CN108676127B - 一种具有高强度、高弹性、导电性和温控可逆黏附性的纳米复合水凝胶的制备方法 - Google Patents

一种具有高强度、高弹性、导电性和温控可逆黏附性的纳米复合水凝胶的制备方法 Download PDF

Info

Publication number
CN108676127B
CN108676127B CN201810511222.8A CN201810511222A CN108676127B CN 108676127 B CN108676127 B CN 108676127B CN 201810511222 A CN201810511222 A CN 201810511222A CN 108676127 B CN108676127 B CN 108676127B
Authority
CN
China
Prior art keywords
hydrogel
pdaea
gel
temperature
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810511222.8A
Other languages
English (en)
Other versions
CN108676127A (zh
Inventor
伍国琳
邸祥
孙平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201810511222.8A priority Critical patent/CN108676127B/zh
Publication of CN108676127A publication Critical patent/CN108676127A/zh
Application granted granted Critical
Publication of CN108676127B publication Critical patent/CN108676127B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/04Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonamides, polyesteramides or polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/08Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/04Measuring adhesive force between materials, e.g. of sealing tape, of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/08Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0067Fracture or rupture

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Dispersion Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Medicinal Preparation (AREA)

Abstract

一种具有高强度、高弹性、导电性和温控可逆黏附性的纳米复合水凝胶的制备方法,原料包括多巴胺、天冬氨酸,Laponite XLG,NIPAm等。制备包括以下步骤:1)多巴胺改性的聚天冬酰胺(PDAEA)的合成;2)PDAEA/PNIPAm纳米复合水凝胶的制备;本发明的优点在于:多巴胺的邻苯二酚结构使凝胶具有良好生物黏附性;无机粘土作为物理交联点使该凝胶具有优异力学性能,PNIPAm的温敏性可用于实现凝胶的温控可逆黏附性,并且凝胶还具有优异的导电性能。该凝胶制备简单,与传统的水凝胶相比,具有优异力学性能,温控可逆黏附性及导电等性能,在创面修复、药物释放、组织工程和可穿戴电子设备等领域具应用前景。

