CN108693162A - 一种Au@mSiO2纳米花SERS基底及其制备方法 - Google Patents

一种Au@mSiO2纳米花SERS基底及其制备方法 Download PDF

Info

Publication number
CN108693162A
CN108693162A CN201810486183.0A CN201810486183A CN108693162A CN 108693162 A CN108693162 A CN 108693162A CN 201810486183 A CN201810486183 A CN 201810486183A CN 108693162 A CN108693162 A CN 108693162A
Authority
CN
China
Prior art keywords
msio
nano
nano flower
preparation
sers substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810486183.0A
Other languages
English (en)
Other versions
CN108693162B (zh
Inventor
程琳
王爽
张莉萍
陈丽燕
冯守浙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN201810486183.0A priority Critical patent/CN108693162B/zh
Publication of CN108693162A publication Critical patent/CN108693162A/zh
Application granted granted Critical
Publication of CN108693162B publication Critical patent/CN108693162B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及SERS技术领域,具体涉及一种Au@mSiO2纳米花SERS基底及其制备方法,包括以下步骤:步骤一,将左旋多巴溶液与HAuCl4溶液混合,于恒温冰水浴中磁搅拌反应,得Au纳米花;步骤二,将步骤一的Au纳米花加入到CTAB溶液中超声分散均匀,随后加入乙二醇胺,并于恒温油浴中磁搅拌反应,形成混合溶液;步骤三,TEOS与正己烷混合均匀后滴加到步骤二的混合溶液中,磁搅拌反应,离心洗涤,即得Au@mSiO2纳米花。本发明制备方法简单,重复强,可工业化生产;制备出的Au@mSiO2纳米花颗粒均匀,单分散性好,其作为SERS基底活性、重复性和稳定性显著性提高。

Description

一种Au@mSiO2纳米花SERS基底及其制备方法
技术领域
本发明属于SERS技术领域,具体涉及一种Au@mSiO2纳米花SERS基底及其制备方法。
背景技术
SERS作为一种高灵敏、高强度的现代谱学技术,可获取吸附在物质表面的有机物分子的拉曼信号,并能够在分子水平上直接给出表面吸附分子的种类、结构、状态等重要信息。SERS的应用范围也己拓广到化学、生物和医药等各领域。作为SERS技术的关键,SERS基底的性能直接影响光谱的质量。因此,制备出符合要求的基底对于SERS的发展及应用至关重要。概括起来,一个高性能的基底应满足以下几点要求:(1)具有较高的灵敏度。可以调控粒子的大小和间距等因素,使基底的和入射激光的频率尽可能一致,以达到共振效果。基底的形貌对效果影响也很大,具有尖端的基底往往因其强大的局域电磁场而起到极大的拉曼增强作用。(2)具有较好均匀性。这就要求整个基底上各点的增强效果比较一致,不同检测点间的增强偏差较小。(3)具有较好的稳定性。基底放置较长时间后,其增强效应基本不变,而且不同批次的基底也应具有相近的增强效应。(4)基底具有干净的表面。不能对待测物产生明显干扰,即不能影响待测物的吸附或者产生较强的干扰信号甚至覆盖待测物信号。
近年来贵金属纳米复合材料,尤其是纳米金基材料由于其特殊的光电性质已受到科研工作者的广泛关注,并在催化、光电子器件、生物传感以及SERS方面有着巨大的潜在应用价值。
因此,如何提高SERS基底活性、重复性和稳定性是需要进一步研究解决的问题。
发明内容
本发明的目的是提供一种Au@mSiO2纳米花SERS基底的制备方法,并制备出一种具有SERS基底活性、重复性和稳定性的Au@mSiO2纳米花SERS基底。
为实现上述技术问题,本发明采用的技术方案是一种Au@mSiO2纳米花SERS基底的制备方法,其特征在于,包括以下步骤:
步骤一,将左旋多巴溶液与HAuCl4溶液混合,于恒温冰水浴中磁搅拌反应,得Au纳米花;
步骤二,将步骤一的Au纳米花加入到CTAB溶液中超声分散均匀,随后加入乙二醇胺,并于恒温油浴中磁搅拌反应,形成混合溶液;
步骤三,TEOS与正己烷混合均匀后滴加到步骤二的混合溶液中,磁搅拌反应,离心洗涤,即得Au@mSiO2纳米花;
优选地,所述步骤一中HAuCl4和左旋多巴的浓度比为1:1-1:6;
更为优选地,所述步骤一中冰水浴的温度为2-12℃;
优选地,所述步骤一中磁搅拌反应2-6h。
具体地,所述步骤二中Au纳米花与乙二醇胺的质量体积比为0.1g/mL-5g/mL,CTAB溶液的浓度为0.2-1M。
优选地,所述步骤二中反应温度为50-100℃,反应时间为20-60min。
作为优选,所述步骤三中TEOS和环己烷的体积比为1:10-1:40,步骤三中磁搅拌反应时间为12-30h。
本发明还包括一种Au@mSiO2纳米花SERS基底,其特征在于,由上述制备方法制备而得。
进一步地,所述Au@mSiO2纳米花SERS基底的粒径为140nm-437nm,介孔SiO2均匀的包覆于Au纳米花外围,介孔SiO2的厚度在7-25nm。
如权利要求8所述的一种Au@mSiO2纳米花SERS基底,其特征在于,所述Au@mSiO2纳米花的尺寸为150-300nm,所述介孔SiO2的厚度在13-20nm。
有益效果:本发明通过设计合成一种Au@mSiO2纳米花SERS基底,其作为SERS基底活性、重复性和稳定性显著性提高。制备出的Au@mSiO2纳米花颗粒均匀,单分散性好,尺寸在140-437nm,介孔SiO2均匀的包覆于Au纳米花外围,介孔SiO2的厚度在7-25nm。本发明制备方法简单,重复强,可工业化生产。
由于介孔SiO2的均匀包覆作用,对信号的重复性起着至关重要的作用,避免了Au花的热点的无序性,本发明制备的Au@mSiO2纳米花SERS基底信号具有很好的重复性。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1为实施例1制备的Au@mSiO2纳米花的透射电子显微镜图;
图2为实施例1制备的Au@mSiO2纳米花的扫描电子显微镜图;
图3为实施例1制备的Au@mSiO2纳米花的XRD图;
图4为实施例1制备的Au@mSiO2纳米花的EDAX图;
图5为实施例2制备的Au@mSiO2纳米花的透射电子显微镜图;
图6为实施例3制备的Au@mSiO2纳米花的扫描电子显微镜图;
图7为实施例4制备的Au@mSiO2纳米花的透射电子显微镜图;
图8为实施例1-4制备的Au@mSiO2纳米花吸附R6G(10-8M)的SERS谱。
图9为实施例1制备的Au@mSiO2纳米花对应20个点对10-8M的R6G进行SERS测试
具体实施方式
为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本发明作更全面、细致地描述,但本发明的保护范围并不限于以下具体的实施例。
实施例1
一种Au@mSiO2纳米花SERS基底的制备方法,包括以下步骤:
步骤一,将左旋多巴溶液与HAuCl4溶液混合,放入恒温冰水浴中磁搅拌反应,制备得到Au纳米花;
步骤二,取步骤一制备的Au纳米花加入到CTAB溶液中超声分散均匀,随后加入乙二醇胺(TEA),并于恒温油浴中磁搅拌反应,形成混合溶液;
步骤三,TEOS与正己烷混合均匀后滴加到步骤二的混合溶液中,磁搅拌反应,离心洗涤,即制备得到Au@mSiO2纳米花。
具体地,所述步骤一中配置5mL浓度为10mM的HAuCl4溶液与5mL浓度为20mM的左旋多巴溶液混合,放入5℃冰水浴中磁搅拌4h;
进一步的,所述步骤二中取0.1g Au纳米花加入到浓度为0.5M的CTAB溶液中超声分散均匀,随后加入3mL的TEA;
进一步的,所述步骤二中磁搅拌的反应条件为80℃的恒温油浴中磁搅拌反应30min。
作为优选,所述步骤三中,取0.5mL TEOS和15mL环己烷混合均匀后滴加到步骤二中的混合溶液中,磁搅拌反应24h,离心洗涤即制备得到Au@mSiO2纳米花。
表征测试:实施例1制备的Au@mSiO2纳米花透射电子显微镜图如图1所示,从图1可以看出,复合微球的整体尺寸为260nm左右,其中Au纳米花约为230nm,外壳层有一层衬度较浅的介孔SiO2壳层,厚度约为13nm,且包裹较为严实,该透射电子显微镜图能很清晰的看出明显的核壳结构;实施例1制备的Au@mSiO2纳米花扫描电子显微镜图如图2所示,从图2可以看出,明显的花状结构,且外壳层有一层薄薄的包裹物,且产物具有良好的分散性;实施例1制备的Au@mSiO2纳米花的XRD如图3所示,从图3可以看出,图中标出的明显的特征峰和Au的特征峰完全吻合,且箭头指向部分出现明显的SiO2的特征峰,证明该合成策略成功制备得到Au@mSiO2纳米花。实施例1制备得到的Au@mSiO2纳米花的EDAX图如图4所示,从图中可以看出,谱图中有明显的Au、O、Si元素。
实施例2
一种Au@mSiO2纳米花SERS基底的制备方法,包括以下步骤:
步骤一,将5mL浓度为20mM的左旋多巴溶液与5mL浓度为10mM的HAuCl4溶液混合,放入10℃恒温冰水浴中磁搅拌反应4h,制备得到Au纳米花;
步骤二,取步骤一制备的Au纳米花0.1g加入到浓度为0.5M的CTAB溶液中超声分散均匀,随后加入5mL的乙二醇胺(TEA),并于80℃的恒温油浴中磁搅拌反应30min,形成混合溶液;
步骤三,0.5mLTEOS与15mL正己烷混合均匀后滴加到步骤二的混合溶液中,磁搅拌反应24h,离心洗涤,即制备得到Au@mSiO2纳米花。
如图5所示,为本实施例制备出的Au@mSiO2纳米花的透射电子显微镜图,从图中可以看出,Au@mSiO2纳米花的颗粒均匀,单分散性好,颗粒尺寸在322-437nm之间,介孔SiO2薄膜层均匀包覆于Au纳米花内核外围,介孔SiO2薄膜层的厚度为14-25nm。
实施例3
一种Au@mSiO2纳米花SERS基底的制备方法,包括以下步骤:
步骤一,将5mL浓度为20mM的左旋多巴溶液与5mL浓度为10mM的HAuCl4溶液混合,放入5℃恒温冰水浴中磁搅拌反应4h,制备得到Au纳米花;
步骤二,取步骤一制备的Au纳米花0.1g加入到浓度为1M的CTAB溶液中超声分散均匀,随后加入3mL的乙二醇胺(TEA),并于80℃的恒温油浴中磁搅拌反应30min,形成混合溶液;
步骤三,0.5mLTEOS与8mL正己烷混合均匀后滴加到步骤二的混合溶液中,磁搅拌反应24h,离心洗涤,即制备得到Au@mSiO2纳米花。
如图6所示,为本实施例制备出的Au@mSiO2纳米花的扫描电子显微镜图,从图中可以看出,Au@mSiO2纳米花的颗粒均匀,单分散性好,颗粒尺寸在140-200nm之间,平均粒径在175nm。
实施例4
一种Au@mSiO2纳米花SERS基底的制备方法,包括以下步骤:
步骤一,将5mL浓度为20mM的左旋多巴溶液与5mL浓度为20mM的HAuCl4溶液混合,放入5℃恒温冰水浴中磁搅拌反应4h,制备得到Au纳米花;
步骤二,取步骤一制备的Au纳米花0.1g加入到浓度为0.5M的CTAB溶液中超声分散均匀,随后加入3mL的乙二醇胺(TEA),并于60℃的恒温油浴中磁搅拌反应30min,形成混合溶液;
步骤三,0.5mLTEOS与15mL正己烷混合均匀后滴加到步骤二的混合溶液中,磁搅拌反应24h,离心洗涤,即制备得到Au@mSiO2纳米花。
如图7所示,为本实施例制备出的Au@mSiO2纳米花的透射电子显微镜图,从图中可以看出,Au@mSiO2纳米花的颗粒均匀,单分散性好,颗粒尺寸在269-287nm之间,平均粒径在280nm,介孔SiO2薄膜层均匀包覆于Au纳米花内核外围,介孔SiO2薄膜层的厚度为7-20nm。
实施例5
SERS性能测试:为了研究Au@mSiO2纳米花作为SERS基底的性能,本发明利用实施例1-4制备的Au@mSiO2纳米花作为SERS基底,使用浓度为10-8的R6G溶液中作为拉曼探针分子,使用的拉曼激光波长为514.5nm的Ar激光,激光扫描面积为2μm,每个光谱的扫面时间为2s,每个样品扫描3遍,取平均值。其拉曼图谱如图8所示,(1)-(4)表示实施例1-4的Au@mSiO2纳米花作为SERS基底的图谱,由谱图可知,在1363和1651cm-1观察到了明显的增强效果,这两个峰也为R6G的特征峰,从谱图可明显的观察到,在同样条件下实施例1制备的样品SERS强度最高,这是由于实施例1的样品比其他的样品表面更粗糙,意味着有更多的“热点”,有较好的增强效果。
使用浓度为10-8的R6G作为拉曼探针检测SERS基底的重复性。所用的共聚焦显微拉曼光谱的激发波长为633nm,激光斑点的直径为3um,每次测试时间为3s,选取20个点进行信号重复性检测,采用实施例1制备出的Au@mSiO2纳米花进行测试,得到如图9所示,图中可以看出Au@mSiO2纳米花作为SERS基底显示出更高的信号的重复性,这是由于在相同的条件下,暴漏在激光下的薄膜的表面结构主要影响拉曼信号,介孔SiO2的包覆作用,使得Au@mSiO2纳米花作为SERS基底信号重复性得到有效地提高。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (9)

1.一种Au@mSiO2纳米花SERS基底的制备方法,其特征在于,包括以下步骤:
步骤一,将左旋多巴溶液与HAuCl4溶液混合,于恒温冰水浴中磁搅拌反应,得Au纳米花;
步骤二,将步骤一的Au纳米花加入到CTAB溶液中超声分散均匀,随后加入乙二醇胺,并于恒温油浴中磁搅拌反应,形成混合溶液;
步骤三,TEOS与正己烷混合均匀后滴加到步骤二的混合溶液中,磁搅拌反应,离心洗涤,即得Au@mSiO2纳米花。
2.如权利要求1所述的一种Au@mSiO2纳米花SERS基底的制备方法,其特征在于,所述步骤一中HAuCl4和左旋多巴的浓度比为1:1-1:6。
3.如权利要求1所述的一种Au@mSiO2纳米花SERS基底的制备方法,其特征在于,所述步骤一中冰水浴的温度为2-12℃。
4.如权利要求1或2或3所述的一种Au@mSiO2纳米花SERS基底的制备方法,其特征在于,所述步骤一中磁搅拌反应2-6h。
5.如权利要求1所述的一种Au@mSiO2纳米花SERS基底的制备方法,其特征在于,所述步骤二中Au纳米花与乙二醇胺的质量体积比为0.1g/mL-5g/mL,CTAB溶液的浓度为0.2-1M。
6.如权利要求1或5所述的一种Au@mSiO2纳米花SERS基底的制备方法,其特征在于,所述步骤二中反应温度为50-100℃,反应时间为20-60min。
7.如权利要求1所述的一种Au@mSiO2纳米花SERS基底的制备方法,其特征在于,所述步骤三中TEOS和环己烷的体积比为1:10-1:40,步骤三中磁搅拌反应时间为12-30h。
8.一种Au@mSiO2纳米花SERS基底,其特征在于,由权利要求1-7任意一项制备方法制备而得,所述Au@mSiO2纳米花SERS基底的粒径为140nm-437nm,介孔SiO2均匀的包覆于Au纳米花外围,介孔SiO2的厚度在7-25nm。
9.如权利要求8所述的一种Au@mSiO2纳米花SERS基底,其特征在于,所述Au@mSiO2纳米花的尺寸为150-300nm,所述介孔SiO2的厚度在13-20nm。
CN201810486183.0A 2018-05-21 2018-05-21 一种Au@mSiO2纳米花SERS基底及其制备方法 Active CN108693162B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810486183.0A CN108693162B (zh) 2018-05-21 2018-05-21 一种Au@mSiO2纳米花SERS基底及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810486183.0A CN108693162B (zh) 2018-05-21 2018-05-21 一种Au@mSiO2纳米花SERS基底及其制备方法

Publications (2)

Publication Number Publication Date
CN108693162A true CN108693162A (zh) 2018-10-23
CN108693162B CN108693162B (zh) 2021-03-02

Family

ID=63847500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810486183.0A Active CN108693162B (zh) 2018-05-21 2018-05-21 一种Au@mSiO2纳米花SERS基底及其制备方法

Country Status (1)

Country Link
CN (1) CN108693162B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114345251A (zh) * 2022-01-13 2022-04-15 中南大学 一种嵌入分枝状纳米金磁性复合微球及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103357887A (zh) * 2013-07-01 2013-10-23 西安交通大学 一种海胆状空心金银合金纳米颗粒及其制备方法和应用
CN103624265A (zh) * 2012-08-21 2014-03-12 国家纳米科学中心 一种纳米金颗粒及其制备方法
CN105903948A (zh) * 2016-04-21 2016-08-31 玉林师范学院 一种金纳米花纳米粒子及其制备方法
US20160377549A1 (en) * 2015-06-24 2016-12-29 Industry-University Cooperation Foundation Sogang University Nanogap structure having ultrasmall void between metal cores and molecular sensing apparatus and method using the same, and method for preparing the nanogap structure by selective etching
CN107511479A (zh) * 2017-09-08 2017-12-26 厦门大学 一种超薄壳层隔绝大粒径金纳米粒子的合成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103624265A (zh) * 2012-08-21 2014-03-12 国家纳米科学中心 一种纳米金颗粒及其制备方法
CN103357887A (zh) * 2013-07-01 2013-10-23 西安交通大学 一种海胆状空心金银合金纳米颗粒及其制备方法和应用
US20160377549A1 (en) * 2015-06-24 2016-12-29 Industry-University Cooperation Foundation Sogang University Nanogap structure having ultrasmall void between metal cores and molecular sensing apparatus and method using the same, and method for preparing the nanogap structure by selective etching
CN105903948A (zh) * 2016-04-21 2016-08-31 玉林师范学院 一种金纳米花纳米粒子及其制备方法
CN107511479A (zh) * 2017-09-08 2017-12-26 厦门大学 一种超薄壳层隔绝大粒径金纳米粒子的合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KANG YEOL LEE: "Fabrication of a Confined Gold Nanoflower in a Si Hole via Solid-to- Solid Mass Transfer", 《BULLETIN OF THE KOREAN CHEMICAL SOCIETY》 *
何鑫: "Au NF@SiO2复合结构的制备及其拉曼增强性质研究", 《中国优秀硕士学位论文全文数据库》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114345251A (zh) * 2022-01-13 2022-04-15 中南大学 一种嵌入分枝状纳米金磁性复合微球及其制备方法和应用
CN114345251B (zh) * 2022-01-13 2022-09-23 中南大学 一种嵌入分枝状纳米金磁性复合微球及其制备方法和应用

Also Published As

Publication number Publication date
CN108693162B (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
Linh et al. A facile low-cost paper-based SERS substrate for label-free molecular detection
Tan et al. Metal carbonyl-gold nanoparticle conjugates for highly sensitive SERS detection of organophosphorus pesticides
Wei et al. Surface-enhanced Raman scattering (SERS) with silver nano substrates synthesized by microwave for rapid detection of foodborne pathogens
Doherty et al. A detachable SERS active cellulose film: a minimally invasive approach to the study of painting lakes
Fang et al. Ultrasensitive and quantitative detection of paraquat on fruits skins via surface-enhanced Raman spectroscopy
Zhao et al. Silver deposited polystyrene (PS) microspheres for surface-enhanced Raman spectroscopic-encoding and rapid label-free detection of melamine in milk powder
Qu et al. Silver nanoparticles on cotton swabs for improved surface-enhanced Raman scattering, and its application to the detection of carbaryl
Lu et al. A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system
CN109900911A (zh) 一种运用核壳结构纳米星检测肝癌肿瘤标志物afp的方法
CN112414993B (zh) 一种有机磷的拉曼检测试剂盒和拉曼检测方法
Chen et al. A synergistic combination of diatomaceous earth with Au nanoparticles as a periodically ordered, button-like substrate for SERS analysis of the chemical composition of eccrine sweat in latent fingerprints
Lee et al. Facile synthesis of gelatin‐protected silver nanoparticles for SERS applications
Lu et al. Fluorescence sensing of formaldehyde and acetaldehyde based on responsive inverse opal photonic crystals: a multiple-application detection platform
Xing et al. Gold nanoparticles with helical surface structure transformed from chiral molecules for SERS-active substrates preparation
Peng et al. SERS-based sandwich bioassay protocol of miRNA-21 using Au@ Ag core–shell nanoparticles and a Ag/TiO 2 nanowires substrate
Du et al. Highly sensitive fiber optic enhanced Raman scattering sensor
Das et al. Probing blood plasma samples for the detection of diabetes using SERS aided by PCA and LDA multivariate data analyses
CN111299606B (zh) 一种纳米金咖啡环的制备方法及其在sers检测中的应用
Mao et al. Detection of trace Rhodamine B using stable, uniformity, and reusable SERS substrate based on Ag@ SiO2-Au nanoparticles
Pham et al. Surface-enhanced Raman spectroscopy based on Silver nano-dendrites on microsphere end-shape optical fibre for pesticide residue detection
Hou et al. Preparation of SERS active filter paper for filtration and detection of pesticides residue from complex sample
CN108693162A (zh) 一种Au@mSiO2纳米花SERS基底及其制备方法
Li et al. An investigation of the surface enhanced Raman scattering (SERS) from a new substrate of silver-modified silver electrode by magnetron sputtering
CN115326744A (zh) 太赫兹超材料生物传感器及其应用
CN109060768A (zh) 一种基于表面增强拉曼光谱痕量检测赤藓红浓度的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
OL01 Intention to license declared
OL01 Intention to license declared
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20181023

Assignee: Taizhou Runhe New Material Technology Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2024330000360

Denomination of invention: one kind Au@mSiO2Nano flower SERS substrate and its preparation method

Granted publication date: 20210302

License type: Common License

Record date: 20240806

Application publication date: 20181023

Assignee: Zhejiang Jusheng New Material Technology Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2024330000359

Denomination of invention: one kind Au@mSiO2Nano flower SERS substrate and its preparation method

Granted publication date: 20210302

License type: Common License

Record date: 20240806

Application publication date: 20181023

Assignee: Taizhou Yiguan New Material Technology Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2024330000358

Denomination of invention: one kind Au@mSiO2Nano flower SERS substrate and its preparation method

Granted publication date: 20210302

License type: Common License

Record date: 20240806

Application publication date: 20181023

Assignee: Taizhou Henghong New Materials Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2024330000357

Denomination of invention: one kind Au@mSiO2Nano flower SERS substrate and its preparation method

Granted publication date: 20210302

License type: Common License

Record date: 20240806