CN108673495A - 一种力/位协调的多臂机器人柔顺控制方法 - Google Patents

一种力/位协调的多臂机器人柔顺控制方法 Download PDF

Info

Publication number
CN108673495A
CN108673495A CN201810330956.6A CN201810330956A CN108673495A CN 108673495 A CN108673495 A CN 108673495A CN 201810330956 A CN201810330956 A CN 201810330956A CN 108673495 A CN108673495 A CN 108673495A
Authority
CN
China
Prior art keywords
mechanical arm
arm
pose
expected
synchronous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810330956.6A
Other languages
English (en)
Other versions
CN108673495B (zh
Inventor
董洋洋
张子建
韩少杰
朱新董
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201810330956.6A priority Critical patent/CN108673495B/zh
Publication of CN108673495A publication Critical patent/CN108673495A/zh
Application granted granted Critical
Publication of CN108673495B publication Critical patent/CN108673495B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1605Simulation of manipulator lay-out, design, modelling of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1651Programme controls characterised by the control loop acceleration, rate control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1671Programme controls characterised by programming, planning systems for manipulators characterised by simulation, either to verify existing program or to create and verify new program, CAD/CAM oriented, graphic oriented programming systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

本发明涉及一种力/位协调的多臂机器人柔顺控制方法,属于机器人控制领域。本发明在机械臂的大闭环周期中采用力同步协调控制方法,在小闭环周期中采用位姿同步协调控制的方法,从而实现多机械臂的力/位同步协调控制;通过采用力同步控制的思想,建立多机械臂之间的力同步控制器,保证了力协调的精确性;在机械臂控制的小闭环内采用位姿同步控制的思想,建立多机械臂之间的位姿同步控制器,提高了系统的响应频率,缩短了响应周期,提高了位姿协调控制精度,从而实现基于力/位协调的多机械臂柔顺控制方法。本发明在确定不同机械臂之间的力协调的同时,保证了位置的同步协调关系。