Description

一种具有高强度、高弹性、导电性和温控可逆黏附性的纳米复 合水凝胶的制备方法
技术领域
本发明属于功能高分子材料领域,特别是涉及一种具有高强度、高弹性、导电性和温控可逆黏附性的纳米复合水凝胶的制备方法。
背景技术
水凝胶是一类具有三维交联网络结构,并且有高含水量的特殊功能材料,在许多领域有着广泛的应用。在生物医用领域,水凝胶可用于创面修复、药物释放、组织工程、电子皮肤及可穿戴设备等。传统水凝胶力学性能较差,缺乏生物黏附性及导电性等功能,极大的限制了它的实际应用。通过化学交联或纳米复合的方式可以有效改善水凝胶的力学性能。但是化学交联水凝胶虽具有较强的力学强度,却无法生物降解及其本身可能具有的生理毒性,不利于作为生物医用材料加以应用。锂藻土是粒径为30nm左右的具有优异生物相容性,无毒的无机纳米粘土材料,用其制备的纳米复合水凝胶可有效提高凝胶的力学强度,并保持良好的生物相容性及生物可降解性。
天然贻贝往往具有很强的黏结力。基于贻贝仿生的粘附剂一直是潜在的生物医用材料。研究表明,贻贝分泌的超强粘液即贻贝粘附蛋白中含量较高的多巴胺是其粘附作用的主要成分,而其中的有效结构就是邻苯二酚。它可以通过形成氢键和与巯基、氨基等官能团形成共价键等方式,实现良好的生物粘附作用。
开发同时具有高强度、高韧性和良好生物粘附性的水凝胶材料在可穿戴设备、软体机器人、人造皮肤、创伤辅料等领域具有广泛的市场应用前景。
发明内容
本发明的目的是解决现有水凝胶力学性能较差,缺乏生物黏附性及导电性的问题,提供一种具有高强度、高弹性、导电性和温控可逆粘性的纳米复合水凝胶的制备方法。
该方法合成了多巴胺改性的聚天冬酰胺(PDAEA)线性高分子,并以锂藻土(Laponite)作为交联剂,异丙基丙烯酰胺(NIPAm)作为单体,制备纳米复合水凝胶。无机粘土Laponite作为物理交联点,使水凝胶具有优异的力学强度;多巴胺基团的引入,使水凝胶具有良好的生物粘附性。由于PNIPAm水凝胶是典型的温敏性凝胶,该方法制备的纳米复合凝胶充分发挥了Laponite,NIPAm,PDAEA三者的协同作用,通过控制温度可以有效地调控水凝胶的黏附性能,并且此水凝胶作为粘合剂可重复使用,黏附性能保持不变。
本发明的技术方案:
一种具有高强度、高弹性、导电性和温控可逆粘附性的纳米复合水凝胶制备方法,包括以下步骤:
步骤1)多巴胺改性的聚天冬酰胺(PDAEA)的制备
步骤1.1)取聚琥珀酰亚胺(PSI)于两口烧瓶中,加入DMSO使其溶解;
步骤1.2)称取多巴胺盐酸盐溶于DMSO中,再加入三乙胺(TEA)超声溶解,然后将该混合溶液加入上述步骤1.1)盛有PSI/DMSO的烧瓶中,加热至40℃-100℃,回流反应12-72h;
其中PSI中琥珀酰亚胺重复单元,多巴胺盐酸盐,三乙胺的物质的量的比为1:1:1;1:2:2;或1:4:4。最终反应体系中PSI的浓度为1mol/L。
步骤1.3)反应结束后,把温度调节至40℃,加入过量乙醇胺(乙醇胺与PSI中琥珀酰亚胺重复单元的物质的量的比为2:1-4:1),继续反应4.5h后,将反应液倒入丙酮中沉淀;然后进行离心,干燥即得到多巴胺改性的聚天冬酰胺(PDAEA)固体粉末;丙酮的体积为反应液的20倍。
步骤2)PDAEA纳米复合水凝胶的制备
步骤2.1)在盛有水的反应瓶中,依次加入焦磷酸钠,锂藻土(Laponite XLG),异丙基丙烯酰胺(NIPAm)单体,混合均匀后,加入四甲基乙二胺(TEMED),搅拌1h;
步骤2.2)将上述步骤1)合成的PDAEA加入步骤2.1)的溶液中;
步骤2.3)将过硫酸钾(KPS)溶于脱气的去离子水中,再加入上述步骤2.2)的溶液中,搅拌5分钟,制成水凝胶前体溶液;
步骤2.4)然后将步骤2.3)的前体溶液转移到硅胶模具中,室温反应24h,得到PDAEA纳米复合水凝胶;
其中,NIPAm、KPS、TEMED的物质的量比为:100:0.426:0.735,PDAEA、NIPAM、水的重量比为1:10:100或1:20:100(w/w),锂藻土和焦磷酸钠的重量比为1:0.11(w/w)。
所述聚琥珀酰亚胺(PSI)的分子量为5000-50000,多巴胺改性的聚天冬酰胺(PDAEA)的分子量为6000-60000。
所制备纳米复合水凝胶的性能检测方法,步骤如下:
1)将制备的水凝胶前体溶液加入直径为6mm的玻璃管中,室温放置24h使其固化形成水凝胶,取出圆柱状水凝胶,用剪刀将凝胶棒剪成3厘米左右的长度,用万能拉力机以50mm/min的速度拉伸,记录最大应力和断裂伸长率,根据公式
Figure BDA0001672680310000031
计算其抗拉强度。σ为拉伸试验断裂前的最大力(N),S为凝胶横截面积。
2)将猪皮剪成2.5×3×1.2cm,在37℃的磷酸缓冲盐(PBS)溶液中浸泡1h,用氰基丙烯酸酯类粘合剂将猪皮粘附在玻璃板上,固化30min,将制备的水凝胶剪成2.7×3.2×1.2cm放在猪皮上,盖上另一块同样粘附猪皮的玻璃板,形成完整的模型,用100g砝码压15min,用万能拉力机以5mm/min的速度拉伸,记录最大力,计算相关粘合力。
3)将制备的水凝胶剪成2.7×3.2×1.2cm放在载玻片上,盖上另一块同样载玻片,形成完整的模型,用100g砝码压15min。将其放入温度控制装置中,载玻片一侧固定温度探头,记录实验温度,用万能拉力机以5mm/min的速度拉伸,记录最大力,计算相关粘合力。将该凝胶重新粘在载玻片上,逐渐升高温度,凝胶失水,粘性逐渐减弱直至消失。降低温度,利用拉力机再次测试其粘附性能,重复该试验5次。
4)将制备的直径为10mm,高度为12mm的圆柱形凝胶,放置在电源电压为3V,具有LED灯的电路中,检测其导电性能。作为对照组,将冻干后的凝胶同样置于电源中,检测其干胶的导电性能。
本发明的优点和有益效果是:
该方法制备的纳米复合水凝胶具有高强度、高弹性、导电性能和温控可逆生物黏附性能。在创面修复、药物释放、组织工程及可穿戴电子设备领域可发挥重要作用,应用前景广阔。
附图说明
图1为纳米复合水凝胶的力学性能检测。其中a,b分别为凝胶拉伸前后的示意图,c为凝胶的拉伸应力-应变曲线。
图2为纳米复合水凝胶的生物粘性检测。其中,a为水凝胶粘附性能检测样品图,b为以玻璃、硅胶片和猪皮为基底的不同PDAEA浓度的粘性强度图,c为以猪皮为基底的循环粘性强度图。
图3为纳米复合水凝胶的温控可逆粘性检测。其中,a为不同温度下水凝胶粘性图,b为温度控制凝胶粘性的循环图。
图4为纳米复合水凝胶的导电性能检测。其中,a为干胶的导电性能图,b为圆柱凝胶的导电性能图。
具体实施方式
实施例1:
一种具有高强度、高弹性、导电性和温控可逆粘附性的纳米复合水凝胶制备方法,包括以下步骤:
步骤1)多巴胺改性的聚天冬酰胺(PDAEA)的制备
步骤1.1)取0.97g聚琥珀酰亚胺(PSI)于两口烧瓶中,加入5mlDMSO使其溶解;
步骤1.2)称取1.89g多巴胺盐酸盐溶于5ml DMSO中,再加入5ml三乙胺(TEA)超声溶解,然后将该混合溶液加入上述步骤1.1)盛有PSI/DMSO的烧瓶中,加热至60℃,回流反应24h;
步骤1.3)反应结束后,把温度调节至40℃加入2ml乙醇胺,继续反应4.5h后,将反应液倒入400ml丙酮中沉淀;然后进行离心,干燥即得到多巴胺改性的聚天冬酰胺(PDAEA)固体粉末;
步骤2)PDAEA纳米复合水凝胶的制备
步骤2.1)在盛有10ml水的反应瓶中,依次加入55mg焦磷酸钠,500mg锂藻土(Laponite XLG),1g异丙基丙烯酰胺(NIPAM)单体,混合均匀后,加入20ul四甲基乙二胺(TEMED),搅拌1h;
步骤2.2)将上述步骤1)合成的100mg PDAEA加入步骤2.1)的溶液中;
步骤2.3)将10mg过硫酸钾(KPS)溶于0.3ml脱气的去离子水中,再加入上述步骤2.2)的溶液中,搅拌5分钟,制成水凝胶前体溶液;
步骤2.4)然后将步骤2.3)的前体溶液转移到硅胶模具中,室温反应24h,得到PDAEA纳米复合水凝胶。
实施例2:
一种具有高强度、高弹性、导电性和温控可逆粘附性的纳米复合水凝胶制备方法,包括以下步骤:
步骤1)多巴胺改性的聚天冬酰胺(PDAEA)的制备
步骤1.1)取1.94g聚琥珀酰亚胺(PSI)于两口烧瓶中,加入4ml DMSO使其溶解;
步骤1.2)称取3.78g多巴胺盐酸盐溶于5ml DMSO中,再加入10ml三乙胺(TEA)超声溶解,然后将该混合溶液加入上述步骤1.1)盛有PSI/DMSO的烧瓶中,加热至70℃,回流反应12h;
步骤1.3)反应结束后,把温度调节至40℃加入5ml乙醇胺,继续反应5h后,将反应液倒入600ml丙酮中沉淀;然后进行离心,干燥即得到多巴胺改性的聚天冬酰胺(PDAEA)固体粉末;
步骤2)PDAEA纳米复合水凝胶的制备
步骤2.1)在盛有10ml水在反应瓶中,依次加入82.5mg焦磷酸钠,750mg锂藻土(Laponite XLG),1g异丙基丙烯酰胺(NIPAM)单体,氮气氛围下鼓泡30min混合均匀后,加入20ul四甲基乙二胺(TEMED),搅拌1h;
步骤2.2)将上述步骤1)合成的30mg PDAEA加入步骤2.1)的溶液中;
步骤2.3)将10mg过硫酸钾(KPS)溶于0.5ml脱气的去离子水中,再加入上述步骤2.2)的溶液中,搅拌5分钟,制成水凝胶前体溶液;
步骤2.4)然后将步骤2.3)的前体溶液转移到硅胶模具中,室温反应24h,得到PDAEA纳米复合水凝胶。
实施例3:
一种具有高强度、高弹性、导电性和温控可逆粘附性的纳米复合水凝胶制备方法,包括以下步骤:
步骤1)多巴胺改性的聚天冬酰胺(PDAEA)的制备
步骤1.1)取0.97g聚琥珀酰亚胺(PSI)于两口烧瓶中,加入4ml DMSO使其溶解;
步骤1.2)称取1.89g多巴胺盐酸盐溶于5ml DMSO中,再加入5ml三乙胺(TEA)超声溶解,然后将该混合溶液加入上述步骤1.1)盛有PSI/DMSO的烧瓶中,加热至60℃,回流反应24h;
步骤1.3)反应结束后,把温度调节至40℃加入2ml乙醇胺,继续反应5h后,将反应液倒入500ml丙酮中沉淀;然后进行离心,干燥即得到多巴胺改性的聚天冬酰胺(PDAEA)固体粉末;
步骤2)PDAEA纳米复合水凝胶的制备
步骤2.1)在盛有10ml水在反应瓶中,依次加入135mg焦磷酸钠,800mg锂藻土(Laponite XLG),1g异丙基丙烯酰胺(NIPAM)单体,氮气氛围下鼓泡30min混合均匀后,再加入500mg锂藻土,搅拌30min,加入20ul四甲基乙二胺(TEMED),搅拌1h;
步骤2.2)将上述步骤1)合成的50mg PDAEA加入步骤2.1)的溶液中;
步骤2.3)将20mg过硫酸钾(KPS)溶于0.5ml脱气的去离子水中,再加入上述步骤2.2)的溶液中,搅拌5分钟,制成水凝胶前体溶液;
步骤2.4)然后将步骤2.3)的前体溶液转移到硅胶模具中,室温反应24h,得到PDAEA纳米复合水凝胶。
纳米复合水凝胶的性能检测:
1)纳米复合水凝胶的力学性能检测
将制备的水凝胶溶液放到直径为6mm的玻璃管中,室温放置24h成型,用剪刀将凝胶裁剪成3厘米左右长度,数显卡尺量夹具中凝胶的距离,用万能拉力机(深圳三思纵横科技股份有限公司)以50mm/min的速度拉伸,检测其力学性能,记录最大应力和断裂伸长率。检测结果参见图1,图中:a拉伸前的凝胶,间距长度为20mm;b拉伸过程中的凝胶,长度可达到112mm;c PDAEA凝胶的应力-应变曲线,该水凝胶拉伸强度可达到70KPa,断裂伸长率可达到500%,是一种具有优异的力学性能的水凝胶材料。
2)纳米复合水凝胶的粘性检测
将猪皮剪成2.5×3×1.2cm,在37℃的磷酸缓冲盐(PBS)溶液中浸泡1h,用氰基丙烯酸酯类粘合剂将猪皮粘附在玻璃板上,固化30min,将制备的水凝胶剪成2.7×3.2×1.2cm放在猪皮上,盖上另一块同样粘附猪皮的玻璃板,形成完整的模型,用100g砝码压15min,用万能拉力机(深圳三思纵横科技股份有限公司)以5mm/min的速度拉伸,记录最大力,检测其粘附性能。每个样品测5次求平均值。检测结果参见图2,图中:a为水凝胶粘附性能检测样品图,b为以玻璃、硅胶片和猪皮为基底的不同PDAEA浓度的粘性强度图。c为以猪皮为基底的循环粘性强度图。从结果中可以看出,该凝胶对猪皮表面的粘附力可达到5KPa左右,并且多次循环后粘附强度保持不变,具有良好的生物粘附性及可重复利用性。
3)纳米复合水凝胶的温控可逆黏附性检测。
将制备的水凝胶剪成2.7×3.2×1.2cm放在载玻片上,盖上另一块同样载玻片,形成完整的模型,用100g砝码压15min。将其放入温度控制装置中,载玻片一侧固定温度探头,记录实验温度,用万能拉力机(深圳三思纵横科技股份有限公司)以5mm/min的速度拉伸,记录最大力,检测其粘附性能。将该凝胶重新粘在载玻片上,逐渐升高温度,凝胶失水,粘性逐渐减弱直至消失。降低温度,粘性回复,利用拉力机再次测试其粘附性能,重复该试验5次。检测结果参见图3,图中:a为不同温度下水凝胶粘性的样品图,b为温度控制凝胶粘性的循环粘性强度图。从结果中可以看出,该凝胶具有明显的温度响应性,其粘附性具有温度依赖性,可以通过温度有效控制凝胶粘性,并且多次循环后粘附强度保持不变,对玻璃的粘附力可达到12KPa左右,具有良好的温控可逆黏附性能。
4)纳米复合水凝胶的导电性能检测。
将制备的直径为10mm,高度为12mm的圆柱形凝胶,放置在电源电压为3V,具有LED灯的电路中,检测其导电性能。作为对照组,将其冻干后的凝胶同样置于电路中,检测其干胶的导电性能。检测结果参见图4,图中:a为干胶的导电性能图,图b为圆柱凝胶的导电性能图。从结果中可以看出,冻干的凝胶,失去可以移动的导电电荷,不具备导电性能,而未冻干的凝胶由于其高含水量,具有优异的导电性能,因此能够在电子皮肤及可穿戴电子设备领域有潜在的应用价值。

Claims (2)

1.一种具有高强度、高弹性、导电性和温控可逆黏附性的纳米复合水凝胶的制备方法,包括以下步骤:
步骤1)多巴胺改性的聚天冬酰胺(PDAEA)的制备
步骤1.1)取聚琥珀酰亚胺(PSI)于两口烧瓶中,加入DMSO使其溶解;
步骤1.2)称取多巴胺盐酸盐溶于DMSO中,再加入三乙胺(TEA)超声溶解,然后将该混合溶液加入上述步骤1.1)盛有PSI/DMSO的烧瓶中,加热至40-100℃,回流反应12-72h;
其中PSI中琥珀酰亚胺重复单元,多巴胺盐酸盐,三乙胺的物质的量的比为1:1:1;1:2:2;或1:4:4;最终反应体系中琥珀酰亚胺重复单元的浓度为1mol/L;
步骤1.3)反应结束后,把温度调节至40℃加入过量乙醇胺,乙醇胺与PSI中琥珀酰亚胺重复单元的物质的量的比为2:1-4:1,继续反应4.5h后,将反应液倒入丙酮中沉淀;然后进行离心,干燥即得到多巴胺改性的聚天冬酰胺(PDAEA)固体粉末;丙酮的体积为反应液的20倍;
步骤2)PDAEA纳米复合水凝胶的制备
步骤2.1)在盛有水的反应瓶中,依次加入焦磷酸钠,锂藻土(Laponite XLG),异丙基丙烯酰胺(NIPAm)单体,混合均匀后,加入四甲基乙二胺(TEMED),搅拌1h;
步骤2.2)将上述步骤1)合成的PDAEA加入步骤2.1)的溶液中;
步骤2.3)将过硫酸钾(KPS)溶于脱气的去离子水中,再加入上述步骤2.2)的溶液中,搅拌5分钟,制成水凝胶前体溶液;
步骤2.4)然后将步骤2.3)的前体溶液转移到硅胶模具中,室温反应24h,得到PDAEA纳米复合水凝胶;
其中,NIPAm、KPS、TEMED的物质的量比为:100:0.426:0.735,PDAEA、NIPAM、水的重量比为1:10:100或1:20:100(w/w),锂藻土和焦磷酸钠的重量比为1:0.11(w/w)。
2.根据权利要求1所述具有高强度、高弹性、导电性和温控可逆黏附性的纳米复合水凝胶的制备方法,其特征在于:所述聚琥珀酰亚胺(PSI)的分子量为5000-50000,多巴胺改性的聚天冬酰胺(PDAEA)的分子量为6000-60000。
CN201810511222.8A 2018-07-02 2018-07-02 一种具有高强度、高弹性、导电性和温控可逆黏附性的纳米复合水凝胶的制备方法 Expired - Fee Related CN108676127B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810511222.8A CN108676127B (zh) 2018-07-02 2018-07-02 一种具有高强度、高弹性、导电性和温控可逆黏附性的纳米复合水凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810511222.8A CN108676127B (zh) 2018-07-02 2018-07-02 一种具有高强度、高弹性、导电性和温控可逆黏附性的纳米复合水凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN108676127A CN108676127A (zh) 2018-10-19
CN108676127B true CN108676127B (zh) 2020-07-07

Family

ID=63808299

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810511222.8A Expired - Fee Related CN108676127B (zh) 2018-07-02 2018-07-02 一种具有高强度、高弹性、导电性和温控可逆黏附性的纳米复合水凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN108676127B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109881476B (zh) * 2019-03-19 2021-12-28 嘉兴学院 基于聚天冬氨酸纳米纤维膜的湿度驱动器及其制备方法
CN110101898B (zh) * 2019-04-04 2020-05-22 华南理工大学 双组分原位注射型聚天冬酰胺仿生组织粘合剂及其制备方法
CN112442195B (zh) * 2019-09-05 2023-01-13 中国科学院宁波材料技术与工程研究所 纳米水凝胶的制备方法及应用
CN111205482B (zh) * 2020-02-25 2022-05-27 南开大学 一种具有电场刺激响应性和聚集诱导发光特性的高强韧自修复水凝胶的制法
CN113295497A (zh) * 2021-06-09 2021-08-24 辽宁工程技术大学 一种成层透明黏土的制备方法
CN114668888A (zh) * 2022-03-25 2022-06-28 南京师范大学 一种光固化两性离子生物粘合剂及其制备方法
CN116726241B (zh) * 2023-08-11 2023-10-20 江苏亨瑞生物医药科技有限公司 一种胶原蛋白止血抗菌敷料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2916727A1 (en) * 2016-01-06 2017-07-06 Hongbo Zeng Block polymer for a self-healing hydrogel
CN107602763A (zh) * 2017-09-30 2018-01-19 西南交通大学 一种具有抗冻/抗热性能的导电自粘附水凝胶的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101563398B1 (ko) * 2012-05-29 2015-10-26 한국교통대학교산학협력단 접착특성을 갖는 항균 유기 공중합체, 그 유기 공중합체의 제조방법, 그 유기화합물이 코팅된 항균 코팅필름 및 그 코팅필름의 코팅방법
CN105906821B (zh) * 2016-04-26 2018-08-24 西南交通大学 一种自粘附导电水凝胶的制备方法
CN106075553A (zh) * 2016-07-12 2016-11-09 四川大学 一种生物医用粘合剂及其制备方法
CN106693039B (zh) * 2017-01-24 2019-10-01 南开大学 一种具有良好生物粘附性的医用水凝胶的制备方法
CN107987286A (zh) * 2017-10-31 2018-05-04 深圳大学 多重响应型自修复水凝胶材料及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2916727A1 (en) * 2016-01-06 2017-07-06 Hongbo Zeng Block polymer for a self-healing hydrogel
CN107602763A (zh) * 2017-09-30 2018-01-19 西南交通大学 一种具有抗冻/抗热性能的导电自粘附水凝胶的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Bio-inspired smart hydrogel with temperature-dependent properties and enhanced cell attachment";Kim, Young-Jin et al.,;《JOURNAL OF MATERIALS CHEMISTRY B》;20160209;第4卷(第9期);第1740-1746页 *
"掺杂聚多巴胺颗粒近红外响应型智能水凝胶的研究";张晏宁;《中国优秀硕士学位论文全文数据库医药卫生科技辑》;20170215;第2017年卷(第02期);E080-33页 *

