログラム |
JP6682024B1 (ja) * | 2019-02-06 | 2020-04-15 | 三菱重工業株式会社 | 発電設備の評価装置、発電設備の評価システム、発電設備の評価方法、及びプログラム |
US11286855B2 (en) * | 2019-03-15 | 2022-03-29 | General Electric Company | Systems and methods for operating a turbine engine |
JP6682676B1 (ja) * | 2019-03-28 | 2020-04-15 | 三菱重工業株式会社 | 発電設備の運用支援装置 |
CA3139776A1 (en) | 2019-05-15 | 2020-11-19 | Upstream Data Inc. | Portable blockchain mining system and methods of use |
WO2021256539A1 (ja) * | 2020-06-17 | 2021-12-23 | 三菱パワー株式会社 | 寿命消費量推定装置 |
CN112288130B (zh) * | 2020-09-24 | 2023-09-05 | 国网内蒙古东部电力有限公司 | 一种基于两阶段多目标优化的新能源消纳计算方法 |
US11635060B2 (en) * | 2021-01-20 | 2023-04-25 | General Electric Company | System for operating a wind turbine using cumulative load histograms based on actual operation thereof |
GB2627221A (en) | 2023-02-15 | 2024-08-21 | Siemens Energy Global Gmbh & Co Kg | Methods and system for controlling a turbine engine |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002271982A (ja) * | 2001-03-14 | 2002-09-20 | Ennet Corp | 余剰電力管理システムおよびその制御方法 |
JP2003013744A (ja) * | 2001-06-29 | 2003-01-15 | Ebara Corp | ガスタービン制御装置、コージェネレーションシステム |
US20030055664A1 (en) * | 2001-04-04 | 2003-03-20 | Anil Suri | Method and system for the management of structured commodity transactions and trading of related financial products |
CN1573776A (zh) * | 2003-06-11 | 2005-02-02 | 株式会社东芝 | 发电设备运用管理支持系统、运用管理支持方法及程序 |
US20070285079A1 (en) * | 2006-03-10 | 2007-12-13 | Edsa Micro Corporation | Systems and methods for performing automatic real-time harmonics analyses for use in real-time power analytics of an electrical power distribution system |
US20080049013A1 (en) * | 2006-04-12 | 2008-02-28 | Edsa Micro Corporation | Systems and methods for real-time advanced visualization for predicting the health, reliability and performance of an electrical power system |
US20080262820A1 (en) * | 2006-07-19 | 2008-10-23 | Edsa Micro Corporation | Real-time predictive systems for intelligent energy monitoring and management of electrical power networks |
US20100100248A1 (en) * | 2005-09-06 | 2010-04-22 | General Electric Company | Methods and Systems for Neural Network Modeling of Turbine Components |
US20110037276A1 (en) * | 2008-03-05 | 2011-02-17 | Alstom Technology Ltd. | Method for controlling a gas turbine in a power station, and a power station for carrying out the method |
US20110054965A1 (en) * | 2009-08-27 | 2011-03-03 | Hitachi, Ltd. | Power Plant Life Cycle Costing System and Power Plant Life Cycle Costing Method |
CN102251859A (zh) * | 2010-05-17 | 2011-11-23 | 通用电气公司 | 用于增强功率产生设施的系统和方法 |
CN102748219A (zh) * | 2011-04-21 | 2012-10-24 | 霍尼韦尔国际公司 | 监测风力涡轮机的性能 |
CN103402809A (zh) * | 2011-01-13 | 2013-11-20 | 卡明斯公司 | 用于控制混合动力传动系中的功率输出分布的系统、方法和装置 |
US20150088576A1 (en) * | 2012-05-04 | 2015-03-26 | Viridity Energy, Inc. | Facilitating revenue generation from wholesale electricity markets based on a self-tuning energy asset model |
CN105939028A (zh) * | 2015-03-03 | 2016-09-14 | 通用电气公司 | 用于增强发电厂发电单元的控制的方法和系统 |
WO2017000955A1 (en) * | 2015-06-30 | 2017-01-05 | Vestas Wind Systems A/S | Wind turbine control based on forecasts |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5048285A (en) | 1990-03-26 | 1991-09-17 | Untied Technologies Corporation | Control system for gas turbine engines providing extended engine life |
WO1995025295A1 (en) | 1994-03-17 | 1995-09-21 | Dow Benelux N.V. | System for real time optimization and profit depiction |
US6591225B1 (en) | 2000-06-30 | 2003-07-08 | General Electric Company | System for evaluating performance of a combined-cycle power plant |
EP1217473A1 (en) | 2000-12-21 | 2002-06-26 | Abb Research Ltd. | Optimizing plant control values of a power plant |
US6853930B2 (en) * | 2001-02-27 | 2005-02-08 | Hitachi, Ltd. | System for aiding the preparation of operation and maintenance plans for a power generation installation |
US6804612B2 (en) | 2001-10-30 | 2004-10-12 | General Electric Company | Methods and systems for performing integrated analyzes, such as integrated analyzes for gas turbine power plants |
US6935120B2 (en) | 2002-05-09 | 2005-08-30 | General Electric Company | Approach to extending life of gas turbine engine |
US20040093298A1 (en) | 2002-11-07 | 2004-05-13 | Mcclure Robert E. | Method for providing energy commodities trade outsourcing services within the energy markets |
EP1513085A1 (en) * | 2003-09-08 | 2005-03-09 | Abb Research Ltd. | Method of scheduling maintenance actions |
US7203554B2 (en) | 2004-03-16 | 2007-04-10 | United Technologies Corporation | Model predictive controller with life extending control |
US7356383B2 (en) | 2005-02-10 | 2008-04-08 | General Electric Company | Methods and apparatus for optimizing combined cycle/combined process facilities |
US8327538B2 (en) | 2005-10-17 | 2012-12-11 | General Electric Company | Methods to facilitate extending gas turbine engine useful life |
US7822577B2 (en) | 2007-08-15 | 2010-10-26 | General Electric Company | Methods and systems to develop an experience-based probabilistic lifing process |
US8639392B2 (en) * | 2008-09-29 | 2014-01-28 | Battelle Memorial Institute | Electric power grid control using a market-based resource allocation system |
US9159108B2 (en) | 2009-10-23 | 2015-10-13 | Viridity Energy, Inc. | Facilitating revenue generation from wholesale electricity markets |
US8892264B2 (en) | 2009-10-23 | 2014-11-18 | Viridity Energy, Inc. | Methods, apparatus and systems for managing energy assets |
US9159042B2 (en) | 2009-10-23 | 2015-10-13 | Viridity Energy, Inc. | Facilitating revenue generation from data shifting by data centers |
US9367825B2 (en) | 2009-10-23 | 2016-06-14 | Viridity Energy, Inc. | Facilitating revenue generation from wholesale electricity markets based on a self-tuning energy asset model |
US20110106747A1 (en) | 2009-10-30 | 2011-05-05 | General Electric Company | Turbine life assessment and inspection system and methods |
CN102782318B (zh) * | 2010-02-05 | 2016-04-27 | 维斯塔斯风力系统集团公司 | 运行风力发电站的方法 |
US20120083933A1 (en) | 2010-09-30 | 2012-04-05 | General Electric Company | Method and system to predict power plant performance |
US8755916B2 (en) | 2010-12-07 | 2014-06-17 | Alstom Technology Ltd. | Optimized integrated controls for oxy-fuel combustion power plant |
US20120283963A1 (en) | 2011-05-05 | 2012-11-08 | Mitchell David J | Method for predicting a remaining useful life of an engine and components thereof |
US9080765B2 (en) | 2011-08-22 | 2015-07-14 | General Electric Company | Systems and methods for heat recovery steam generation optimization |
US8457800B2 (en) | 2012-01-19 | 2013-06-04 | General Compression, Inc. | System and method for conserving energy resources through storage and delivery of renewable energy |
US9411326B2 (en) | 2012-08-21 | 2016-08-09 | General Electric Company | Plant control optimization system including visual risk display |
US9280617B2 (en) | 2012-11-06 | 2016-03-08 | General Electric Company | Systems and methods for improved reliability operations |
US20140288855A1 (en) * | 2013-03-20 | 2014-09-25 | United Technologies Corporation | Temporary Uprating of Wind Turbines to Maximize Power Output |
US9171276B2 (en) | 2013-05-06 | 2015-10-27 | Viridity Energy, Inc. | Facilitating revenue generation from wholesale electricity markets using an engineering-based model |
US9098876B2 (en) | 2013-05-06 | 2015-08-04 | Viridity Energy, Inc. | Facilitating revenue generation from wholesale electricity markets based on a self-tuning energy asset model |
US10458342B2 (en) | 2013-09-17 | 2019-10-29 | General Electric Company | System and method for controlling operation of a gas turbine based power plant |
US9551633B2 (en) | 2013-10-15 | 2017-01-24 | General Electric Company | Systems and methods for improved reliability operations |
US9822762B2 (en) * | 2013-12-12 | 2017-11-21 | General Electric Company | System and method for operating a wind turbine |
US9404426B2 (en) | 2013-12-31 | 2016-08-02 | General Electric Company | Methods and systems for enhancing control of power plant generating units |
US20150184549A1 (en) | 2013-12-31 | 2015-07-02 | General Electric Company | Methods and systems for enhancing control of power plant generating units |
US9957843B2 (en) | 2013-12-31 | 2018-05-01 | General Electric Company | Methods and systems for enhancing control of power plant generating units |
EP3117095B1 (en) * | 2014-03-13 | 2020-08-12 | Vestas Wind Systems A/S | Control of a group of wind turbines |
US10018972B2 (en) | 2014-06-10 | 2018-07-10 | General Electric Company | Economic optimization of power generation system with alternative operating modes |
US10626748B2 (en) | 2014-12-08 | 2020-04-21 | General Electric Company | System and method for predicting and managing life consumption of gas turbine parts |
US9926852B2 (en) | 2015-03-03 | 2018-03-27 | General Electric Company | Methods and systems for enhancing control of power plant generating units |
US9960598B2 (en) | 2015-03-03 | 2018-05-01 | General Electric Company | Methods and systems for enhancing control of power plant generating units |
US10287988B2 (en) * | 2015-03-27 | 2019-05-14 | General Electric Company | Methods and systems for enhancing operation of power plant generating units and systems |
DK201570559A1 (en) * | 2015-08-28 | 2017-03-27 | Vestas Wind Sys As | Methods and Systems for Generating Wind Turbine Control Schedules |
US11221604B2 (en) * | 2016-03-30 | 2022-01-11 | Intel Corporaion | Split structure design for an internet of things device |
-
2017
- 2017-03-31 US US15/476,124 patent/US10452041B2/en active Active
-
2018
- 2018-03-21 DE DE102018106606.6A patent/DE102018106606A1/de active Pending
- 2018-03-29 JP JP2018063951A patent/JP7154794B2/ja active Active
- 2018-03-30 CN CN201810289901.5A patent/CN108694271B/zh active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002271982A (ja) * | 2001-03-14 | 2002-09-20 | Ennet Corp | 余剰電力管理システムおよびその制御方法 |
US20030055664A1 (en) * | 2001-04-04 | 2003-03-20 | Anil Suri | Method and system for the management of structured commodity transactions and trading of related financial products |
JP2003013744A (ja) * | 2001-06-29 | 2003-01-15 | Ebara Corp | ガスタービン制御装置、コージェネレーションシステム |
CN1573776A (zh) * | 2003-06-11 | 2005-02-02 | 株式会社东芝 | 发电设备运用管理支持系统、运用管理支持方法及程序 |
US20100100248A1 (en) * | 2005-09-06 | 2010-04-22 | General Electric Company | Methods and Systems for Neural Network Modeling of Turbine Components |
US20070285079A1 (en) * | 2006-03-10 | 2007-12-13 | Edsa Micro Corporation | Systems and methods for performing automatic real-time harmonics analyses for use in real-time power analytics of an electrical power distribution system |
US20080049013A1 (en) * | 2006-04-12 | 2008-02-28 | Edsa Micro Corporation | Systems and methods for real-time advanced visualization for predicting the health, reliability and performance of an electrical power system |
US20080262820A1 (en) * | 2006-07-19 | 2008-10-23 | Edsa Micro Corporation | Real-time predictive systems for intelligent energy monitoring and management of electrical power networks |
US20110037276A1 (en) * | 2008-03-05 | 2011-02-17 | Alstom Technology Ltd. | Method for controlling a gas turbine in a power station, and a power station for carrying out the method |
US20110054965A1 (en) * | 2009-08-27 | 2011-03-03 | Hitachi, Ltd. | Power Plant Life Cycle Costing System and Power Plant Life Cycle Costing Method |
CN102251859A (zh) * | 2010-05-17 | 2011-11-23 | 通用电气公司 | 用于增强功率产生设施的系统和方法 |
CN103402809A (zh) * | 2011-01-13 | 2013-11-20 | 卡明斯公司 | 用于控制混合动力传动系中的功率输出分布的系统、方法和装置 |
CN102748219A (zh) * | 2011-04-21 | 2012-10-24 | 霍尼韦尔国际公司 | 监测风力涡轮机的性能 |
US20150088576A1 (en) * | 2012-05-04 | 2015-03-26 | Viridity Energy, Inc. | Facilitating revenue generation from wholesale electricity markets based on a self-tuning energy asset model |
CN105939028A (zh) * | 2015-03-03 | 2016-09-14 | 通用电气公司 | 用于增强发电厂发电单元的控制的方法和系统 |
WO2017000955A1 (en) * | 2015-06-30 | 2017-01-05 | Vestas Wind Systems A/S | Wind turbine control based on forecasts |
Non-Patent Citations (1)
Title |
---|
艾欣;周树鹏;赵阅群;唐亮;: "基于机会约束规划的直接负荷控制及可中断负荷联合优化调度研究" * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111564873A (zh) * | 2020-05-29 | 2020-08-21 | 江苏方天电力技术有限公司 | 一种计及机组启停的集成气-电能源系统优化方法 |
CN111564873B (zh) * | 2020-05-29 | 2021-10-19 | 江苏方天电力技术有限公司 | 一种计及机组启停的集成气-电能源系统优化方法 |
CN113065733A (zh) * | 2020-12-15 | 2021-07-02 | 江苏苏星资产管理有限公司 | 一种基于人工智能的电气资产管理方法 |
CN113065733B (zh) * | 2020-12-15 | 2024-04-30 | 江苏苏星资产管理有限公司 | 一种基于人工智能的电气资产管理方法 |
CN117148798A (zh) * | 2023-09-01 | 2023-12-01 | 山东溯源安全科技有限公司 | 一种设备监控方法、装置、存储介质及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
DE102018106606A1 (de) | 2018-10-04 |
US10452041B2 (en) | 2019-10-22 |
JP7154794B2 (ja) | 2022-10-18 |
JP2018200682A (ja) | 2018-12-20 |
US20180284707A1 (en) | 2018-10-04 |
CN108694271B (zh) | 2023-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108694271A (zh) | 燃气涡轮机调配优化系统及方法及非暂态计算机可读介质 | |
EP3065008B1 (en) | Methods and systems for enhancing control of power plant generating units | |
Motamedi et al. | A transmission planning framework considering future generation expansions in electricity markets | |
EP3026510B1 (en) | Methods and systems for enhancing control of power plant generating units | |
Li et al. | Risk-constrained bidding strategy with stochastic unit commitment | |
US9926852B2 (en) | Methods and systems for enhancing control of power plant generating units | |
US9957843B2 (en) | Methods and systems for enhancing control of power plant generating units | |
Delarue et al. | Effect of the accuracy of price forecasting on profit in a price based unit commitment | |
EP3611688A1 (en) | Transaction planning device and transaction planning method | |
US20160231716A1 (en) | System of systems optimizing control for achieving performance and risk outcomes in physical and business operations of connected and interrelated industrial systems | |
US20160261115A1 (en) | Methods and systems for enhancing control of power plant generating units | |
Hesarsorkh et al. | Pharmaceutical R&D project portfolio selection and scheduling under uncertainty: A robust possibilistic optimization approach | |
Lu et al. | A hybrid deep learning-based online energy management scheme for industrial microgrid | |
CA2994410A1 (en) | Methods for constructing an economically viable microgrid | |
Nojavan et al. | Risk-based optimal bidding strategy of generation company in day-ahead electricity market using information gap decision theory | |
US11468524B2 (en) | Reducing the cost of electrical energy in a manufacturing plant | |
Sarıca et al. | Modeling and analysis of a decentralized electricity market: An integrated simulation/optimization approach | |
Stetter et al. | Competitive and risk-adequate auction bids for onshore wind projects in Germany | |
Ahmadi et al. | A novel two-stage stochastic programming model for uncertainty characterization in short-term optimal strategy for a distribution company | |
Seo et al. | Strategies for electric vehicle bidding in the German frequency containment and restoration reserves market | |
JP4722794B2 (ja) | 電気事業損益分析システム | |
JP7101403B2 (ja) | 電力取引支援装置及び電力取引支援方法 | |
JP2022090134A (ja) | 管理装置および管理方法 | |
Stauff et al. | Daily Market Analysis of Load Following and Storage Impact | |
Stange et al. | Operational optimization of energy systems, 25 years–established and promising use cases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231228 Address after: Swiss Baden Patentee after: GENERAL ELECTRIC CO. LTD. Address before: New York State, USA Patentee before: General Electric Co. |
|
TR01 | Transfer of patent right |