CN108676265A - 高导热消磁电缆护套材料及制备方法 - Google Patents

高导热消磁电缆护套材料及制备方法 Download PDF

Info

Publication number
CN108676265A
CN108676265A CN201810325550.9A CN201810325550A CN108676265A CN 108676265 A CN108676265 A CN 108676265A CN 201810325550 A CN201810325550 A CN 201810325550A CN 108676265 A CN108676265 A CN 108676265A
Authority
CN
China
Prior art keywords
parts
heat conduction
high heat
agent
chlorosulfonated polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810325550.9A
Other languages
English (en)
Inventor
杜伯学
潘希茂
孔晓晓
李进
侯兆豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201810325550.9A priority Critical patent/CN108676265A/zh
Publication of CN108676265A publication Critical patent/CN108676265A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/32Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with compounds containing phosphorus or sulfur
    • C08L23/34Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with compounds containing phosphorus or sulfur by chlorosulfonation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

本发明涉及电缆护套料,为使电缆护套在保持有较好的物理机械性能的同时,导热能力得到显著提高,本发明高导热消磁电缆护套材料及制备方法,原料重量份数组成为:氯磺化聚乙烯CSM‑40M 100份;补强填充剂陶土10份,氢氧化镁35份,30份炭黑550;防老剂KY405 20份;软化剂58#半精炼石蜡7份,52#氯化石蜡10份;活性剂硬脂酸1份,硫化及其促进剂黄丹20份,六硫化双五亚甲基秋兰姆2.5份,二硫代二苯并噻唑1份,N,N'-间苯撑双马来酰亚胺0.5份;阻燃剂三氧化二锑5份,质量复配比为3:1的1微米氮化硼/30纳米氮化铝颗粒共混物,质量分数为25份。本发明主要应用于电缆护套设计制造。

Description

高导热消磁电缆护套材料及制备方法
技术领域
本发明涉及电缆护套料,特别涉及一种用于舰船消磁电缆的高导热护套材料。
背景技术
地磁场的存在使得钢铁制造的舰船在航行中会由于磁化而成为磁性探测设备的目标,为了保证舰船的安全性和隐蔽性,现代舰船配备有消磁电缆对该磁场进行降低和消除。氯磺化聚乙烯(CSM)凭借优异的机械性能、耐化学腐蚀性能、耐老化性能、耐热性、耐油性、耐燃性及良好的绝缘性能而广泛应用于船用电缆护套中,尤其是舰船用消磁电缆护套。消磁电缆在实际运行中会承载较大的电流负荷,短时载流量可能达到上千安培。满负荷甚至过负荷运行的电缆,导体发热严重,而作为其绝缘与护套的橡胶材料本身导热能力很差,使得热量在电缆内部积累,加速材料热老化,从而降低了电缆使用寿命和安全稳定运行。与此同时,受限于舰船空间及敷设条件,采用更大截面积的电缆或者多根电缆并联使用的方案并不现实,普通的CSM材料已无法满足大容量消磁电缆的需求。因此,通过提高橡胶材料的热导率来提高电缆散热能力,进而在电缆长期允许工作温度下提高其载流量有着重大的意义。
高导热颗粒的填充是提高聚合物材料热导率的有效途径。研究表明,通过在聚合物基体内引入高导热无机颗粒可以显著改善聚合物材料的导热能力。针对消磁电缆运行过程中的发热问题,高导热CSM材料的开发为解决消磁电缆载流量提升问题提供了新的思路。但无机颗粒的引入在提高橡胶材料热导率的同时,往往会降低其机械性能,如何通过调整合适的配方使得高导热CSM材料成功应用于舰船用消磁电缆是当前迫切需要解决的关键问题之一。因此,本发明提出了一种优化的高导热氯磺化聚乙烯配方及制备方法,制得的材料不仅拥有出色的导热能力,还保持着优异的机械性能,有望应用于舰船用消磁电缆。
发明内容
为克服现有技术的不足,本发明旨在提出一种舰船用消磁电缆高导热氯磺化聚乙烯护套料技术方案,其在保持有较好的物理机械性能的同时,导热能力得到显著提高。为此,本发明高导热消磁电缆护套材料,原料重量份数组成为:氯磺化聚乙烯CSM-40M 100份;补强填充剂陶土10份,氢氧化镁35份,30份炭黑550;防老剂KY405 20份;软化剂58#半精炼石蜡7份,52#氯化石蜡10份;活性剂硬脂酸1份,硫化及其促进剂黄丹20份,六硫化双五亚甲基秋兰姆2.5份,二硫代二苯并噻唑1份,N,N'-间苯撑双马来酰亚胺0.5份;阻燃剂三氧化二锑5份,质量复配比为3:1的1微米氮化硼/30纳米氮化铝颗粒共混物,质量分数为25份。
高导热消磁电缆护套材料制备方法,步骤如下:
(1)使用烘箱对氯磺化聚乙烯CSM-40M,高导热微米、纳米颗粒共混体系进行干燥处理;
(2)对高导热颗粒进行表面处理,改善无极颗粒与聚合物基体的相容性;
(3)启动开炼机预热辊筒,设定辊筒温度为合适的温度,调节辊筒间距到位;
(4)将适量氯磺化聚乙烯放在开炼机上进行预热使其变软;
(5)调整开炼机前辊转速和前后辊筒转速比,对氯磺化聚乙烯料进行混炼;
(6)混炼过程中,均匀加入补强填充剂,防老剂,软化活性剂,高导热微米、纳米颗粒共混颗粒;
(7)混炼后,均匀加入硫化剂及促进剂继续混炼;
(8)启动平板硫化机加热至设定温度,将上述混炼胶放于双层聚酯薄膜(PET)间,再整体移入模具热压;
(9)制得舰船用消磁电缆高导热氯磺化聚乙烯护套料。
一个实例中具体步骤如下:
1、取适量高导热微米BN颗粒,尺寸为1μm;高导热纳米AlN颗粒,尺寸为30nm;以及CSM料,放入烤箱中于60℃环境下干燥12h去除材料中的残留水分;
2、将适量无水乙醇和去离子水充分混合,然后将硅烷偶联剂KH550、KH570以复配比2:1加入到用量为填充颗粒质量的1%的混合液中并均匀搅拌,将步骤1中干燥后的高导热混合导热颗粒以微米/纳米复配比3:1加入上述溶液中,在60℃下匀速搅拌3小时,之后采用超声波处理仪对混合溶液分散3小时。经过过滤和洗涤后,将共混颗粒放置于真空干燥箱中100℃下干燥12h;
3、启动开炼机预热辊筒,设定辊筒温度为100℃,调节辊筒间距在1.5~2mm;
4、将适量CSM料置于辊筒间加热15~20min进行软化,调节双辊机前辊转速为20r/min,前后辊筒转速比为1:1.25,对CSM料进行双辊混炼;
5、混炼过程中,均匀加入补强填充剂,防老剂,软化活性剂,与此同时,以质量比为3:1的配方均匀加入微米级高导热氮化硼BN与纳米级高导热氮化铝AlN共混颗粒,逐渐调节双辊间距至3mm,将转速调至25r/min,混炼30min;
6、将硫化剂及促进剂加入到上述混合物中,继续混炼5~10min;
7、将平板硫化机中的模具加热至160℃,称取一定量上述混炼胶料,放置于双层PET薄膜间,再整体移入模具,在160℃、15MPa的条件下热压10~15min;
8、得到用于舰船用消磁电缆高导热氯磺化聚乙烯护套料。
本发明的特点及有益效果是:
通过采用本发明提出的材料组成配比及制备方法,制作的电缆护套具备如下性能:
(1)由附表1可见,高导热氯磺化聚乙烯护套料比传统料热导率有了显著的提升,这意味着改性CSM材料的导热能力有了明显改善。
(2)由附表2可见,高导热氯磺化聚乙烯护套料机械性能优异,满足舰船用消磁电缆的要求。
附图说明:
附图1所示为高导热BN/AlN混合填料的处理流程图;
附图2所示为高导热舰船用CSM护套料的制备流程图。
具体实施方式
本发明采用的技术方案为:
提出了一种舰船用消磁电缆高导热氯磺化聚乙烯护套料的配方,其具体原料组成为(重量份数):氯磺化聚乙烯(CSM-40M)100份;补强填充剂陶土10份,氢氧化镁35份,炭黑(550)30份;防老剂(KY405)20份;软化剂58#半精炼石蜡7份,52#氯化石蜡10份;活性剂硬脂酸1份,硫化及其促进剂黄丹20份,六硫化双五亚甲基秋兰姆(DPTT)2.5份,二硫代二苯并噻唑(DM)1份,N,N'-间苯撑双马来酰亚胺(HAV-2)0.5份;阻燃剂三氧化二锑5份,质量复配比为3:1的1微米氮化硼(BN)/30纳米氮化铝(AlN)颗粒共混物,质量分数为25份。特别地,为了改善氯磺化聚乙烯护套料的导热性能,本发明引入微米、纳米共混体系填充到其基体内作为导热填料,本发明采用的是质量复配比为3:1的BN(1微米)/AlN(30纳米)颗粒共混物,质量分数为25份。
本发明效果如表1、2所示:
表一 不同电缆护套料的热导率
单位 要求值 测量1 测量2 测量3
抗张强度 MPa ≥10.0 14.21 14.11 14.31
断裂伸长率 ≥250 302.3 301.3 305.4
表二 高导热CSM橡胶护套料的机械性能
本发明特别之处在于,为了提高氯磺化聚乙烯护套料的导热性能,经过对材料进行结构设计,采用工艺简便,效果良好的微米、纳米高导热共混颗粒对其进行了填充改性,高导热颗粒填充对聚合物材料导热能力改善的微观原理是填充的颗粒在基体内形成有效的散热通路,使得热量能从导热能力较高的散热通路及时散出,而微米、纳米共混方案的引入,旨在利用高导热微米颗粒形成散热主框架,并借助纳米颗粒巨大的比表面积效应改善填充颗粒与聚合物基体间的界面特性,减少导热载体声子的散射。同时,为了提高高导热填充剂与聚合物基体间的相容性,所有高导热颗粒均采用表面处理剂KH570、KH550进行了处理。在实际配方调控中,为了使得改性CSM材料的物理机械性能符合舰船用消磁电缆的标准,优选方案中减少了陶土使用份数与氧化镁使用份数,增加了软化剂石蜡使用份数。性能测试结果显示,改性CSM材料物理机械性能优异,导热能力有了显著提高,对于提高舰船用消磁电缆的散热能力,进而提高其载流量有重要意义。
该材料的具体制备过程如下:
(1)使用烘箱对氯磺化聚乙烯(CSM-40M),高导热微米、纳米颗粒共混体系进行干燥处理;
(2)对高导热颗粒进行表面处理,改善无极颗粒与聚合物基体的相容性;
(3)启动开炼机预热辊筒,设定辊筒温度为合适的温度,调节辊筒间距到合适位置;
(4)将适量氯磺化聚乙烯放在开炼机上进行预热使其变软。
(5)调整开炼机前辊转速和前后辊筒转速比,对氯磺化聚乙烯料进行混炼。
(6)混炼过程中,均匀加入补强填充剂,防老剂,软化活性剂,高导热微米、纳米颗粒共混颗粒等材料。
(7)混炼一定时间后,均匀加入硫化剂及促进剂继续混炼一定时间。
(8)启动平板硫化机加热至设定温度,将上述混炼胶放于双层PET薄膜间,再整体移入模具,在一定温度、压力条件下热压适当时间。
(9)制得舰船用消磁电缆高导热氯磺化聚乙烯护套料。
优选的舰船用消磁电缆高导热氯磺化聚乙烯护套料制备流程如下:
1、取适量高导热微米BN颗粒,尺寸为1μm;高导热纳米AlN颗粒,尺寸为30nm;以及CSM料。放入烤箱中于60℃环境下干燥12h去除材料中的残留水分;
2、将适量无水乙醇和去离子水充分混合,然后将硅烷偶联剂KH550、KH570以复配比2:1加入到混合液中(用量为填充颗粒质量的1%)并均匀搅拌。将步骤1中干燥后的高导热混合导热颗粒以微米/纳米复配比3:1加入上述溶液中,在60℃下匀速搅拌3小时,之后采用超声波处理仪对混合溶液分散3小时。经过过滤和洗涤后,将共混颗粒放置于真空干燥箱中100℃下干燥12h;
3、启动开炼机预热辊筒,设定辊筒温度为100℃,调节辊筒间距到合适位置(1.5~2mm);
4、将适量CSM料置于辊筒间加热15~20min进行软化。调节双辊机前辊转速为20r/min,前后辊筒转速比为1:1.25,对CSM料进行双辊混炼。
5、混炼过程中,均匀加入补强填充剂,防老剂,软化活性剂,与此同时,以质量比为3:1的配方均匀加入微米级高导热氮化硼BN(1μm)与纳米级高导热氮化铝AlN(30nm)共混颗粒等材料,逐渐调节双辊间距至3mm,将转速调至25r/min,混炼30min。
6、将硫化剂及促进剂加入到上述混合物中,继续混炼5~10min。
7、将平板硫化机中的模具加热至160℃,称取一定量上述混炼胶料,放置于双层PET薄膜间,再整体移入模具,在160℃、15MPa的条件下热压10~15min。
8、得到用于舰船用消磁电缆高导热氯磺化聚乙烯护套料。

Claims (3)

1.一种高导热消磁电缆护套材料,其特征是,原料重量份数组成为:氯磺化聚乙烯CSM-40M 100份;补强填充剂陶土10份,氢氧化镁35份,30份炭黑550;防老剂KY405 20份;软化剂58#半精炼石蜡7份,52#氯化石蜡10份;活性剂硬脂酸1份,硫化及其促进剂黄丹20份,六硫化双五亚甲基秋兰姆2.5份,二硫代二苯并噻唑1份,N,N'-间苯撑双马来酰亚胺0.5份;阻燃剂三氧化二锑5份,质量复配比为3:1的1微米氮化硼/30纳米氮化铝颗粒共混物,质量分数为25份。
2.一种高导热消磁电缆护套材料制备方法,其特征是,步骤如下:
(1)使用烘箱对氯磺化聚乙烯CSM-40M,高导热微米、纳米颗粒共混体系进行干燥处理;
(2)对高导热颗粒进行表面处理,改善无极颗粒与聚合物基体的相容性;
(3)启动开炼机预热辊筒,设定辊筒温度为合适的温度,调节辊筒间距到位;
(4)将适量氯磺化聚乙烯放在开炼机上进行预热使其变软;
(5)调整开炼机前辊转速和前后辊筒转速比,对氯磺化聚乙烯料进行混炼;
(6)混炼过程中,均匀加入补强填充剂,防老剂,软化活性剂,高导热微米、纳米颗粒共混颗粒;
(7)混炼后,均匀加入硫化剂及促进剂继续混炼;
(8)启动平板硫化机加热至设定温度,将上述混炼胶放于双层聚酯薄膜(PET)间,再整体移入模具热压;
(9)制得舰船用消磁电缆高导热氯磺化聚乙烯护套料。
3.如权利要求1所述的高导热消磁电缆护套材料制备方法,其特征是,一个实例中具体步骤如下:
1)、取适量高导热微米BN颗粒,尺寸为1μm;高导热纳米AlN颗粒,尺寸为30nm;以及CSM料,放入烤箱中于60℃环境下干燥12h去除材料中的残留水分;
2)、将适量无水乙醇和去离子水充分混合,然后将硅烷偶联剂KH550、KH570以复配比2:1加入到用量为填充颗粒质量的1%的混合液中并均匀搅拌,将步骤1中干燥后的高导热混合导热颗粒以微米/纳米复配比3:1加入上述溶液中,在60℃下匀速搅拌3小时,之后采用超声波处理仪对混合溶液分散3小时。经过过滤和洗涤后,将共混颗粒放置于真空干燥箱中100℃下干燥12h;
3)、启动开炼机预热辊筒,设定辊筒温度为100℃,调节辊筒间距在1.5~2mm;
4)、将适量CSM料置于辊筒间加热15~20min进行软化,调节双辊机前辊转速为20r/min,前后辊筒转速比为1:1.25,对CSM料进行双辊混炼;
5)、混炼过程中,均匀加入补强填充剂,防老剂,软化活性剂,与此同时,以质量比为3:1的配方均匀加入微米级高导热氮化硼BN与纳米级高导热氮化铝AlN共混颗粒,逐渐调节双辊间距至3mm,将转速调至25r/min,混炼30min;
6)、将硫化剂及促进剂加入到上述混合物中,继续混炼5~10min;
7)、将平板硫化机中的模具加热至160℃,称取一定量上述混炼胶料,放置于双层PET薄膜间,再整体移入模具,在160℃、15MPa的条件下热压10~15min;
8)、得到用于舰船用消磁电缆高导热氯磺化聚乙烯护套料。
CN201810325550.9A 2018-04-12 2018-04-12 高导热消磁电缆护套材料及制备方法 Pending CN108676265A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810325550.9A CN108676265A (zh) 2018-04-12 2018-04-12 高导热消磁电缆护套材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810325550.9A CN108676265A (zh) 2018-04-12 2018-04-12 高导热消磁电缆护套材料及制备方法

Publications (1)

Publication Number Publication Date
CN108676265A true CN108676265A (zh) 2018-10-19

Family

ID=63800367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810325550.9A Pending CN108676265A (zh) 2018-04-12 2018-04-12 高导热消磁电缆护套材料及制备方法

Country Status (1)

Country Link
CN (1) CN108676265A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111205572A (zh) * 2020-01-10 2020-05-29 何先鹏 一种氟聚合物电线电缆料及其制备方法
CN114133674A (zh) * 2021-12-31 2022-03-04 厦门富士特橡塑有限公司 一种氯磺化聚乙烯橡胶及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102382381A (zh) * 2011-11-15 2012-03-21 中天科技装备电缆有限公司 一种高阻水性消磁电缆护套材料及其制备方法
CN102855982A (zh) * 2012-06-20 2013-01-02 江苏远洋东泽电缆股份有限公司 舰船用屏蔽型纵向水密消磁电缆及其制造方法
CN103012973A (zh) * 2012-12-26 2013-04-03 曾晶 纳米高导热复合橡胶
CN103198908A (zh) * 2013-04-01 2013-07-10 株洲时代电气绝缘有限责任公司 一种高导热环氧少胶云母带及其制备方法
CN107573598A (zh) * 2017-08-23 2018-01-12 天津大学 基于纳米掺杂的高压直流电缆附件绝缘匹配提升方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102382381A (zh) * 2011-11-15 2012-03-21 中天科技装备电缆有限公司 一种高阻水性消磁电缆护套材料及其制备方法
CN102855982A (zh) * 2012-06-20 2013-01-02 江苏远洋东泽电缆股份有限公司 舰船用屏蔽型纵向水密消磁电缆及其制造方法
CN103012973A (zh) * 2012-12-26 2013-04-03 曾晶 纳米高导热复合橡胶
CN103198908A (zh) * 2013-04-01 2013-07-10 株洲时代电气绝缘有限责任公司 一种高导热环氧少胶云母带及其制备方法
CN107573598A (zh) * 2017-08-23 2018-01-12 天津大学 基于纳米掺杂的高压直流电缆附件绝缘匹配提升方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111205572A (zh) * 2020-01-10 2020-05-29 何先鹏 一种氟聚合物电线电缆料及其制备方法
CN114133674A (zh) * 2021-12-31 2022-03-04 厦门富士特橡塑有限公司 一种氯磺化聚乙烯橡胶及其制备方法

Similar Documents

Publication Publication Date Title
Yang et al. Mussel-inspired modification of boron nitride for natural rubber composites with high thermal conductivity and low dielectric constant
CN104629187B (zh) 一种多功能性聚丙烯复合材料及其制备方法
Zhuang et al. Monomer casting nylon/graphene nanocomposite with both improved thermal conductivity and mechanical performance
CN106674657B (zh) 一种高抗湿滑抗静电低疲劳温升轮胎胎面胶材料及其制备方法
CN110591209A (zh) 含均分散、高取向石墨烯的聚合物导热薄膜及其制备方法
CN104559145A (zh) 一种高韧性高导热高分子材料及其制备方法
Gu et al. Octadecylammonium montmorillonite/natural rubber/cis-1, 4-polybutadiene nanocomposites
CN108676265A (zh) 高导热消磁电缆护套材料及制备方法
CN110776745A (zh) 一种热界面材料的制备方法
Fu et al. Enhanced thermal conduction of hybrid filler/polydimethylsiloxane composites via a continuous spatial confining process
WO2022121547A1 (zh) 一种高导热的增强聚苯硫醚复合材料及其制备方法
CN104788951A (zh) 一种led高导热性能复合材料及制备方法
Jiang et al. Effect of micro-scale and nano-scale boron nitride on thermal property of silicone rubber via experimental and simulation method
Song et al. Effect of an interface layer on thermal conductivity of polymer composites studied by the design of double-layered and triple-layered composites
Meng et al. Investigation on preparation, thermal, and mechanical properties of carbon fiber decorated with hexagonal boron nitride/silicone rubber composites for battery thermal management
CN112250917A (zh) 一种高导热天然橡胶复合材料的制备方法
Raji et al. Kaolin modified with sodium salt of rubber seed oil as a reinforcing filler for blends of natural rubber, polybutadiene rubber and acrylonitrile–butadiene rubber
Liu et al. Synthesis of novel nanocomposites reinforced with 3D graphene/highly-dispersible nanodiamonds nano-hybrids
CN112552579B (zh) 有机双重包覆黑磷纳米片协效无卤阻燃聚乙烯组合物及其制备方法
CN112126125B (zh) 一种复合型塑料阻燃剂的制备方法
CN107446368B (zh) 以硅烷改性勃姆石为阻燃剂的木塑复合材料及其制备方法
Wang et al. Build a rigid–flexible graphene/silicone interface by embedding SiO2 for adhesive application
Li et al. Fabrication of graphite/MgO-reinforced poly (vinyl chloride) composites by mechanical activation with enhanced thermal properties
CN115505267B (zh) 一种以高苯基含量甲基乙烯基苯基硅橡胶制备电子封装散热用硅橡胶垫片的方法
CN106589760A (zh) 一种酚醛树脂无烟阻燃数据线护套料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181019

WD01 Invention patent application deemed withdrawn after publication