Description

一种力/位协调的多臂机器人柔顺控制方法
技术领域
本发明涉及机器人的控制,尤其涉及一种力/位协调的多臂机器人柔顺控制方法。
背景技术
机器人在多机械臂力耦合情况下操作完成一个操作任务时,为了保证机械臂和操作物体的安全性,需要采用柔顺控制或者力控制的方式实现力协调,但是由于力闭环的响应周期较长,而实际上机械臂的内环大都采用位置控制的模式,因此,机械臂的响应时间会受到影响,因此,如果能够同时保证多机械臂协调操作过程中力的同步性,同时也保证位姿的同步性,这将会提高机械臂的协调操作能力。
近年来,随着力控制的需求越来越大,机器人的操作任务需求也从单一的位置控制需求,逐渐发展为位置和力的同时需求的阶段。尤其是在多臂力耦合完成操作任务的情况下,多臂力/位协调控制变得更加重要。
多臂力/位协调控制可以有效保证多机械臂力的协调关系和位,但是仅有力的协调关系,机械臂的位姿精度将无法保证,降低了多机械臂的协调控制性能。而机械臂保证力控制的有效方式是采用阻抗控制的方法,建立机械臂位姿与力之间关系的函数方程,从而实现力和位姿之间的动态协调平衡。单个机械臂中,阻抗方程的输出与输入关系只跟机械臂自身的位姿误差、力误差有关,当多机械臂协调时,为了保证系统的安全性,采用力同步的方式保证多机械臂的力协调关系,但是实际应用中,由于力传感器的物理响应和闭环周期都较慢,而机械臂的位姿闭环周期较短,因此,仅有力的同步闭环控制,会对机械臂的位姿跟踪产生影响。
发明内容
本发明的目的是提供一种力/位协调的多臂机器人柔顺控制方法,该方法在确定不同机械臂之间的力协调的同时,保证了位置的同步协调关系。
本发明为解决上述技术问题采用以下技术方案:
一种力/位协调的多臂机器人柔顺控制方法,机器人有N个机械臂T={t 1 t 2 ,…,t i ,…,t N },1<i<N,ti表示第i个机械臂,所述控制方法具体包括以下步骤:
步骤S10,由机械臂的操作任务计算机械臂末端期望接触力;
步骤S11,通过安装的机械臂末端六维力矩传感器测量机械臂末端实际接触力;
步骤S12,由机械臂的操作任务计算机械臂末端期望位姿;
步骤S13,通过机械臂关节角度传感器测量机械臂关节绝对角度;
步骤S14,以步骤S10得到的所述机械臂末端期望接触力、步骤S11得到的所述机械臂末端实际接触力、步骤S12得到的所述机械臂末端期望位姿以及步骤S13得到的所述机械臂关节绝对角度作为条件输入基于力/位协调的多机械臂同步阻抗控制器;
步骤S15,根据步骤S14所述基于力/位协调的多机械臂同步阻抗控制器的输出结果实现机械臂闭环控制。
进一步的, 所述步骤S140的具体过程为:
步骤S140,根据步骤S10得到的所述机械臂ti-1,机械臂ti,机械臂ti+1末端期望接触力和步骤S11得到的所述机械臂ti-1,机械臂ti,机械臂ti+1末端实际接触力以及同步控制思想得到机械臂ti末端力误差、同步力误差、同步力耦合误差;
步骤S141,根据步骤S140得到的所述机械臂ti末端力误差、同步力误差以及同步力耦合误差得到机械臂ti末端力补偿量;
步骤S142,设计机械臂末端同步阻抗控制器,所述机械臂末端同步阻抗控制器以步骤S141得到的所述机械臂ti末端力补偿量作为输入条件,从而建立多机械臂同步力与运动学之间的关系;
步骤S143,根据所述机械臂末端同步阻抗控制器得到机械臂ti阻抗期望加速度;
步骤S144,根据所述机械臂末端同步阻抗控制器得到机械臂ti阻抗期望速度;
步骤S145,根据所述机械臂末端同步阻抗控制器得到机械臂ti阻抗期望位姿;
步骤S146,根据步骤S12得到的所述机械臂ti-1,机械臂ti,机械臂ti+1的末端期望位姿得到机械臂ti的运动期望加速度;
步骤S147,根据步骤S12得到的所述机械臂ti-1,机械臂ti,机械臂ti+1的末端期望位姿得到机械臂ti的运动期望速度;
步骤S148,根据步骤S12得到的所述机械臂ti-1,机械臂ti,机械臂ti+1的末端期望位姿得到机械臂ti的运动期望位姿;
步骤S149,根据步骤S13得到的所述机械臂ti-1,机械臂ti,机械臂ti+1的关节绝对角度信息和机械臂的正运动学得到机械臂ti末端实际位姿;
步骤S1410,根据步骤S12得到的所述机械臂ti-1,机械臂ti,机械臂ti+1的末端期望位姿和步骤S149得到的所述机械臂ti末端实际位姿得到械臂ti末端位姿误差、同步位姿误差、同步位姿耦合误差;
步骤S1411,根据步骤S1410得到的所述械臂ti末端位姿误差、同步位姿误差、同步位姿耦合误差得到机械臂ti末端同步位姿补偿量;
