CN108693523A - 基于锯齿波线性调频雷达多目标测距测速的方法及系统 - Google Patents

基于锯齿波线性调频雷达多目标测距测速的方法及系统 Download PDF

Info

Publication number
CN108693523A
CN108693523A CN201711278914.4A CN201711278914A CN108693523A CN 108693523 A CN108693523 A CN 108693523A CN 201711278914 A CN201711278914 A CN 201711278914A CN 108693523 A CN108693523 A CN 108693523A
Authority
CN
China
Prior art keywords
dimension
sawtooth wave
time dimension
frequency point
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711278914.4A
Other languages
English (en)
Inventor
黄磊
顾逸
周汉飞
张沛昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201711278914.4A priority Critical patent/CN108693523A/zh
Publication of CN108693523A publication Critical patent/CN108693523A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明涉及基于锯齿波线性调频雷达多目标测距测速的方法及系统,该方法包括获取多周期锯齿波差拍信号以及新矩阵;对每一周期锯齿波差拍信号的快时间维进行FFT变换;对新矩阵每一列的慢时间维进行FFT变换;对FFT变换后的快时间维以及慢时间维进行CFAR二维恒虚警检测,形成目标频谱;获取目标频谱的峰值点对应的距离维频点和速度维频点;对距离维频点和速度维频点进行去耦合处理,获取真实距离以及真实速度值。本发明实现能够较好的消除距离速度耦合的问题,使测得的距离值更加接近真实距离值;且计算量小,引入了负向速度进行目标分析,更加贴近实际道路的目标环境。

Description

基于锯齿波线性调频雷达多目标测距测速的方法及系统
技术领域
本发明涉及雷达技术领域,更具体地说是指基于锯齿波线性调频雷达多目标测距测速的方法及系统。
背景技术
连续波雷达是一种以连续波信号为发射信号来获得目标的距离或者速度信息的雷达体制,这种雷达技术有着悠久的历史。而今连续波雷达越来越受到重视和发展。线性调频连续波雷达具有许多其他雷达不具备的优点,如无距离盲区、距离分辨力高、辐射功率小、波形截获概率低等。
若采用单周期锯齿波很难测得准确的距离值,而采用多周期锯齿波,将每一周期的回波信号进行二维傅里叶变换,就可以将快时间维和慢时间维分离开,从而可以测距和测速;但是由于快时间维距离、速度信息往往是耦合在一起的,导致使测得的距离值无法更加接近真实距离值;多周期锯齿波是通过多个周期的累积可以实现目标的相参积累,将微弱的雷达回波信号有效放大,但同样存在计算量大的缺点。
因此,有必要设计一种基于锯齿波线性调频雷达多目标测距测速的方法,实现能够较好的消除距离速度耦合的问题,使测得的距离值更加接近真实距离值;且计算量小。
发明内容
本发明的目的在于克服现有技术的缺陷,提供基于锯齿波线性调频雷达多目标测距测速的方法及系统。
为实现上述目的,本发明采用以下技术方案:基于锯齿波线性调频雷达多目标测距测速的方法,所述方法包括:
获取多周期锯齿波差拍信号以及新矩阵;
对每一周期锯齿波差拍信号的快时间维进行FFT变换;
对新矩阵每一列的慢时间维进行FFT变换;
对FFT变换后的快时间维以及慢时间维进行CFAR二维恒虚警检测,形成目标频谱;
获取目标频谱的峰值点对应的距离维频点和速度维频点;
对距离维频点和速度维频点进行去耦合处理,获取真实距离以及真实速度值。
其进一步技术方案为:获取多周期锯齿波差拍信号以及新矩阵的步骤,包括以下具体步骤:
获取中频信号以及原始矩阵;
根据中频信号进行频率处理,获取多周期锯齿波差拍信号;
将多周期锯齿波差拍信号存入原始矩阵,形成新矩阵。
其进一步技术方案为:对每一周期锯齿波差拍信号的快时间维进行FFT变换的步骤之后,还包括:
将后一周期锯齿波差拍信号快时间维的变换值减去前一周期锯齿波差拍信号快时间维的变换值。
其进一步技术方案为:对距离维频点和速度维频点进行去耦合处理,获取真实距离以及真实速度值的步骤,包括以下具体步骤:
将快时间维进行CFAR二维恒虚警检测所得到的目标频谱减去多普勒频率,形成中间距离值;
对中间距离值以及速度维频点进行筛选和处理,获取真实距离以及真实速度值。
本发明还提供了基于锯齿波线性调频雷达多目标测距测速的系统,包括信号获取单元、快时间维变换单元、慢时间维变换单元、检测单元、频点获取单元以及去耦合单元;
所述信号获取单元,用于获取多周期锯齿波差拍信号以及新矩阵;
所述快时间维变换单元,用于对每一周期锯齿波差拍信号的快时间维进行FFT变换;
所述慢时间维变换单元,用于对新矩阵每一列的慢时间维进行FFT变换;
所述检测单元,用于对FFT变换后的快时间维以及慢时间维进行CFAR二维恒虚警检测,形成目标频谱;
所述频点获取单元,用于获取目标频谱的峰值点对应的距离维频点和速度维频点;
所述去耦合单元,用于对距离维频点和速度维频点进行去耦合处理,获取真实距离以及真实速度值。
其进一步技术方案为:所述信号获取单元包括获取模块、频率处理模块以及存入模块;
所述获取模块,用于获取中频信号以及原始矩阵;
所述频率处理模块,用于根据中频信号进行频率处理,获取多周期锯齿波差拍信号;
所述存入模块,用于将多周期锯齿波差拍信号存入原始矩阵,形成新矩阵。
其进一步技术方案为:所述系统还包括运算单元;
所述运算单元,用于将后一周期锯齿波差拍信号快时间维的变换值减去前一周期锯齿波差拍信号快时间维的变换值。
其进一步技术方案为:所述去耦合单元包括频谱处理模块以及筛选模块;
所述频谱处理模块,用于快时间维进行CFAR二维恒虚警检测所得到的目标频谱减去多普勒频率,形成中间距离值;
所述筛选模块,用于对中间距离值以及速度维频点进行筛选和处理,获取真实距离以及真实速度值。
本发明与现有技术相比的有益效果是:本发明的基于锯齿波线性调频雷达多目标测距测速的方法,通过将多周期锯齿波雷达信号的回波信号存入矩阵中,进行快时间维进行FFT变换以及慢时间维进行FFT变换,慢时间维进行FFT变换后进行二维恒虚警处理使目标进一步简化,搜索峰值后测得目标的距离频点和速度频点并进行距离、速度去耦合,实现能够较好的消除距离速度耦合的问题,使测得的距离值更加接近真实距离值;且计算量小,另外,引入了负向速度进行目标分析,更加贴近实际道路的目标环境。
下面结合附图和具体实施例对本发明作进一步描述。
附图说明
图1为本发明具体实施例提供的基于锯齿波线性调频雷达多目标测距测速的方法的流程图;
图2为本发明具体实施例提供的发射信号与回波信号示意图;
图3为本发明具体实施例提供的五个目标在-10dB噪声下的快时间维进行FFT变换后的差拍信号的频谱图;
图4为本发明具体实施例提供的五个目标在-10dB噪声下的慢时间维进行FFT变换的二维示意图;