Also Published As

Publication number Publication date
CN108676127A (zh) 2018-10-19

Similar Documents

Publication Publication Date Title
CN108676127B (zh) 一种具有高强度、高弹性、导电性和温控可逆黏附性的纳米复合水凝胶的制备方法
Xu et al. Tough, adhesive and conductive polysaccharide hydrogels mediated by ferric solution
Song et al. A robust regenerated cellulose-based dual stimuli-responsive hydrogel as an intelligent switch for controlled drug delivery
Di et al. Bioinspired, nucleobase-driven, highly resilient, and fast-responsive antifreeze ionic conductive hydrogels for durable pressure and strain sensors
Zhang et al. Fatigue of double-network hydrogels
Xia et al. A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring
Bai et al. Tetradic double-network physical crosslinking hydrogels with synergistic high stretchable, self-healing, adhesive, and strain-sensitive properties
Zhang et al. Stretchable, self-healing and adhesive sodium alginate-based composite hydrogels as wearable strain sensors for expansion–contraction motion monitoring
Lee et al. Mechanochemical functionalization of disulfide linked hydrogels
Shi et al. Tough and self-healing chitosan/poly (acrylamide-co-acrylic acid) double network hydrogels
CN106397646A (zh) 高强度超分子水凝胶及其制备方法和应用
JP2010095586A (ja) 有機・無機複合ヒドロゲルの成形方法
Liu et al. Stretchable, self-adhesive, conductive, anti-freezing sodium polyacrylate-based composite hydrogels for wearable flexible strain sensors
Qin et al. Nanomaterials-enhanced, stretchable, self-healing, temperature-tolerant and adhesive tough organohydrogels with long-term durability as flexible sensors for intelligent motion-speech recognition
Deng et al. Chondroitin sulfate hydrogels based on electrostatic interactions with enhanced adhesive properties: exploring the bulk and interfacial contributions
Zeng et al. Super stretchability, strong adhesion, flexible sensor based on Fe3+ dynamic coordination sodium alginate/polyacrylamide dual-network hydrogel
Huang et al. Ultra-stretchable and self-healable hydrogel driven by sorbitol for flexible strain sensors with anti-freezing and self-adhesive
Zhang et al. Metal-coordinated amino acid hydrogels with ultra-stretchability, adhesion, and self-healing properties for wound healing
Chen et al. Skin-adhesive lignin-grafted-polyacrylamide/hydroxypropyl cellulose hydrogel sensor for real-time cervical spine bending monitoring in human-machine Interface
Heo et al. Polyelectrolyte-derived adhesive, super-stretchable hydrogel for a stable, wireless wearable sensor
CN112961296B (zh) 一种有机凝胶及其制备方法和应用
Zhang et al. Silk fibroin enhanced double-network hydrogels with extreme stretchability, self-adhesive and biocompatibility for ultrasensitive strain sensors
CN110144183A (zh) 一种可反复使用且不伤基材表面的水凝胶胶黏剂及其制备和应用
Wu et al. 3D Printed Silk Fibroin‐Based Hydrogels with Tunable Adhesion and Stretchability for Wearable Sensing
Chao et al. Facile and fast preparation of stretchable, self-adhesive, moisturizing, antifreezing and conductive tough hydrogel for wearable strain sensors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200707

Termination date: 20210702

CF01 Termination of patent right due to non-payment of annual fee