步骤S1412,根据步骤S143得到的所述机械臂ti阻抗期望加速度和步骤S146得到的所述机械臂ti的运动期望加速度得到机械臂ti同步期望加速度;
步骤S1413,根据步骤S144得到的所述机械臂ti阻抗期望速度和步骤S147得到的所述机械臂ti的运动期望速度得到机械臂ti同步期望速度;
步骤S1414,根据步骤S145得到的所述机械臂ti阻抗期望位姿、步骤S148得到的所述机械臂ti的运动期望位姿和步骤S1411得到的所述机械臂ti末端同步位姿补偿量得到机械臂ti同步期望位姿。
进一步的,所述步骤S15的具体过程为:
步骤S150,通过步骤S13得到的所述机械臂关节绝对角度和建立关节的速度观测器,计算得到机械臂的关节角速度;
步骤 S151,根据机械臂速度雅克比关系和步骤S150得到的所述机械臂的关节角速度计算求得机械臂末端实际速度;
步骤 S152,根据步骤S13得到的所述机械臂关节绝对角度计算求得机械臂末端实际位姿;
步骤 S153,根据步骤S151得到的所述机械臂末端实际速度和步骤S152得到的所述机械臂末端实际位姿信息计算得到机械臂末端实际加速度;
步骤154,根据步骤S151得到的所述机械臂末端实际速度和步骤S1413得到的所述机械臂ti同步期望速度之间的差值,求得机械臂速度补偿量;
步骤 S155,根据雅克比关系以及步骤S154求得的所述机械臂速度补偿量求得瞬间时刻的机械臂关节角速度补偿量,在短时间段内,该补偿量等效为关节速度补偿量;
步骤S156,根据步骤S153得到的所述机械臂末端实际加速度和步骤S1412得到的所述机械臂ti同步期望加速度之间的差值得到机械臂加速度补偿量;
步骤S157,根据步骤S156得到的所述机械臂末端加速度补偿量得到关节加速度补偿量;
步骤S158,根据步骤S1414得到的所述机械臂同步期望位姿和步骤S152求得的所述机械臂末端实际位姿之间的差得到机械臂位姿补偿量;
步骤S159,根据步骤S158得到的所述机械臂位姿补偿量和逆运动学关系得到机械臂的关节角度补偿量;
步骤 S1510,根据步骤S155得到的所述关节速度补偿量、步骤S157得到的所述关节加速度补偿量和步骤S159得到的所述机械臂的关节角度补偿量得到机械臂的关节控制补偿量从而实现机械臂关节闭环控制。
进一步的,机械臂的阻抗控制系统采用笛卡尔阻抗控制系统,笛卡尔阻抗控制系统的内环采用笛卡尔位置控制,外环采用阻抗控制器。
与现有技术相比,本发明有以下有益效果:
(1)通过在机械臂的大闭环周期中采用力同步协调控制方法,在小闭环周期中采用位姿同步协调控制的方法,从而实现多机械臂的力/位同步协调控制;(2)利用阻抗控制方法建立了多臂之间力和位姿的协调控制关系,通过采用力同步控制的思想,建立多机械臂之间的力同步控制器,保证了力协调的精确性;(3)通过在机械臂控制的小闭环内采用位姿同步控制的思想,提高了系统的响应频率,缩短了响应周期,提高了位姿协调控制精度,通过在多机械臂之间建立位姿同步控制器,从而实现基于力/位协调的多机械臂柔顺控制方法。
附图说明
图1 为多臂机器人同步阻抗控制流程图;
图2为基于力/位的同步阻抗控制器结构框图;
图3 为机械臂闭环控制框图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合附图及具体实施例对本发明的技术方案做进一步的详细说明:
如图1所示,一种力/位协调的多臂机器人柔顺控制方法,机器人有N个机械臂T={t 1 t 2 ,…,t i ,…,t N },1<i<N,ti表示第i个机械臂,该控制方法具体包括以下步骤:
步骤S10,由机械臂的操作任务计算机械臂末端期望接触力;
步骤S11,通过安装的机械臂末端六维力矩传感器测量机械臂末端实际接触力;
步骤S12,由机械臂的操作任务计算机械臂末端期望位姿;
步骤S13,通过机械臂关节角度传感器测量机械臂关节绝对角度;
步骤S14,以步骤S10得到的所述机械臂末端期望接触力、步骤S11得到的所述机械臂末端实际接触力、步骤S12得到的所述机械臂末端期望位姿以及步骤S13得到的所述机械臂关节绝对角度作为条件输入基于力/位协调的多机械臂同步阻抗控制器;
步骤S15,根据步骤S14所述基于力/位协调的多机械臂同步阻抗控制器的输出结果实现机械臂闭环控制。
如图2所示,步骤S140的具体过程为:
