CN108684519A - For cultivating and detecting the hydrotropic device and method of arabidopsis root - Google Patents

For cultivating and detecting the hydrotropic device and method of arabidopsis root Download PDF

Info

Publication number
CN108684519A
CN108684519A CN201810834582.1A CN201810834582A CN108684519A CN 108684519 A CN108684519 A CN 108684519A CN 201810834582 A CN201810834582 A CN 201810834582A CN 108684519 A CN108684519 A CN 108684519A
Authority
CN
China
Prior art keywords
root
arabidopsis
babinet
hydrotropic
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810834582.1A
Other languages
Chinese (zh)
Inventor
许卫锋
李瑛�
李落成
萧蔚
袁伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Agriculture and Forestry University
Original Assignee
Fujian Agriculture and Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Agriculture and Forestry University filed Critical Fujian Agriculture and Forestry University
Priority to CN201810834582.1A priority Critical patent/CN108684519A/en
Publication of CN108684519A publication Critical patent/CN108684519A/en
Priority to CN201920224619.9U priority patent/CN209914672U/en
Priority to CN201910133093.8A priority patent/CN109691385A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Cultivation Of Plants (AREA)
  • Hydroponics (AREA)

Abstract

The invention discloses for cultivating and detecting the hydrotropic device and method of arabidopsis root, described device includes an open-topped babinet, the top of babinet is equipped with the light-transmitting plate being connect with box body-sliding and barn door A successively from bottom to up, at least one side wall of the babinet is molded by transparent material, it is covered with the barn door B being connect with box body-sliding outside the molding side wall of transparent material, the madial wall of the babinet is equipped with fixing piece, the fixing piece has the culture dish of Arabidopsis thaliana Seedlings for fixed bonding, and the top in the babinet is equipped with light source.The present invention can simulate arabidopsis root hydrotropism using the moist gradient environment of agar-Air Coupling design, and flexible and convenient operation, method are effectively stablized.

Description

For cultivating and detecting the hydrotropic device and method of arabidopsis root
Technical field
The present invention relates to technical field of plant culture, and in particular to for cultivating and detecting the hydrotropic device of arabidopsis root And method.
Background technology
Culture experiment is that somatomedin is placed in special container, in the facilities such as greenhouse, solarium or phjytotron The plant growth experiment carried out under manual simulation or artificial control condition.Plant roots are to absorb the major organs of moisture and nutrient, It is also the important place of a variety of hormones, organic acid and metabolite assimilation and synthesis.The hydrotropism of root is when soil moisture point When cloth is uneven, root tends to the characteristic of wetter grown, and how to design the humidity for being more nearly soil in natural environment Gradient still lacks report to study hydrotropic experimental rig.
The root hydrotropism's research method reported is less, mainly builds water potential gradient, simulating plant by the method for physics Moisture distribution situation in root growth environment, to the hydrotropism of observation of plant root, such as glycerine method, vermiculite cultivation, saturation K2CO3Method etc., but glycerine method is not widely used since glycerine seriously inhibits the growth of root;Vermiculite cultivation is due to behaviour It is not good enough to make complicated and repeatability, limits its use scope;It is saturated K2CO3Method is also due to can not carry out at accurate different illumination Reason thus use be restricted.In addition, the hydrotropic influence of rare report Illumination on Plant root, and root system of plant is in different depths The illumination that is subject to is different when being grown in the soil of degree, especially upper soll layer can through portion light splitting, the root of plant also therefore and It is influenced by illumination, hydrotropism's power also must be different.It is ground by hydrotropic to plant roots under different illumination conditions Study carefully, plant can be guided to find the moisture of deep subsoil time under drought environment, greatly reduce agricultural irrigation water.How to design Under different illumination conditions, is cultivated after building water potential gradient and the detection hydrotropic device and method of plant roots still lacks report.
Invention content
The purpose of the present invention is to provide one kind for cultivating and detecting the hydrotropic device and method of arabidopsis root, light pair The root growth of arabidopsis has an impact, which can cultivate and detect hydrotropism of the arabidopsis root under different light waves and give birth to It is long, the generation of " not rigorous result " is avoided in research process, and enabling plant research, person obtains " compared with the conclusion of reality ".
To achieve the above object, the present invention uses following technical scheme:
For cultivating and detecting the hydrotropic device of arabidopsis root comprising an open-topped babinet, the top of babinet It is equipped with the light-transmitting plate being connect with box body-sliding and barn door A successively from bottom to up, at least one side wall of the babinet is by transparent Material is molded, and is covered with the barn door B being connect with box body-sliding outside the molding side wall of transparent material, on the madial wall of the babinet Equipped with fixing piece, the fixing piece has the culture dish of Arabidopsis thaliana Seedlings for fixed bonding, and the top in the babinet is equipped with light Source.
The both sides of the opening are equipped with the first sliding groove and second sliding slot successively from bottom to up, and the light-transmitting plate is slided by first Slot is connect with box body-sliding, and the barn door A is connect by second sliding slot with box body-sliding.
The side wall upper part of the babinet and lower part are equipped with third sliding slot, and the barn door B is slided by third sliding slot and babinet Dynamic connection.
The fixing piece includes supporting block and locating piece, and the supporting block is located at the madial wall lower part of babinet and is used to support Culture dish bottom, the locating piece are located above supporting block and for gripping in the middle part of culture dish.
The supporting block is two spaced corner blocks, and that places vertically is bonded with the culture dish bottom of Arabidopsis thaliana Seedlings Portion both ends, which are born against, to be fixed on two corner blocks.
Thermometer and hygrometer are equipped in the babinet, can the variation of Real-time and Dynamic Detection temperature humidity, the barn door B's Lateral wall is equipped with timer, facilitates timing.
The bottom of the babinet is equipped with saturated salt solution, and the liquid level of saturated salt solution is less than supporting block bottom.
The babinet is the transparent plastic box of 15-18cm × 15-18cm × 15-18cm.
Culture is carried out using apparatus of the present invention and detects the hydrotropic method of arabidopsis root, is included the following steps:
1) culture medium after sterilization treatment is poured into culture dish, then the Arabidopsis thaliana Seedlings of growth 5-7 days is moved on into culture Primary surface makes Arabidopsis thaliana Seedlings be bonded in media surface along height of seedling direction, and makes Arabidopsis thaliana Seedlings tip of a root 2-3mm Expose culture medium edge;
2) saturated salt solution is added in the bottom of box, the culture dish for being bonded with Arabidopsis thaliana Seedlings is put vertically by fixing piece It sets on box inside wall, and the Arabidopsis thaliana Seedlings tip of a root is placed vertically downward;
3) barn door B is closed, the light-transmitting plate and barn door A of top of the box are closed, light source is opened, babinet is placed in constant temperature Culture in incubator, observes the growth of Arabidopsis thaliana Seedlings root.
Further, in step 1), the 1/2MS culture mediums after sterilization treatment are poured into culture dish, it will training after cooling 2/3 excision of base lower part is supported, the 1/3 of culture medium top is used to that Arabidopsis thaliana Seedlings to be adhesively fixed.
In step 2), the saturated salt solution is saturation K2CO3Solution or saturation CaCl2Solution;In step 3), the training It is 20-24 DEG C to support temperature, and incubation time is 6-8 hours.
The present invention uses above technical scheme, using the moist gradient environment of agar-Air Coupling design, can simulate quasi- Southern mustard root hydrotropism growth, i.e., have the agar of moistening, arabidopsis to be grown on agar, babinet bottom in a closed box inside The saturated salt solution in portion can absorb the vapor in air and so that surrounding air becomes drying.Humidity highest on agar, bottom Portion's saturated salt solution humidity is minimum, the continuous water potential gradient between thus establishing box house from agar to air.Quasi- south The root of mustard have the characteristics that it is hydrotropic, so when seedling be moved on on agar make its tip of a root expose agar, root meeting after a period of time Avoid dry air and bend growth to wet environment (agar), that is, be close to agar marginal growth, namely have occurred to Aqueous bending.
The present invention has the following advantages:(1) light source in babinet can be replaced into the light source of different wave length, can to plant into The photo-irradiation treatment of row different wave length.(2) four side walls of babinet are molded by transparent material, are blocked by barn door per face, are used shading The purpose of plate is:Box house has different light sources, and being blocked with barn door can be to avoid the interference of external source light, when needing to observe root When growth, the growth of root can be monitored by pulling open barn door.After experimenter observes, barn door is closed, restores root system Dark surrounds needed for growth and different light wave conditions, influence of the reduction external source light as few as possible to plant growth.(3) may be used To improve the sample size tested every time in box inside surrounding culture dish holding.(4) in order to effectively induce hydrotropism, make With 5-7 days Arabidopsis thaliana Seedlings of growth, it is easy observation and hydrotropism's bending is apparent.
The growing state of the lower root system of plant of the Different lightwave of observation in real time irradiation in situ may be implemented in apparatus of the present invention, to Judge the growing way of plant, the present invention is to the raising of the drought tolerance of plant roots hydrotropism increment study and plant and drought-enduring plant Breeding all has important theory value and application prospect.
Description of the drawings
Fig. 1 is for cultivating and detecting one of the hydrotropic schematic device of arabidopsis root (not closing barn door);
Fig. 2 is two (the closing barn door) for cultivating and detecting the hydrotropic schematic device of arabidopsis root;
Fig. 3 is the water potential gradient that saturated salt solution is established, and the distance shown in abscissa apart from agar block is from agar edge To the distance between the diagonally opposing corner direction between saturated salt solution;
Fig. 4 is the arabidopsis root hydrotropism's phenotypic map grown under apparatus of the present invention, and the Arabidopsis thaliana Seedlings of growth 5 days move on to this It takes pictures after device 12h, figure a is the root of growth under normal operation, and figure b is the root being grown under the gradation of moisture, micro- with body formula Mirror shooting (length of scale is 1mm in figure);
Fig. 5 is different light sources on the hydrotropic influence of arabidopsis root;
Fig. 6 is arabidopsis wild type and mutant hydrotropism bending under dark condition;Wherein, Col-0, arabidopsis are wild Type;Miz1 and ahr1 arabidopsis hydrotropism's mutant, pgm1-1, aux1-7, pin2 and arf10arf16, what is lacked to principal characteristic is quasi- Southern mustard mutant.
Specific implementation mode
With reference to specific example, the present invention is further explained.
Embodiment 1
As shown in the figures 1 and 2, for cultivating and detecting the hydrotropic device of arabidopsis root comprising an open-topped case The top of body 1, babinet 1 is equipped with the light-transmitting plate 2 being slidably connected with babinet 1 and barn door A 3, the babinet 1 successively from bottom to up At least one side wall be molded by transparent material, be covered with the shading being slidably connected with babinet 1 outside the molding side wall of transparent material The madial wall of plate B 4, the babinet 1 are equipped with fixing piece, and the fixing piece has the training of Arabidopsis thaliana Seedlings 15 for fixed bonding Ware 5 is supported, the top in the babinet 1 is equipped with light source 6.
The both sides of the opening are equipped with the first sliding groove 7 and second sliding slot 8 successively from bottom to up, and the light-transmitting plate 2 passes through the One sliding slot 7 is slidably connected with babinet 1, and the barn door A 3 is slidably connected by second sliding slot 8 and babinet 1.The babinet 1 Side wall upper part and lower part are equipped with third sliding slot 9, and the barn door B 4 is slidably connected by third sliding slot 9 and babinet 1.
As one embodiment of the present invention, the fixing piece includes supporting block 10 and locating piece 11, and supporting block 10 is set In the madial wall lower part of babinet 1 and it is used to support 5 bottom of culture dish, locating piece 11 is located at 10 top of supporting block and for being clamped admittedly Determine 5 middle part of culture dish.
In the present embodiment, the supporting block 10 is two spaced corner blocks, and being bonded with for placing vertically is quasi- The 5 bottom both ends of culture dish of southern mustard seedling, which are born against, to be fixed on two corner blocks.
Thermometer 12 and hygrometer 13 are equipped in the babinet 1, can the variation of Real-time and Dynamic Detection temperature humidity, the shading Plate B lateral walls 4 are equipped with timer 14, facilitate timing.The bottom of the babinet 1 is equipped with saturated salt solution, saturated salt solution Liquid level is less than 10 bottom of supporting block.
As one embodiment of the present invention, four side walls of babinet and bottom are molded by transparent material, Ke Yi Equal culture dish holding is tested on four side walls.
Fig. 3 is the relative air humidity measured with hygrometer at different location inside the device, as seen from the figure, in babinet Moist gradient is established between internal agar-air, it is bigger namely moister apart from the more close then humidity of agar, the bottom of closer to Portion, saturated salt solution water suction, humidity is lower, namely drier.
Embodiment 2
Using apparatus of the present invention culture and detection arabidopsis root hydrotropism's method, include the following steps:
1) the 1/2MS culture mediums (1% agar) after sterilization treatment are fed into culture dish, with sterile hand after cooling Neat 2/3 excision (the 1/3 of culture medium top is used to test) by culture medium lower part of art knife, then 5-7 days quasi- south will be grown 1/3 media surface that mustard seedling moves on to after excision makes Arabidopsis thaliana Seedlings be bonded in media surface along height of seedling direction, and And arabidopsis tip of a root 2-3mm is made to expose culture medium edge;
2) saturated salt solution (saturation K is added in the bottom of box2CO3Solution or saturation CaCl2Solution), saturated salt solution Liquid level is the 1/10-1/5 of box height, and the culture dish for being bonded with Arabidopsis thaliana Seedlings is placed in babinet vertically by fixing piece On side wall, and the Arabidopsis thaliana Seedlings tip of a root is placed vertically downward;
3) barn door B is closed, the light-transmitting plate and barn door A of top of the box are closed, light source is opened, is then placed in babinet Culture in 20-24 DEG C of incubator, observes the growth of Arabidopsis thaliana Seedlings root.
Fig. 4 is arabidopsis root hydrotropism's phenotypic map, and 5 days Arabidopsis thaliana Seedlings of growth are taken pictures after moving on to device 12h, Fig. 4 (a) it is the root of growth under normal operation, Fig. 4 (b) is the root being grown under the gradation of moisture).As shown in Figure 4, Fig. 4 (a) babinets Bottom is distilled water, the flow of water of the agar in culture dish of the air in environment all, so while root is vertical the reason of gravity Growth downwards.Fig. 4 (b) bottoms of box are saturated salt solution, and the flow of water of being air-dried in environment, agar is high, in box house Moist gradient is established between agar-air, it is bigger namely moister apart from the more close then humidity of agar, closer to bottom, satisfy Absorb water with salting liquid, humidity is lower, namely drier, the root of arabidopsis have the characteristics that it is hydrotropic, so ought agarose be moved on to Root bends growth after 6-8h on culture dish, that is, is close to culture medium bottom grown, namely hydrotropism's bending has occurred.
Embodiment 3
The hydrotropism's bending and growth of arabidopsis root under the conditions of different wave length
In dark surrounds, 30 μm of ol m-2s-1Feux rouges, 30 μm of ol m-2s-1Blue light and 100 μm of ol m-2s-1Under white light conditions, Hydrotropism's growth that device and method using the present invention observes arabidopsis root respectively (grows 5 days Arabidopsis thaliana Seedlings to move on to not With the growth for counting root after 12h under the conditions of light wave).
Plant is taken pictures immediately after experiment, measures root long, and assay method is shown in article (the Miao et that inventor delivers al.,Plant Physiology,2018,176(4):Pp.01563.2017), statistical analysis technique uses SPSS13.0Duncan ' s Multiple Range Test (P&lt for statistical analysis;0.05).
The growth of arabidopsis root under the conditions of 1 Different lightwave of table
Arabidopsis kind White light (mm) Dark (mm) Blue light (mm) Feux rouges (mm)
Col-0 0.89±0.02a 1.02±0.05a 0.94±0.03a 1.00±0.06a
Experimental result is shown in Fig. 5 and table 1, it is seen then that arabidopsis under the device culture hydrotropism under white light, blue light and feux rouges Weak, it is apparent (Fig. 5) that plant is in hydrotropism under the environment of dark.
Embodiment 4
Use arabidopsis wild type and the hydrotropic bending of different genes mutant detection root and growth, arabidopsis wild type It is Col-0,;Arabidopsis hydrotropism mutant miz1 and ahr1, amylum body deletion mutant pgm1-1, the quasi- south lost to principal characteristic Mustard mutant:(Arabidopsis thaliana Seedlings of growth 5 days count root after moving on to apparatus of the present invention 12h by aux1-7, pin2 and arf10arf16 Growth).
Plant is taken pictures immediately after experiment, measures root long, and assay method is shown in article (the Miao et that inventor delivers al.,Plant Physiology,2018,176(4):Pp.01563.2017) statistical analysis technique is using use SPSS13.0Duncan ' s Multiple Range Test (P&lt for statistical analysis;0.05).
The growth of arabidopsis wild type and mutant root under 2 dark condition of table
Arabidopsis kind Root long (mm)
Col-0 1.01±0.09a
miz1 0.95±0.07a
ahr1 1.01±0.07a
pgm1-1 0.93±0.04a
aux1-7 1.00±0.08a
pin2 0.89±0.06a
arf10arf16 0.89±0.05a
Experimental result is shown in Fig. 6 and table 2, from experimental result it is found that gravitropism deletion mutant is not only without lacking to water Property, on the contrary, these mutant show the trend (Fig. 6) of hydrotropism's enhancing.
The foregoing is merely the better embodiment of the present invention, all equivalent changes done according to scope of the present invention patent With modification, it should all belong to the covering scope of the present invention.

Claims (10)

1. for cultivating and detecting the hydrotropic device of arabidopsis root, it is characterised in that:It includes an open-topped babinet, case The top of body is equipped with the light-transmitting plate being connect with box body-sliding and barn door A, at least one side of the babinet successively from bottom to up Wall is molded by transparent material, and the barn door B being connect with box body-sliding is covered with outside the molding side wall of transparent material, the babinet Madial wall is equipped with fixing piece, and the fixing piece has the culture dish of Arabidopsis thaliana Seedlings for fixed bonding, upper in the babinet Portion is equipped with light source.
2. according to claim 1 for cultivating and detecting the hydrotropic device of arabidopsis root, it is characterised in that:It is described to open The both sides of mouth are equipped with the first sliding groove and second sliding slot successively from bottom to up, and the light-transmitting plate passes through the first sliding groove and box body-sliding connects It connects, the barn door A is connect by second sliding slot with box body-sliding.
3. according to claim 1 for cultivating and detecting the hydrotropic device of arabidopsis root, it is characterised in that:The case The side wall upper part of body and lower part are equipped with third sliding slot, and the barn door B is connect by third sliding slot with box body-sliding.
4. according to claim 1 for cultivating and detecting the hydrotropic device of arabidopsis root, it is characterised in that:It is described solid It includes supporting block and locating piece to determine part, and the supporting block is located at the madial wall lower part of babinet and is used to support culture dish bottom, institute Locating piece is stated to be located above supporting block and for gripping in the middle part of culture dish.
5. according to claim 4 for cultivating and detecting and the detection hydrotropic device of arabidopsis root, it is characterised in that: The supporting block is two spaced corner blocks, the culture dish bottom both ends for being bonded with Arabidopsis thaliana Seedlings placed vertically point Not against being fixed on two corner blocks.
6. according to claim 1 for cultivating and detecting the hydrotropic device of arabidopsis root, it is characterised in that:The case It is equipped with thermometer and hygrometer in vivo, the lateral wall of the barn door B is equipped with timer.
7. according to claim 1 for cultivating and detecting the hydrotropic device of arabidopsis root, it is characterised in that:The case The bottom of body is equipped with saturated salt solution, and the liquid level of saturated salt solution is less than supporting block bottom.
8. carrying out culture using any devices of claim 1-7 and detecting the hydrotropic method of arabidopsis root, feature It is:It includes the following steps:
1) culture medium after sterilization treatment is poured into culture dish, then the Arabidopsis thaliana Seedlings of growth 5-7 days is moved on into culture base table Face makes Arabidopsis thaliana Seedlings be bonded in media surface along height of seedling direction, and Arabidopsis thaliana Seedlings tip of a root 2-3mm is exposed Culture medium edge;
2)Saturated salt solution is added in the bottom of box, the culture dish for being bonded with Arabidopsis thaliana Seedlings is placed on vertically by fixing piece On box inside wall, and the Arabidopsis thaliana Seedlings tip of a root is placed vertically downward;
3)Barn door B is closed, the light-transmitting plate and barn door A of top of the box are closed, light source is opened, babinet is placed in constant temperature incubation Culture in case, observes the growth of Arabidopsis thaliana Seedlings root.
9. culture according to claim 8 and the detection hydrotropic method of arabidopsis root, it is characterised in that:Step 1)In, 1/2MS culture mediums after sterilization treatment are poured into culture dish, are cut off the 2/3 of culture medium lower part after cooling, culture medium top 1/3 for Arabidopsis thaliana Seedlings to be adhesively fixed.
10. culture according to claim 8 and the detection hydrotropic method of arabidopsis root, it is characterised in that:Step 2)In, The saturated salt solution is saturation K2CO3Solution or saturation CaCl2Solution;Step 3)In, the cultivation temperature is 20-24 DEG C, Incubation time is 6-8 hours.
CN201810834582.1A 2018-07-26 2018-07-26 For cultivating and detecting the hydrotropic device and method of arabidopsis root Withdrawn CN108684519A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810834582.1A CN108684519A (en) 2018-07-26 2018-07-26 For cultivating and detecting the hydrotropic device and method of arabidopsis root
CN201920224619.9U CN209914672U (en) 2018-07-26 2019-02-22 Device for culturing and detecting root orientation water of arabidopsis thaliana
CN201910133093.8A CN109691385A (en) 2018-07-26 2019-02-22 For cultivating and detecting the hydrotropic device and method of arabidopsis root

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810834582.1A CN108684519A (en) 2018-07-26 2018-07-26 For cultivating and detecting the hydrotropic device and method of arabidopsis root

Publications (1)

Publication Number Publication Date
CN108684519A true CN108684519A (en) 2018-10-23

Family

ID=63850182

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201810834582.1A Withdrawn CN108684519A (en) 2018-07-26 2018-07-26 For cultivating and detecting the hydrotropic device and method of arabidopsis root
CN201910133093.8A Pending CN109691385A (en) 2018-07-26 2019-02-22 For cultivating and detecting the hydrotropic device and method of arabidopsis root
CN201920224619.9U Active CN209914672U (en) 2018-07-26 2019-02-22 Device for culturing and detecting root orientation water of arabidopsis thaliana

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201910133093.8A Pending CN109691385A (en) 2018-07-26 2019-02-22 For cultivating and detecting the hydrotropic device and method of arabidopsis root
CN201920224619.9U Active CN209914672U (en) 2018-07-26 2019-02-22 Device for culturing and detecting root orientation water of arabidopsis thaliana

Country Status (1)

Country Link
CN (3) CN108684519A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113348910A (en) * 2021-04-12 2021-09-07 新疆农业科学院农作物品种资源研究所 Device suitable for manually simulating high-temperature growth environment of short-stalk crops and control method
CN116762701A (en) * 2023-07-31 2023-09-19 扬州大学 Device and method for detecting water-based nature of plant roots in near-natural state

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030097789A1 (en) * 2001-11-23 2003-05-29 Laurent Corbesier Hydroponic growing device adapted for the growing and scientific study of arabidopsis thaliana
CN103828701B (en) * 2014-02-18 2016-04-20 中国科学院南京土壤研究所 For cultivating the device grown with observation arabidopsis under near-nature forest state

Also Published As

Publication number Publication date
CN109691385A (en) 2019-04-30
CN209914672U (en) 2020-01-10

Similar Documents

Publication Publication Date Title
CN209572543U (en) A kind of collection of root exudates original position and nearly rhizosphere soil divide root device
Dresbøll et al. Timelapse scanning reveals spatial variation in tomato (Solanum lycopersicum L.) root elongation rates during partial waterlogging
CN101984067B (en) Method of detecting growth promoting effect of plant rhizosphere growth promoting bacteria
CN105993865A (en) Cultivation method for quercus variabilis aseptic seedling
CN105075863A (en) Rapid paeonia rockii reproduction method
CN108684519A (en) For cultivating and detecting the hydrotropic device and method of arabidopsis root
CN108902052A (en) A kind of method of cotten aphid indoor bioassay
CN106942159B (en) Intelligent ladybug culture device and culture method thereof
CN104651474B (en) A kind of rapid identification method of muskmelon powdery mildew biological strain
CN103918611A (en) Simple wheat aphid species assay method
CN205756190U (en) A kind of water planting device for raising seedlings of alfalfa
CN105349432A (en) Puccinia polysora underw single-spore propagation method
CN108935087A (en) A kind of breeding method of Rhododendron fortuneilindl. polyploid
CN208387514U (en) A kind of plant cultivating device for root system of plant two dimension in-situ dynamic observation and measurement
CN104357333A (en) Fusarium oxysporum single spore isolation method for soybean root rot
CN109952869A (en) Potato detoxicating micro potato breeding technique
CN109988815A (en) A method of sharp eyespot resistance is identified using the in vitro stalk of rice
CN201733690U (en) Device for in situ screening and cultivation of transgenosis arabidopsis thaliana sprouts
CN102524185B (en) Foam test tube platform for insect observation experiment and application method thereof
CN214071056U (en) Plant hydroponics device
CN109089656A (en) A kind of monolithic processor controlled plant culture box
CN211241050U (en) Incubator for farming
CN113966717A (en) Method for transplanting large curcuma zedoary tissue culture seedlings in greenhouse
CN104152533B (en) One method growing tobacco seedling phase Rapid identification black shank fastness
CN208462499U (en) For studying the experimental rig of root system kin recognition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20181023

WW01 Invention patent application withdrawn after publication