图5为本发明具体实施例提供的五个目标在-10dB噪声下的慢时间维进行FFT变换的三维示意图;
图6为本发明具体实施例提供的五个目标在-10dB噪声下的快时间维FFT变换后进行CFAR的二维示意图;
图7为本发明具体实施例提供的五个目标在-10dB噪声下的快时间维FFT变换后进行CFAR的三维示意图;
图8为本发明具体实施例提供的五个目标对距离维频点和速度维频点进行去耦合处理后的真实距离以及真实速度值的示意图;
图9为本发明具体实施例提供的基于锯齿波线性调频雷达多目标测距测速的系统的结构框图。
具体实施方式
为了更充分理解本发明的技术内容,下面结合具体实施例对本发明的技术方案进一步介绍和说明,但不局限于此。
如图1~9所示的具体实施例,本实施例提供的基于锯齿波线性调频雷达多目标测距测速的方法,可以运用在汽车防碰撞的过程中,实现能够较好的消除距离速度耦合的问题,使测得的距离值更加接近真实距离值;且计算量小。
如图1所示,本实施例提供了基于锯齿波线性调频雷达多目标测距测速的方法,该方法包括:
S1、获取多周期锯齿波差拍信号以及新矩阵;
S2、对每一周期锯齿波差拍信号的快时间维进行FFT变换;
S3、将后一周期锯齿波差拍信号快时间维的变换值减去前一周期锯齿波差拍信号快时间维的变换值。
S4、对新矩阵每一列的慢时间维进行FFT变换;
S5、对FFT变换后的快时间维以及慢时间维进行CFAR二维恒虚警检测,形成目标频谱;
S6、获取目标频谱的峰值点对应的距离维频点和速度维频点;
S7、对距离维频点和速度维频点进行去耦合处理,获取真实距离以及真实速度值。
在某些实施例中,对于上述的S1步骤,获取多周期锯齿波差拍信号以及新矩阵的步骤,包括以下具体步骤:
S11、获取中频信号以及原始矩阵;
S12、根据中频信号进行频率处理,获取多周期锯齿波差拍信号;
S13、将多周期锯齿波差拍信号存入原始矩阵,形成新矩阵。
中频信号为发射信号与接收信号进行混频得到差拍信号;其中,如图2所示,雷达发射信号采用多周期线性调频锯齿波,分别接收到多个周期的雷达回波与发射信号做混频后得到中频段的差拍信号,将每一周期的差拍信号依次存入矩阵的每一行,采用改进的雷达信号处理方法进行目标的距离、速度解算,能够较好的消除距离速度耦合的问题,使测得的距离值更加接近真实距离值;并引入负向速度进行目标分析,更加贴近真实的道路环境。
对于上述的S2步骤以及S3步骤,目的在于消除静止目标或静止杂波,使测得的距离更加准确。
对于上述的S4步骤,可以弥补快时间维进行FFT变换(即MT I)后目标对消后能量的降低,同时起到相参积累抑制杂波的效果,并且可以测得多普勒频率,以便进行速度测取。
对于上述的S5步骤,由于慢时间维进行FFT变换(即MTD)后能有效抑制杂波,但还是存在杂波的干扰,需要进行CFAR恒虚警检测,使目标进一步简化;采用二维恒虚警检测,对快时间维和慢时间维都进行CFAR,大大简化目标,方便后续的峰值搜索以及距离、速度去耦合。
对于上述的S6步骤,具体是对简化后的目标频谱进行峰值搜索,搜索出峰值点对应的距离维频点和速度维频点。
更进一步地,在某些实施例中,上述的S7步骤,对距离维频点和速度维频点进行去耦合处理,获取真实距离以及真实速度值的步骤,包括以下具体步骤:
S71、将快时间维进行CFAR二维恒虚警检测所得到的目标频谱减去多普勒频率,形成中间距离值;
S72、对中间距离值以及速度维频点进行筛选和处理,获取真实距离以及真实速度值。
由于快时间维FTT变换后进行CFAR二维恒虚警检测所得到的目标频谱所得的频率不仅有距离信息,还耦合了速度信息,所以需要将快时间维所得到的频率减去多普勒频率,这样测得的距离值才更接近于真实距离值;得到真实的距离、速度值,对数据进一步筛选和处理。
举一个例子:目标一的距离为100m,速度为5m/s;目标二的距离为200m,速度为-4m/s;目标三的距离为300m,速度为0m/s;目标四的距离为400m,速度为12m/s;目标五的距离为500m,速度为-10m/s。对这五个目标在-10dB噪声下的快时间维进行FFT变换后的差拍信号的频谱图如图3所示;对这五个目标在-10dB噪声下的在-10dB噪声下的慢时间维进行FFT变换的示意图如图4以及图5所示;对五个目标在-10dB噪声下的快时间维FFT变换后进行CFAR,获取如图6所示和图7所示的示意图;并针对图7获取峰值;图8为五个目标对距离维频点和速度维频点进行去耦合处理后的真实距离以及真实速度值的示意图;从图8可以获取到目标一的距离为99.8906m,速度为4.9219m/s;目标二的距离为199.2188m,速度为-3.9844m/s,目标三的距离为300m,速度为0m/s,目标四的距离为399.7734m,速度为11.9531m/s,目标五的距离为499.2422m,速度为-10.0781m/s。引入了负向速度进行目标分析,更加贴近实际道路的目标环境。
上述的基于锯齿波线性调频雷达多目标测距测速的方法,通过将多周期锯齿波雷达信号的回波信号存入矩阵中,进行快时间维进行FFT变换以及慢时间维进行FFT变换,慢时间维进行FFT变换后进行二维恒虚警处理使目标进一步简化,搜索峰值后测得目标的距离频点和速度频点并进行距离、速度去耦合,实现能够较好的消除距离速度耦合的问题,使测得的距离值更加接近真实距离值;且计算量小,另外,引入了负向速度进行目标分析,更加贴近实际道路的目标环境。
如图9所示,本实施例还提供了基于锯齿波线性调频雷达多目标测距测速的系统,其包括信号获取单元1、快时间维变换单元2、慢时间维变换单元4、检测单元5、频点获取单元6以及去耦合单元7。
信号获取单元1,用于获取多周期锯齿波差拍信号以及新矩阵。
快时间维变换单元2,用于对每一周期锯齿波差拍信号的快时间维进行FFT变换。
慢时间维变换单元4,用于对新矩阵每一列的慢时间维进行FFT变换。
检测单元5,用于对FFT变换后的快时间维以及慢时间维进行CFAR二维恒虚警检测,形成目标频谱。
频点获取单元6,用于获取目标频谱的峰值点对应的距离维频点和速度维频点。
去耦合单元7,用于对距离维频点和速度维频点进行去耦合处理,获取真实距离以及真实速度值。
在某些实施例中,上述的信号获取单元1包括获取模块、频率处理模块以及存入模块。
获取模块,用于获取中频信号以及原始矩阵。
频率处理模块,用于根据中频信号进行频率处理,获取多周期锯齿波差拍信号。
存入模块,用于将多周期锯齿波差拍信号存入原始矩阵,形成新矩阵。
中频信号为发射信号与接收信号进行混频得到差拍信号;其中,如图2所示,雷达发射信号采用多周期线性调频锯齿波,分别接收到多个周期的雷达回波与发射信号做混频后得到中频段的差拍信号,将每一周期的差拍信号依次存入矩阵的每一行,采用改进的雷达信号处理方法进行目标的距离、速度解算,能够较好的消除距离速度耦合的问题,使测得的距离值更加接近真实距离值;并引入负向速度进行目标分析,更加贴近真实的道路环境。
另外,在某些实施例中,上述的所述系统还包括运算单元3。
运算单元3,用于将后一周期锯齿波差拍信号快时间维的变换值减去前一周期锯齿波差拍信号快时间维的变换值。
快时间维变换单元2以及运算单元3的目的在于消除静止目标或静止杂波,使测得的距离更加准确。
慢时间维变换单元4可以弥补快时间维进行FFT变换(即MT I)后目标对消后能量的降低,同时起到相参积累抑制杂波的效果,并且可以测得多普勒频率,以便进行速度测取。
对于上述的检测单元5,由于慢时间维进行FFT变换(即MTD)后能有效抑制杂波,但还是存在杂波的干扰,需要进行CFAR恒虚警检测,使目标进一步简化;采用二维恒虚警检测,对快时间维和慢时间维都进行CFAR,大大简化目标,方便后续的峰值搜索以及距离、速度去耦合。
对于上述的频点获取单元6而言,具体是对简化后的目标频谱进行峰值搜索,搜索出峰值点对应的距离维频点和速度维频点。
更进一步地,在某些实施例中,上述的去耦合单元7包括频谱处理模块以及筛选模块。
频谱处理模块,用于快时间维进行CFAR二维恒虚警检测所得到的目标频谱减去多普勒频率,形成中间距离值。
筛选模块,用于对中间距离值以及速度维频点进行筛选和处理,获取真实距离以及真实速度值。
由于快时间维FTT变换后进行CFAR二维恒虚警检测所得到的目标频谱所得的频率不仅有距离信息,还耦合了速度信息,所以需要将快时间维所得到的频率减去多普勒频率,这样测得的距离值才更接近于真实距离值;得到真实的距离、速度值,对数据进一步筛选和处理。
举一个例子:目标一的距离为100m,速度为5m/s;目标二的距离为200m,速度为-4m/s;目标三的距离为300m,速度为0m/s;目标四的距离为400m,速度为12m/s;目标五的距离为500m,速度为-10m/s。对这五个目标在-10dB噪声下的快时间维进行FFT变换后的差拍信号的频谱图如图3所示;对这五个目标在-10dB噪声下的在-10dB噪声下的慢时间维进行FFT变换的示意图如图4以及图5所示;对五个目标在-10dB噪声下的快时间维FFT变换后进行CFAR,获取如图6所示和图7所示的示意图;并针对图7获取峰值;图8为五个目标对距离维频点和速度维频点进行去耦合处理后的真实距离以及真实速度值的示意图;从图8可以获取到目标一的距离为99.8906m,速度为4.9219m/s;目标二的距离为199.2188m,速度为-3.9844m/s,目标三的距离为300m,速度为0m/s,目标四的距离为399.7734m,速度为11.9531m/s,目标五的距离为499.2422m,速度为-10.0781m/s。引入了负向速度进行目标分析,更加贴近实际道路的目标环境。
上述的基于锯齿波线性调频雷达多目标测距测速的系统,通过将多周期锯齿波雷达信号的回波信号存入矩阵中,进行快时间维进行FFT变换以及慢时间维进行FFT变换,慢时间维进行FFT变换后进行二维恒虚警处理使目标进一步简化,搜索峰值后测得目标的距离频点和速度频点并进行距离、速度去耦合,实现能够较好的消除距离速度耦合的问题,使测得的距离值更加接近真实距离值;且计算量小,另外,引入了负向速度进行目标分析,更加贴近实际道路的目标环境。
上述仅以实施例来进一步说明本发明的技术内容,以便于读者更容易理解,但不代表本发明的实施方式仅限于此,任何依本发明所做的技术延伸或再创造,均受本发明的保护。本发明的保护范围以权利要求书为准。

Claims (8)

1.基于锯齿波线性调频雷达多目标测距测速的方法,其特征在于,所述方法包括:
获取多周期锯齿波差拍信号以及新矩阵;
对每一周期锯齿波差拍信号的快时间维进行FFT变换;
对新矩阵每一列的慢时间维进行FFT变换;
对FFT变换后的快时间维以及慢时间维进行CFAR二维恒虚警检测,形成目标频谱;
获取目标频谱的峰值点对应的距离维频点和速度维频点;
对距离维频点和速度维频点进行去耦合处理,获取真实距离以及真实速度值。
2.根据权利要求1所述的基于锯齿波线性调频雷达多目标测距测速的方法,其特征在于,获取多周期锯齿波差拍信号以及新矩阵的步骤,包括以下具体步骤:
获取中频信号以及原始矩阵;
根据中频信号进行频率处理,获取多周期锯齿波差拍信号;
将多周期锯齿波差拍信号存入原始矩阵,形成新矩阵。
3.根据权利要求1或2所述的基于锯齿波线性调频雷达多目标测距测速的方法,其特征在于,对每一周期锯齿波差拍信号的快时间维进行FFT变换的步骤之后,还包括:
将后一周期锯齿波差拍信号快时间维的变换值减去前一周期锯齿波差拍信号快时间维的变换值。
4.根据权利要求3所述的基于锯齿波线性调频雷达多目标测距测速的方法,其特征在于,对距离维频点和速度维频点进行去耦合处理,获取真实距离以及真实速度值的步骤,包括以下具体步骤:
将快时间维进行CFAR二维恒虚警检测所得到的目标频谱减去多普勒频率,形成中间距离值;
对中间距离值以及速度维频点进行筛选和处理,获取真实距离以及真实速度值。
5.基于锯齿波线性调频雷达多目标测距测速的系统,其特征在于,包括信号获取单元、快时间维变换单元、慢时间维变换单元、检测单元、频点获取单元以及去耦合单元;
所述信号获取单元,用于获取多周期锯齿波差拍信号以及新矩阵;
所述快时间维变换单元,用于对每一周期锯齿波差拍信号的快时间维进行FFT变换;
所述慢时间维变换单元,用于对新矩阵每一列的慢时间维进行FFT变换;
所述检测单元,用于对FFT变换后的快时间维以及慢时间维进行CFAR二维恒虚警检测,形成目标频谱;
所述频点获取单元,用于获取目标频谱的峰值点对应的距离维频点和速度维频点;
所述去耦合单元,用于对距离维频点和速度维频点进行去耦合处理,获取真实距离以及真实速度值。
6.根据权利要求5所述的基于锯齿波线性调频雷达多目标测距测速的系统,其特征在于,所述信号获取单元包括获取模块、频率处理模块以及存入模块;
所述获取模块,用于获取中频信号以及原始矩阵;
所述频率处理模块,用于根据中频信号进行频率处理,获取多周期锯齿波差拍信号;
所述存入模块,用于将多周期锯齿波差拍信号存入原始矩阵,形成新矩阵。
7.根据权利要求6所述的基于锯齿波线性调频雷达多目标测距测速的系统,其特征在于,所述系统还包括运算单元;
所述运算单元,用于将后一周期锯齿波差拍信号快时间维的变换值减去前一周期锯齿波差拍信号快时间维的变换值。
8.根据权利要求7所述的基于锯齿波线性调频雷达多目标测距测速的系统,其特征在于,所述去耦合单元包括频谱处理模块以及筛选模块;
所述频谱处理模块,用于快时间维进行CFAR二维恒虚警检测所得到的目标频谱减去多普勒频率,形成中间距离值;
所述筛选模块,用于对中间距离值以及速度维频点进行筛选和处理,获取真实距离以及真实速度值。
CN201711278914.4A 2017-12-06 2017-12-06 基于锯齿波线性调频雷达多目标测距测速的方法及系统 Pending CN108693523A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711278914.4A CN108693523A (zh) 2017-12-06 2017-12-06 基于锯齿波线性调频雷达多目标测距测速的方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711278914.4A CN108693523A (zh) 2017-12-06 2017-12-06 基于锯齿波线性调频雷达多目标测距测速的方法及系统

Publications (1)

Publication Number Publication Date
CN108693523A true CN108693523A (zh) 2018-10-23

Family

ID=63843777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711278914.4A Pending CN108693523A (zh) 2017-12-06 2017-12-06 基于锯齿波线性调频雷达多目标测距测速的方法及系统

Country Status (1)

Country Link
CN (1) CN108693523A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109100701A (zh) * 2018-10-29 2018-12-28 北京遥感设备研究所 一种快速二维cfar目标检测系统及检测方法
CN110361726A (zh) * 2019-06-21 2019-10-22 广东工业大学 一种毫米波雷达测速方法
CN110927717A (zh) * 2019-12-11 2020-03-27 深圳大学 调频连续波雷达的成像方法、装置及成像系统
CN112083405A (zh) * 2020-09-11 2020-12-15 广东工业大学 一种基于混合波形的目标检测方法及相关装置
CN112262383A (zh) * 2019-09-30 2021-01-22 深圳市大疆创新科技有限公司 雷达信号的处理方法、微波雷达、系统和存储介质
CN112904293A (zh) * 2021-02-01 2021-06-04 北京理工大学 一种针对快扫锯齿波波形雷达的近距离目标模拟方法
WO2021134449A1 (zh) * 2019-12-31 2021-07-08 深圳开阳电子股份有限公司 一种强杂波下fmcw阵列雷达运动多目标弱信号检测方法、装置、计算机设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155649A (zh) * 2014-09-02 2014-11-19 中国电子科技集团公司第五十四研究所 一种基于三周期调频连续波相参雷达距离速度去耦合方法
CN106405541A (zh) * 2016-11-14 2017-02-15 苏州途视电子科技有限公司 全相参连续波多普勒雷达及其测距测速方法
CN106597429A (zh) * 2017-01-24 2017-04-26 成都泰格微电子研究所有限责任公司 一种基于雷达信号处理系统的速度跟踪子系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155649A (zh) * 2014-09-02 2014-11-19 中国电子科技集团公司第五十四研究所 一种基于三周期调频连续波相参雷达距离速度去耦合方法
CN106405541A (zh) * 2016-11-14 2017-02-15 苏州途视电子科技有限公司 全相参连续波多普勒雷达及其测距测速方法
CN106597429A (zh) * 2017-01-24 2017-04-26 成都泰格微电子研究所有限责任公司 一种基于雷达信号处理系统的速度跟踪子系统

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109100701A (zh) * 2018-10-29 2018-12-28 北京遥感设备研究所 一种快速二维cfar目标检测系统及检测方法
CN110361726A (zh) * 2019-06-21 2019-10-22 广东工业大学 一种毫米波雷达测速方法
CN110361726B (zh) * 2019-06-21 2022-12-16 广东工业大学 一种毫米波雷达测速方法
CN112262383A (zh) * 2019-09-30 2021-01-22 深圳市大疆创新科技有限公司 雷达信号的处理方法、微波雷达、系统和存储介质
CN110927717A (zh) * 2019-12-11 2020-03-27 深圳大学 调频连续波雷达的成像方法、装置及成像系统
CN110927717B (zh) * 2019-12-11 2022-01-11 深圳大学 调频连续波雷达的成像方法、装置及成像系统
WO2021134449A1 (zh) * 2019-12-31 2021-07-08 深圳开阳电子股份有限公司 一种强杂波下fmcw阵列雷达运动多目标弱信号检测方法、装置、计算机设备及存储介质
CN112083405A (zh) * 2020-09-11 2020-12-15 广东工业大学 一种基于混合波形的目标检测方法及相关装置
CN112083405B (zh) * 2020-09-11 2023-11-14 广东工业大学 一种基于混合波形的目标检测方法及相关装置
CN112904293A (zh) * 2021-02-01 2021-06-04 北京理工大学 一种针对快扫锯齿波波形雷达的近距离目标模拟方法
CN112904293B (zh) * 2021-02-01 2022-11-11 北京理工大学 一种针对快扫锯齿波波形雷达的近距离目标模拟方法

Similar Documents

Publication Publication Date Title
CN108693523A (zh) 基于锯齿波线性调频雷达多目标测距测速的方法及系统
CN105158748B (zh) 一种高速目标多通道补偿聚焦与tbd混合积累检测方法
CN103630888B (zh) 基于对称三角lfmcw雷达的高精度实时微波测速测距装置
CN100365429C (zh) 一种合成孔径雷达运动目标成像方法
CN105487060B (zh) 一种双通道四斜率调制的多目标提取方法
CN106646447B (zh) 基于线性调频连续波的雷达目标长时间积累检测方法
CN109061589A (zh) 随机跳频雷达的目标运动参数估计方法
CN107255814B (zh) 一种基于lfmsk波形的雷达目标检测方法
Pang et al. Coherent detection algorithm for radar maneuvering targets based on discrete polynomial-phase transform
CN108693524A (zh) 基于线性调频连续波雷达的多运动目标匹配方法及其系统
CN101738606A (zh) 基于广义多普勒滤波器组的雷达目标相参积累检测方法
CN107153189B (zh) 线性调频连续波雷达测距的信号处理方法
CN102866398A (zh) 一种利用调频连续波雷达进行动目标识别的方法及系统
CN107576959B (zh) 一种基于区域映射解模糊的高重频雷达目标检测前跟踪方法
CN102955158A (zh) 一种提高地面运动目标检测性能的多基线设计方法
CN109932695A (zh) 一种提高目标物识别速度的方法及装置
CN102830394B (zh) 基于多谱线积累的弱目标探测方法
CN113608193A (zh) 一种基于UNet的雷达多目标距离和速度估计方法
CN113419238A (zh) 基于毫米波雷达的山体滑坡监测方法、电子设备、存储介质
Wei et al. Detection and localization of high speed moving targets using a short-range UWB impulse radar
CN106093927B (zh) 基于雷达大脉宽信号的目标测速测距方法
US20110095939A1 (en) Process and system for determining the position and velocity of an object
CN108120975A (zh) 基于梯形连续波的雷达测速测距方法
CN106199578A (zh) 高超声速目标测速方法
CN112083405B (zh) 一种基于混合波形的目标检测方法及相关装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181023