步骤S140,根据步骤S10得到的所述机械臂ti-1,机械臂ti,机械臂ti+1末端期望接触力和步骤S11得到的所述机械臂ti-1,机械臂ti,机械臂ti+1末端实际接触力以及同步控制思想得到机械臂ti末端力误差、同步力误差、同步力耦合误差;由机械臂ti-1和机械臂ti得到机械臂ti同步力误差,通过机械臂ti-1和机械臂ti+1可以计算得到机械臂ti的同步力耦合力误差。
步骤S141,根据步骤S140得到的所述机械臂ti末端力误差、同步力误差以及同步力耦合误差得到机械臂ti末端力补偿量;
步骤S142,设计机械臂末端同步阻抗控制器,所述机械臂末端同步阻抗控制器以步骤S141得到的所述机械臂ti末端力补偿量作为输入条件,从而建立多机械臂同步力与运动学之间的关系;
步骤S143,根据所述机械臂末端同步阻抗控制器得到机械臂ti阻抗期望加速度;
步骤S144,根据所述机械臂末端同步阻抗控制器得到机械臂ti阻抗期望速度;
步骤S145,根据所述机械臂末端同步阻抗控制器得到机械臂ti阻抗期望位姿;
步骤S146,根据步骤S12得到的所述机械臂ti-1,机械臂ti,机械臂ti+1的末端期望位姿得到机械臂ti的运动期望加速度;
步骤S147,根据步骤S12得到的所述机械臂ti-1,机械臂ti,机械臂ti+1的末端期望位姿得到机械臂ti的运动期望速度;
步骤S148,根据步骤S12得到的所述机械臂ti-1,机械臂ti,机械臂ti+1的末端期望位姿得到机械臂ti的运动期望位姿;
步骤S149,根据步骤S13得到的所述机械臂ti-1,机械臂ti,机械臂ti+1的关节绝对角度信息和机械臂的正运动学得到机械臂ti末端实际位姿;
步骤S1410,根据步骤S12得到的所述机械臂ti-1,机械臂ti,机械臂ti+1的末端期望位姿和步骤S149得到的所述机械臂ti末端实际位姿得到械臂ti末端位姿误差、同步位姿误差、同步位姿耦合误差;
步骤S1411,根据步骤S1410得到的所述械臂ti末端位姿误差、同步位姿误差、同步位姿耦合误差得到机械臂ti末端同步位姿补偿量;
步骤S1412,根据步骤S143得到的所述机械臂ti阻抗期望加速度和步骤S146得到的所述机械臂ti的运动期望加速度得到机械臂ti同步期望加速度;
步骤S1413,根据步骤S144得到的所述机械臂ti阻抗期望速度和步骤S147得到的所述机械臂ti的运动期望速度得到机械臂ti同步期望速度;
步骤S1414,根据步骤S145得到的所述机械臂ti阻抗期望位姿、步骤S148得到的所述机械臂ti的运动期望位姿和步骤S1411得到的所述机械臂ti末端同步位姿补偿量得到机械臂ti同步期望位姿。
如图3所示,步骤S15的具体过程为:
步骤S150,通过步骤S13得到的所述机械臂关节绝对角度和建立关节的速度观测器,计算得到机械臂的关节角速度;
步骤 S151,根据机械臂速度雅克比关系和步骤S150得到的所述机械臂的关节角速度计算求得机械臂末端实际速度;
步骤 S152,根据步骤S13得到的所述机械臂关节绝对角度计算求得机械臂末端实际位姿;
步骤 S153,根据步骤S151得到的所述机械臂末端实际速度和步骤S152得到的所述机械臂末端实际位姿信息计算得到机械臂末端实际加速度;
步骤154,根据步骤S151得到的所述机械臂末端实际速度和步骤S1413得到的所述机械臂ti同步期望速度之间的差值,求得机械臂速度补偿量;
步骤 S155,根据雅克比关系以及步骤S154求得的所述机械臂速度补偿量求得瞬间时刻的机械臂关节角速度补偿量,在短时间段内,该补偿量等效为关节速度补偿量;
步骤S156,根据步骤S153得到的所述机械臂末端实际加速度和步骤S1412得到的所述机械臂ti同步期望加速度之间的差值得到机械臂加速度补偿量;
步骤S157,根据步骤S156得到的所述机械臂末端加速度补偿量得到关节加速度补偿量;
步骤S158,根据步骤S1414得到的所述机械臂同步期望位姿和步骤S152求得的所述机械臂末端实际位姿之间的差得到机械臂位姿补偿量;
步骤S159,根据步骤S158得到的所述机械臂位姿补偿量和逆运动学关系得到机械臂的关节角度补偿量;
步骤 S1510,根据步骤S155得到的所述关节速度补偿量、步骤S157得到的所述关节加速度补偿量和步骤S159得到的所述机械臂的关节角度补偿量得到机械臂的关节控制补偿量从而实现机械臂关节闭环控制。
机械臂的阻抗控制系统采用笛卡尔阻抗控制系统,笛卡尔阻抗控制系统的内环采用笛卡尔位置控制,外环采用阻抗控制器。
以上所述实施方式仅是本发明的具体和详细描述,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (4)

1.一种力/位协调的多臂机器人柔顺控制方法,其特征在于,机器人有N个机械臂T={t 1 t 2 ,…,t i ,…,t N },1<i<N,ti表示第i个机械臂,所述控制方法具体包括以下步骤:
步骤S10,由机械臂的操作任务计算机械臂末端期望接触力;
步骤S11,通过安装的机械臂末端六维力矩传感器测量机械臂末端实际接触力;
步骤S12,由机械臂的操作任务计算机械臂末端期望位姿;
步骤S13,通过机械臂关节角度传感器测量机械臂关节绝对角度;
步骤S14,以步骤S10得到的所述机械臂末端期望接触力、步骤S11得到的所述机械臂末端实际接触力、步骤S12得到的所述机械臂末端期望位姿以及步骤S13得到的所述机械臂关节绝对角度作为条件输入基于力/位协调的多机械臂同步阻抗控制器;
步骤S15,根据步骤S14所述基于力/位协调的多机械臂同步阻抗控制器的输出结果实现机械臂闭环控制。
2.根据权利要求1所述的一种力/位协调的多臂机器人柔顺控制方法,其特征在于, 所述步骤S140的具体过程为:
步骤S140,根据步骤S10得到的所述机械臂ti-1,机械臂ti,机械臂ti+1末端期望接触力和步骤S11得到的所述机械臂ti-1,机械臂ti,机械臂ti+1末端实际接触力以及同步控制思想得到机械臂ti末端力误差、同步力误差、同步力耦合误差;
步骤S141,根据步骤S140得到的所述机械臂ti末端力误差、同步力误差以及同步力耦合误差得到机械臂ti末端力补偿量;
步骤S142,设计机械臂末端同步阻抗控制器,所述机械臂末端同步阻抗控制器以步骤S141得到的所述机械臂ti末端力补偿量作为输入条件,从而建立多机械臂同步力与运动学之间的关系;
步骤S143,根据所述机械臂末端同步阻抗控制器得到机械臂ti阻抗期望加速度;
步骤S144,根据所述机械臂末端同步阻抗控制器得到机械臂ti阻抗期望速度;
步骤S145,根据所述机械臂末端同步阻抗控制器得到机械臂ti阻抗期望位姿;
步骤S146,根据步骤S12得到的所述机械臂ti-1,机械臂ti,机械臂ti+1的末端期望位姿得到机械臂ti的运动期望加速度;
步骤S147,根据步骤S12得到的所述机械臂ti-1,机械臂ti,机械臂ti+1的末端期望位姿得到机械臂ti的运动期望速度;
步骤S148,根据步骤S12得到的所述机械臂ti-1,机械臂ti,机械臂ti+1的末端期望位姿得到机械臂ti的运动期望位姿;
步骤S149,根据步骤S13得到的所述机械臂ti-1,机械臂ti,机械臂ti+1的关节绝对角度信息和机械臂的正运动学得到机械臂ti末端实际位姿;
步骤S1410,根据步骤S12得到的所述机械臂ti-1,机械臂ti,机械臂ti+1的末端期望位姿和步骤S149得到的所述机械臂ti末端实际位姿得到械臂ti末端位姿误差、同步位姿误差、同步位姿耦合误差;
步骤S1411,根据步骤S1410得到的所述械臂ti末端位姿误差、同步位姿误差、同步位姿耦合误差得到机械臂ti末端同步位姿补偿量;
步骤S1412,根据步骤S143得到的所述机械臂ti阻抗期望加速度和步骤S146得到的所述机械臂ti的运动期望加速度得到机械臂ti同步期望加速度;
步骤S1413,根据步骤S144得到的所述机械臂ti阻抗期望速度和步骤S147得到的所述机械臂ti的运动期望速度得到机械臂ti同步期望速度;
步骤S1414,根据步骤S145得到的所述机械臂ti阻抗期望位姿、步骤S148得到的所述机械臂ti的运动期望位姿和步骤S1411得到的所述机械臂ti末端同步位姿补偿量得到机械臂ti同步期望位姿。
3.根据权利要求2所述的一种力/位协调的多臂机器人柔顺控制方法,其特征在于,所述步骤S15的具体过程为:
步骤S150,通过步骤S13得到的所述机械臂关节绝对角度和建立关节的速度观测器,计算得到机械臂的关节角速度;
步骤 S151,根据机械臂速度雅克比关系和步骤S150得到的所述机械臂的关节角速度计算求得机械臂末端实际速度;
步骤 S152,根据步骤S13得到的所述机械臂关节绝对角度计算求得机械臂末端实际位姿;
步骤 S153,根据步骤S151得到的所述机械臂末端实际速度和步骤S152得到的所述机械臂末端实际位姿信息计算得到机械臂末端实际加速度;
步骤154,根据步骤S151得到的所述机械臂末端实际速度和步骤S1413得到的所述机械臂ti同步期望速度之间的差值,求得机械臂速度补偿量;
步骤 S155,根据雅克比关系以及步骤S154求得的所述机械臂速度补偿量求得瞬间时刻的机械臂关节角速度补偿量,在短时间段内,该补偿量等效为关节速度补偿量;
步骤S156,根据步骤S153得到的所述机械臂末端实际加速度和步骤S1412得到的所述机械臂ti同步期望加速度之间的差值得到机械臂加速度补偿量;
步骤S157,根据步骤S156得到的所述机械臂末端加速度补偿量得到关节加速度补偿量;
步骤S158,根据步骤S1414得到的所述机械臂同步期望位姿和步骤S152求得的所述机械臂末端实际位姿之间的差得到机械臂位姿补偿量;
步骤S159,根据步骤S158得到的所述机械臂位姿补偿量和逆运动学关系得到机械臂的关节角度补偿量;
步骤 S1510,根据步骤S155得到的所述关节速度补偿量、步骤S157得到的所述关节加速度补偿量和步骤S159得到的所述机械臂的关节角度补偿量得到机械臂的关节控制补偿量从而实现机械臂关节闭环控制。
4.根据权利要求3所述的一种力/位协调的多臂机器人柔顺控制方法,其特征在于,机械臂的阻抗控制系统采用笛卡尔阻抗控制系统,笛卡尔阻抗控制系统的内环采用笛卡尔位置控制,外环采用阻抗控制器。
CN201810330956.6A 2018-04-13 2018-04-13 一种力/位协调的多臂机器人柔顺控制方法 Active CN108673495B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810330956.6A CN108673495B (zh) 2018-04-13 2018-04-13 一种力/位协调的多臂机器人柔顺控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810330956.6A CN108673495B (zh) 2018-04-13 2018-04-13 一种力/位协调的多臂机器人柔顺控制方法

Publications (2)

Publication Number Publication Date
CN108673495A true CN108673495A (zh) 2018-10-19
CN108673495B CN108673495B (zh) 2021-05-07

Family

ID=63800976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810330956.6A Active CN108673495B (zh) 2018-04-13 2018-04-13 一种力/位协调的多臂机器人柔顺控制方法

Country Status (1)

Country Link
CN (1) CN108673495B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109623830A (zh) * 2018-11-27 2019-04-16 佛山科学技术学院 一种基于多传感器的机器人任务示教方法及系统
CN110394802A (zh) * 2019-08-06 2019-11-01 前元运立(北京)机器人智能科技有限公司 一种打磨机器人及位置补偿方法
CN112847373A (zh) * 2021-01-12 2021-05-28 成都卡诺普自动化控制技术有限公司 一种机器人轨迹同步控制方法、计算机可读存储介质
WO2022007358A1 (zh) * 2020-07-08 2022-01-13 深圳市优必选科技股份有限公司 阻抗控制方法、装置、阻抗控制器和机器人
CN115257995A (zh) * 2022-05-19 2022-11-01 伍福人工智能(河南)有限公司 机器人的控制方法、装置、终端设备以及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080297094A1 (en) * 2007-05-31 2008-12-04 Kabushiki Kaisha Toshiba Control apparatus, control method, program and robot
CN106547989A (zh) * 2016-11-23 2017-03-29 北京邮电大学 具有关节柔性/臂杆柔性机械臂的位置内环阻抗控制算法
CN106945046A (zh) * 2017-04-24 2017-07-14 华南理工大学 基于变刚度弹性驱动器的机械臂控制系统及其控制方法
CN107748496A (zh) * 2017-09-25 2018-03-02 北京邮电大学 基于参数自适应调节的阻抗控制器算法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080297094A1 (en) * 2007-05-31 2008-12-04 Kabushiki Kaisha Toshiba Control apparatus, control method, program and robot
CN106547989A (zh) * 2016-11-23 2017-03-29 北京邮电大学 具有关节柔性/臂杆柔性机械臂的位置内环阻抗控制算法
CN106945046A (zh) * 2017-04-24 2017-07-14 华南理工大学 基于变刚度弹性驱动器的机械臂控制系统及其控制方法
CN107748496A (zh) * 2017-09-25 2018-03-02 北京邮电大学 基于参数自适应调节的阻抗控制器算法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
朱晓峰: "六足仿生机器人单腿结构设计及其柔顺控制研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109623830A (zh) * 2018-11-27 2019-04-16 佛山科学技术学院 一种基于多传感器的机器人任务示教方法及系统
CN110394802A (zh) * 2019-08-06 2019-11-01 前元运立(北京)机器人智能科技有限公司 一种打磨机器人及位置补偿方法
CN110394802B (zh) * 2019-08-06 2021-03-30 前元运立(北京)机器人智能科技有限公司 一种打磨机器人及位置补偿方法
WO2022007358A1 (zh) * 2020-07-08 2022-01-13 深圳市优必选科技股份有限公司 阻抗控制方法、装置、阻抗控制器和机器人
CN112847373A (zh) * 2021-01-12 2021-05-28 成都卡诺普自动化控制技术有限公司 一种机器人轨迹同步控制方法、计算机可读存储介质
CN112847373B (zh) * 2021-01-12 2022-07-26 成都卡诺普机器人技术股份有限公司 一种机器人轨迹同步控制方法、计算机可读存储介质
CN115257995A (zh) * 2022-05-19 2022-11-01 伍福人工智能(河南)有限公司 机器人的控制方法、装置、终端设备以及存储介质

Also Published As

Publication number Publication date
CN108673495B (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
CN108673495A (zh) 一种力/位协调的多臂机器人柔顺控制方法
CN108436913A (zh) 一种力协调的多臂机器人柔顺控制方法
CN111024064B (zh) 一种改进Sage-Husa自适应滤波的SINS/DVL组合导航方法
JP7133903B2 (ja) マルチパス平滑化のための方法およびシステム
CN109029448B (zh) 单目视觉惯性定位的imu辅助跟踪模型
CN108241292B (zh) 一种基于扩张状态观测器的水下机器人滑模控制方法
CN106227154B (zh) 一种两轴联动机械臂运动控制的同步误差补偿方法
CN110421569A (zh) 一种基于有限时间扰动观测器的反演滑模机械臂控制器设计方法
CN108303079B (zh) 一种水下usbl反向应用的数据平滑方法
CN108406765A (zh) 一种开链式多臂机器人阻抗控制方法
CN108279571A (zh) 一种有限转角机电伺服系统的模型参数辨识方法
CN108663938A (zh) 一种考虑通讯拓扑变换的uuv集群协调控制方法
CN110116409A (zh) 一种基于扰动观测器的四通道遥操作双边控制方法
CN107816989B (zh) 水下机器人航向数据处理方法和装置
CN107390171A (zh) 基于toa测距和多普勒效应的水下传感器节点定位方法
CN105680972A (zh) 机器人集群协同任务网络同步控制方法
CN111464097A (zh) 一种永磁同步电机转动惯量离线辨识方法
CN108663067A (zh) 一种运动传感器的自适应校准方法和系统
CN108829126A (zh) 一种考虑通讯延时的auv集群协调控制方法
CN108592907A (zh) 一种基于双向滤波平滑技术的准实时步进式行人导航方法
CN107776436B (zh) 两轮自平衡设备的控制方法及装置
CN110384250A (zh) 一种卷烟机回丝量的测量方法、装置及卷烟机系统
CN109510543B (zh) 一种伺服电机负载惯量的测定方法
CN103170976B (zh) 二自由度机器人运动控制方法
CN113671977B (zh) 一种海上作业船状态同步稳定鲁棒控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant