CN108693239B - 一种生物电化学h2o2传感器及利用其检测h2o2的方法 - Google Patents

一种生物电化学h2o2传感器及利用其检测h2o2的方法 Download PDF

Info

Publication number
CN108693239B
CN108693239B CN201810301062.4A CN201810301062A CN108693239B CN 108693239 B CN108693239 B CN 108693239B CN 201810301062 A CN201810301062 A CN 201810301062A CN 108693239 B CN108693239 B CN 108693239B
Authority
CN
China
Prior art keywords
sensor
cathode
anode
chamber
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810301062.4A
Other languages
English (en)
Other versions
CN108693239A (zh
Inventor
刘伟凤
朱益民
尹琳
周子皓
郑立彪
金琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN201810301062.4A priority Critical patent/CN108693239B/zh
Publication of CN108693239A publication Critical patent/CN108693239A/zh
Application granted granted Critical
Publication of CN108693239B publication Critical patent/CN108693239B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4166Systems measuring a particular property of an electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明涉及一种生物电化学H2O2传感器及利用其检测H2O2的方法,属于污染检测领域。本发明所述生物电化学H2O2传感器包括传感器壳体、生物阳极、电化学阴极、离子交换膜、外部负载;所述离子交换膜设置在传感器壳体内,将传感器壳体分为阳极室和阴极室;所述生物阳极设置在阳极室内,且所述阳极室的下部设有阳极液进水口,所述阳极室的上部设有阳极液出水口;所述电化学阴极设置在阴极室内,且所述阴极室的下部设有阴极待测H2O2溶液进水口,所述阴极室的上部设有阴极液出水口;所述外部负载的一端与生物阳极连接,所述外部负载的另一端与电化学阴极连接。本发明所述传感器响应迅速、灵敏度高、H2O2浓度检测范围广。

Description

一种生物电化学H2O2传感器及利用其检测H2O2的方法
技术领域
本发明涉及一种生物电化学H2O2传感器及利用其检测H2O2的方法,属于污染检测领域。
背景技术
近年来,食品分析、医学检验、工程控制和环境保护等领域对过氧化氢(H2O2)的检测要求不断提高。H2O2检测方法中,H2O2传感器由于其高效率、高选择性和高灵敏度而被大量研究使用。
H2O2传感器可以分为两大类:酶促传感器和非酶传感器。酶促传感器使用固定化酶(如:辣根过氧化物酶、血红蛋白、过氧化氢酶)修饰电极,构建H2O2传感器。酶促传感器虽然灵敏度高,但是酶的固定过程复杂,对固定化修饰的载体电极材料要求严格,修饰和使用过程中酶容易失去催化活性,限制了其广泛应用。非酶传感器使用电介质体(如:六氰基高铁酸盐、二茂铁衍生物或乙烯基吡啶聚合物)协助H2O2还原过程电子转移,具有灵敏度高、操作稳定性与选择性良好、检测范围广等优势,应用前景十分广阔。
此外,现有的酶促和非酶H2O2传感器均需要通过连接直流电源或电化学工作站,采用安培法或循环伏安法监测H2O2还原产生的电流信号,进而确定H2O2浓度。昂贵的设备增加了传感器构建和使用成本,为实际应用带来了困难;在偏远地区或传感器安装空间有限的情况下,更是难以使用。
发明内容
本发明通过阳极产电微生物的电化学氧化,持续为阴极H2O2非酶催化还原提供电子,直接输出电流信号,从而实现自供电、实时连续、高效持久的H2O2检测,该传感器同时具有响应迅速、灵敏度高、成本低等优势。
本发明提供了一种生物电化学H2O2传感器,所述生物电化学H2O2传感器包括传感器壳体、生物阳极、电化学阴极、离子交换膜、外部负载;
所述离子交换膜设置在传感器壳体内,将传感器壳体分为阳极室和阴极室;
所述生物阳极设置在阳极室内,且所述阳极室的下部设有阳极液进水口,所述阳极室的上部设有阳极液出水口;
所述电化学阴极设置在阴极室内,且所述阴极室的下部设有阴极待测H2O2溶液进水口,所述阴极室的上部设有阴极液出水口;
所述外部负载的一端与生物阳极连接,所述外部负载的另一端与电化学阴极连接。
本发明优选为所述生物阳极为碳纤维布或碳纤维刷,且所述生物阳极的前处理方法为:先400-600℃热处理30-60min,再在微生物燃料电池中运行至少2个月。
本发明优选为所述电化学阴极为可催化H2O2还原的化学电极。
本发明优选为所述电化学阴极为钛片、石墨片、纳米金属氧化物或硫化物修饰的石墨片。
本发明优选为所述纳米金属氧化物为纳米CoO、纳米MnO、纳米CoMn2O4、纳米ZnCo2O4或纳米NiCo2O4
本发明优选为所述纳米金属硫化物为纳米Ni3S2或纳米NiCo2S4
本发明优选为所述离子交换膜为阳离子交换膜或阴离子交换膜。
本发明优选为所述外部负载的电阻为100-1000Ω。
本发明另一目的为提供一种利用上述传感器检测H2O2的方法,所述方法包括如下步骤:
以相同流速分别向所述阴极室和阳极室注入已知不同浓度的H2O2溶液和阳极液,其中所述阳极液为有机废水或含有乙酸钠、葡萄糖的溶液;
接通电路,记录传感器电流响应输出值,获取电流响应与H2O2浓度相关的标准曲线,得到响应拟合方程;
根据含有H2O2的待测样品测得的响应电流值,对比所述标准曲线,得到H2O2浓度。
本发明优选为所述流速为2-20mL/min。
本发明有益效果为:
①本发明所述传感器无需连接外部电源或电化学工作站,阳极产电微生物自发为传感器供电,因此,可实现自我供电,构建和使用成本低;
②本发明所述传感器直接输出电流信号,可以实现H2O2的连续、实时监测,同时由于阳极产电微生物和阴极催化剂性能稳定,传感器长期使用稳定性强;
③本发明所述传感器响应迅速、灵敏度高、H2O2浓度检测范围广;
④本发明所述传感器小型化,操作简单,适用于便携式检测。
附图说明
本发明附图1幅,
图1为实施例1所述生物电化学H2O2传感器的结构示意图;
其中,1、传感器壳体,2、生物阳极,3、电化学阴极,4、阳离子交换膜,5、外部负载,6、阳极液进水口,7、阳极液出水口,8、阴极待测H2O2溶液进水口,9、阴极液出水口。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
实施例1
一种生物电化学H2O2传感器,如图1所示,所述生物电化学H2O2传感器包括传感器壳体1、生物阳极2、电化学阴极3、阳离子交换膜4、外部负载5;
所述阳离子交换膜4设置在传感器壳体1内,将传感器壳体1分为阳极室和阴极室;
所述生物阳极2为碳纤维刷,且所述生物阳极2的前处理方法为:先采用异丙醇清洗,再450℃热处理60min,然后在微生物燃料电池中运行3个月,充分富集产电微生物,形成电化学活性生物膜,获得稳定的阳极产电性能,阳极产生的电子经外电路传递到阴极表面,参与H2O2催化还原反应,形成电流,所述生物阳极2设置在阳极室内,且所述阳极室的下部设有阳极液进水口6,所述阳极室的上部设有阳极液出水口7;
所述电化学阴极3为纳米CoMn2O4修饰的石墨片,采用纳米技术的传感器可特异性催化某些物质的反应过程,使传感器的稳定性和抗干扰能力大幅提升,其原因在于纳米材料的表面活性位点多,高表面自由能使纳米材料修饰过的电极具有良好的电化学活性和选择性,所述电化学阴极3设置在阴极室内,且所述阴极室的下部设有阴极待测H2O2溶液进水口8,所述阴极室的上部设有阴极液出水口9;
所述外部负载5的一端与生物阳极2连接,所述外部负载5的另一端与电化学阴极3连接,所述外部负载5的电阻为300Ω。
实施例2
一种利用实施例1所述传感器检测H2O2的方法,所述方法包括如下步骤:
通过蠕动泵以相同流速分别向所述阴极室和阳极室注入已知不同浓度的H2O2溶液和阳极液,其中,所述流速为5mL/min,所述阳极液为含有乙酸钠、葡萄糖的溶液;
接通电路,采用数据采集仪记录传感器电流响应输出值,获取电流响应与H2O2浓度相关的标准曲线,得到线性响应拟合方程为:I(mA)=1.0952+0.1984lnC(mmol L-1),相关系数(R2)为0.9969,检测灵敏度为198.4μAmM-1
根据含有H2O2的待测样品测得的响应电流值,对比所述标准曲线,得到H2O2浓度。

Claims (5)

1.一种生物电化学H2O2传感器,其特征在于:所述生物电化学H2O2传感器包括传感器壳体、生物阳极、电化学阴极、离子交换膜、外部负载;
所述离子交换膜设置在传感器壳体内,将传感器壳体分为阳极室和阴极室;
所述生物阳极为碳纤维布或碳纤维刷,且所述生物阳极的前处理方法为:先400-600℃热处理30-60min,再在微生物燃料电池中运行至少2个月,所述生物阳极设置在阳极室内,且所述阳极室的下部设有阳极液进水口,所述阳极室的上部设有阳极液出水口;
所述电化学阴极为纳米金属氧化物或硫化物修饰的石墨片,所述纳米金属氧化物为纳米CoO、纳米MnO、纳米CoMn2O4、纳米ZnCo2O4或纳米NiCo2O4,所述纳米金属硫化物为纳米Ni3S2或纳米NiCo2S4,所述电化学阴极设置在阴极室内,且所述阴极室的下部设有阴极待测H2O2溶液进水口,所述阴极室的上部设有阴极液出水口;
所述外部负载的一端与生物阳极连接,所述外部负载的另一端与电化学阴极连接。
2.根据权利要求1所述的生物电化学H2O2传感器,其特征在于:所述离子交换膜为阳离子交换膜或阴离子交换膜。
3.根据权利要求2所述的生物电化学H2O2传感器,其特征在于:所述外部负载的电阻为100-1000Ω。
4.一种利用权利要求1、2或3所述传感器检测H2O2的方法,其特征在于:所述方法包括如下步骤:
以相同流速分别向所述阴极室和阳极室注入已知不同浓度的H2O2溶液和阳极液,其中所述阳极液为有机废水或含有乙酸钠、葡萄糖的溶液;
接通电路,记录传感器电流响应输出值,获取电流响应与H2O2浓度相关的标准曲线,得到响应拟合方程;
根据含有H2O2的待测样品测得的响应电流值,对比所述标准曲线,得到H2O2浓度。
5.根据权利要求4所述的方法,其特征在于:所述流速为2-20mL/min。
CN201810301062.4A 2018-04-04 2018-04-04 一种生物电化学h2o2传感器及利用其检测h2o2的方法 Active CN108693239B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810301062.4A CN108693239B (zh) 2018-04-04 2018-04-04 一种生物电化学h2o2传感器及利用其检测h2o2的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810301062.4A CN108693239B (zh) 2018-04-04 2018-04-04 一种生物电化学h2o2传感器及利用其检测h2o2的方法

Publications (2)

Publication Number Publication Date
CN108693239A CN108693239A (zh) 2018-10-23
CN108693239B true CN108693239B (zh) 2020-06-16

Family

ID=63844968

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810301062.4A Active CN108693239B (zh) 2018-04-04 2018-04-04 一种生物电化学h2o2传感器及利用其检测h2o2的方法

Country Status (1)

Country Link
CN (1) CN108693239B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112946039B (zh) * 2021-01-29 2023-02-17 大连海事大学 一种氨氮传感器及氨氮检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201852813U (zh) * 2010-10-22 2011-06-01 东南大学 一种蓝藻浓度传感器
WO2014082989A1 (en) * 2012-11-28 2014-06-05 Universitat De Girona Bioelectrochemical water treatment and apparatus
CN104062345A (zh) * 2014-06-28 2014-09-24 内蒙古科技大学 基于微生物电解池技术在线测定生化需氧量的装置
CN104330455A (zh) * 2014-07-16 2015-02-04 内蒙古科技大学 利用微生物电解池技术在线监测硝态氮浓度的方法与装置
CN104330458A (zh) * 2014-07-16 2015-02-04 内蒙古科技大学 利用微生物电解池技术在线监测硫酸根离子的方法与装置
CN106353471A (zh) * 2011-06-14 2017-01-25 凯博瑞创新公司 生物需氧量传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201852813U (zh) * 2010-10-22 2011-06-01 东南大学 一种蓝藻浓度传感器
CN106353471A (zh) * 2011-06-14 2017-01-25 凯博瑞创新公司 生物需氧量传感器
WO2014082989A1 (en) * 2012-11-28 2014-06-05 Universitat De Girona Bioelectrochemical water treatment and apparatus
CN104062345A (zh) * 2014-06-28 2014-09-24 内蒙古科技大学 基于微生物电解池技术在线测定生化需氧量的装置
CN104330455A (zh) * 2014-07-16 2015-02-04 内蒙古科技大学 利用微生物电解池技术在线监测硝态氮浓度的方法与装置
CN104330458A (zh) * 2014-07-16 2015-02-04 内蒙古科技大学 利用微生物电解池技术在线监测硫酸根离子的方法与装置

Also Published As

Publication number Publication date
CN108693239A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
Zhou et al. Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells
Scott et al. Application of modified carbon anodes in microbial fuel cells
Du et al. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy
Manohar et al. The polarization behavior of the anode in a microbial fuel cell
JP5307316B2 (ja) 燃料電池、燃料電池の使用方法、燃料電池用カソード電極、電子機器、電極反応利用装置および電極反応利用装置用電極
Vu et al. Magnetite/zeolite nanocomposite-modified cathode for enhancing methane generation in microbial electrochemical systems
Permana et al. Preliminary investigation of electricity production using dual chamber microbial fuel cell (dcMFC) with Saccharomyces cerevisiae as biocatalyst and methylene blue as an electron mediator
Zhang et al. Bionic design of cytochrome c oxidase-like single-atom nanozymes for oxygen reduction reaction in enzymatic biofuel cells
Park et al. Electrode reaction of Desulfovibrio desulfuricans modified with organic conductive compounds
Estrada-Arriaga et al. Oxygen reduction reaction (ORR) electrocatalysts in constructed wetland-microbial fuel cells: effect of different carbon-based catalyst biocathode during bioelectricity production
Rivera et al. H2 production in membraneless bioelectrochemical cells with optimized architecture: The effect of cathode surface area and electrode distance
Wang et al. Electricity and hydrogen co-production from a bio-electrochemical cell with acetate substrate
Uría et al. Effect of the cathode/anode ratio and the choice of cathode catalyst on the performance of microbial fuel cell transducers for the determination of microbial activity
WO2023207134A1 (zh) 一种有机废水bod检测装置及其应用与方法
Zhang et al. Chemically activated graphite enhanced oxygen reduction and power output in catalyst-free microbial fuel cells
CN113481004A (zh) 一种碳点及其制备方法和应用
CN108693239B (zh) 一种生物电化学h2o2传感器及利用其检测h2o2的方法
Sun et al. Influence of Initial pH on Anodic Biofilm Formation in Single-Chambered Microbial Electrolysis Cells.
Milner et al. Evaluation of porous carbon felt as an aerobic biocathode support in terms of hydrogen peroxide
CN108520963A (zh) 环境友好的石墨烯生物电极微生物燃料电池及其制备方法
Kim et al. Microbial fuel cell-type biochemical oxygen demand sensor
CN102208661A (zh) 一种碳材料的表面修饰方法及其在微生物燃料电池中的应用
CN201648379U (zh) 单池电解协助发酵产氢装置
CN110890554A (zh) 大功率柔性单酶葡萄糖燃料电池及其制备方法
CN110085877A (zh) 一种基于单酶无机复合纳米花的酚类污水发电装置及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant